首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Delineation of Banikdih Agricultural watershed in Eastern India was carried out and various watershed parameters were extracted using Geographic Information System (GIS) and Remote Sensing. Digital Elevation Model (DEM) was developed with a contour interval of 10 m in the scale of 1:25000 using ARC/INFO modules. Sub watershed, drainage, slope, aspect, flow direction, soil series, soil texture, and soil class maps were independently generated and they were properly registered and integrated for analysis. The watershed was digitally delineated using AVSWAT model that couples hydrological model and GIS with appropriate threshold value of cell size. Subsequently, stream characteristics through the interface were generated. Indian Remote Sensing Satellite IRS-1D LISS-III data pertaining to the period of October 29, 1998 and October 23, 2000 was used to develop land use/land cover thematic map using ERDAS- 8.4 version image processing software. Eight major land use/land cover classes namely water body, lowland paddy, upland paddy, fallow land, upland crop (non-paddy crops), settlement, open mixed forest, and wasteland were segregated through digital image processing techniques using maximum likelihood algorithm. The information generated would be of immense help in hydrological modeling of watershed for prediction of runoff and sediment yield, thereby providing necessary inputs for developing suitable developmental management plans with sound scientific basis.  相似文献   

2.
DEM流域特征提取及其在非点源污染模拟中的应用   总被引:2,自引:0,他引:2  
概述了数字高程模型(DEM)的特点及对其进行流域特征信息的提取原理和方法,结合流域非点源污染模拟研究的需要,在GIS软件和非点源污染模型SWAT的技术支持下,对密云县密云水库北部流域DEM进行了流域的刻划及模型运行单元HRUs的生成,最后从三个方面:对DEM在非点源污染研究中的应用进行了有益的探讨。  相似文献   

3.
DEM数据是流域水文分析和模拟的基础,不同DEM分辨率尺度深刻影响着水文分析和水文过程模拟的结果。本文基于机载LiDAR获取的DEM数据,分析了不同分辨率LiDAR DEM在坡度提取、水文指数分析和流域特征参数提取中的差异及产生原因;基于SWAT分布式水文模型模拟研究了不同分辨率DEM数据的水文效应。研究结果表明:随着DEM分辨率的降低,坡度平均值减小,TWI平均值增大,SPI平均值减小,LSF均值先增大后减小,当分辨率为10 m时,LSF取得最大值;SWAT模型模拟结果表明,随分辨率的降低、坡度值的变小,地形湿度指数变大,蒸散发量增加,地表径流深减小,而土壤渗漏量与地下径流量则是先减小后增加,出现极值时DEM分辨率为10 m,与LSF出现极值时一致。  相似文献   

4.
A distributed parameter model Soil and Water Assessment Tool (SWAT) has been tested on daily and monthly basis for estimating surface runoff and sediment yield from a small watershed “Chhokeranala” in eastern India using satellite data and Geographical Information System (GIS). Several maps like watershed and sub-watershed boundaries, drainage network, landuse/cover and soil texture have been generated. The SWAT model has been verified for the initial phase of monsoon season in the year 2002 using daily rainfall and air temperature. Performance of the model has been also evaluated to simulate the surface runoff and sediment yield on sub-watershed basis for two months (July-August 2002). The results show a good agreement between observed and simulated runoff and sediment yield during the study period. Capability of the model for generating rainfall has been evaluated for 10 years (1992 - 2001) period. The model simulated daily rainfall shows close agreement with the observed rainfall. The present results show that the SWAT model can be used for satisfactory simulation of daily and monthly rainfall, runoff and sediment yield.  相似文献   

5.
Abstract

A decline in water quality in the Okatie River, a coastal estuary located in Beaufort County, SC, has resulted in the closure of several shellfish beds. Continuing urban development within the watershed has altered land cover conditions and may be contributing to the recent decline in water quality. Remote sensing and geographic information system (GIS) technology, coupled with a water quality model were used to spatially model stormwater runoff to understand the relationship between recent changes in land cover and watershed runoff characteristics. High spatial resolution imagery acquired in 1994 and 1996 spatially documented pre‐ and post‐development land cover conditions within the watershed. The water quality model Agricultural Nonpoint Source Pollution (AGNPS) evaluated land characteristics such as soil type, topography, and land cover to simulate surface water flow and sediment transport over past and current land cover conditions. Results of the model were used to locate net increases of fresh water discharge and to suggest best management practices (BMP).  相似文献   

6.
One of the prime global issues in the field of hydrological science is water scarcity and its degrading quality. In this paper, geographic information system (GIS) and remote sensing techniques are applied over a study of granite watershed area of ~200 km2 with semi-arid climatic conditions for estimating surface runoff using a modified soil conservation service curve number method and subsequent site selection for water harvesting structures such as check dams and percolation ponds to enhance recharge of groundwater. Further, some of the sites selected for appropriate construction of recharge structures through analytic hierarchy process were investigated for site efficacy. All the recharge sites selected were found feasible and appropriately suitable. This study demonstrates the capability of GIS and its application for the construction of water harvesting structures over semi-arid areas.  相似文献   

7.
Abstract

River basin assessment is crucial for water management and to address the watershed issues. So, an integrated river basin management and assessment model using morphometric assessment, remote sensing, GIS and SWAT model was envisaged and applied to Kaddam river basin, Telangana state, India. Morphometric results showed high drainage density ranging from 2.19 to 5.5?km2/km, with elongated fan shape having elongation ratio of 0.60–0.75 with sparse vegetation and high relief. Land use change assessment showed that 265.26?km2 of forest land is converted into irrigated land and has increased sediment yields in watersheds. The calibration (r 2?=?0.74, NSE?=?0.84) and validation (r 2?=?0.72, NSE?=?0.84) of SWAT model showed that simulated and observed results were in agreement and in recommended ranges. The SWAT simulations were used to compute mean annual water and sediment yield from 1997 to 2012, along with morphometric results to categorize critical watersheds and conservation structures were proposed accordingly.  相似文献   

8.
Runoff modelling of a small watershed using satellite data and GIS   总被引:1,自引:0,他引:1  
This study was conducted for the Nagwan watershed of the Damodar Valley Corporation (DVC), Hazaribagh, Bihar, India. Geographic Information System (GIS) was used to extract the hydrological parameters of the watershed from the remote sensing and field data. The Digital Elevation Model (DEM) was prepared using contour map (Survey of India, 1:50000 scale) of the watershed. The EASI/PACE GIS software was used to extract the topographic features and to delineate watershed and overland flow-paths from the DEM. Land use classification were generated from data of Indian Remote Sensing Satellite (IRS-1B—LISS—II) to compute runoff Curve Number (CN). Data extracted from contour map, soil map and satellite imagery, viz. drainage basin area, basin shape, average slope of the watershed, main stream channel slope, land use, hydrological soil groups and CN were used for developing an empirical model for surface runoff prediction. It was found that the model can predict runoff reasonably well and is well suited for the Nagwan watershed. Design of conservation structures can be done and their effects on direct runoff can be evaluated using the model. In broader sense it could be concluded that model can be applied for estimating runoff and evaluating its effect on structures of the Nagwan watershed.  相似文献   

9.
During the HAPEX-Sahel experiment (1991–94), water redistribution processes were studied at the meso-scale (10 000 km2) near Niamey, Niger. A project now under way at ORSTOM aims at modelling the regional water balance through a spatial approach combining GIS data organization and distributed hydrological modelling. The main objective is to extend the surface water balance, by now available only on a few, small (around 1 km2) unconnected endoreic catchments, to a more significant part of the HAPEX-Sahel square degree, a 1500 km2 region called SSZ that includes most of the environmental and hydrology measurement sites. GIS architecture and model design consistently consider data and processes at the local, catchment scale, and at the regional scale. The GIS includes spatial and temporal hydrological data (rainfall, surface runoff, ground water), thematic maps (topography, soil, geomorphology, vegetation) and multi-temporal remote sensing data (SPOT, aerial pictures). The GIS supports the simulation of the composite effect at the regional scale of highly variable and discontinuous component hydrologic processes operating at the catchment scale, in order to simulate inter-annual aquifer recharge and response to climatic scenarios at the regional scale.  相似文献   

10.
Assessment of the environmental impact of Non Point Source (NPS) pollutants on a global, regional and localized scale is the key component for achieving sustainability of agriculture as well as preserving the environment. The knowledge and information required to address the problem of assessing the impact of NPS pollutants like Nitrogen (N), Phosphorus (P), etc., on the environment crosses several sub-disciplines like remote sensing, Geographical Information System (GIS), hydrology and soil science. The remote sensing data, by virtue of its potential like synopticity, multi-spectral and multi-temporal capability, computer compatibility, besides providing almost real time information, has enhanced the scope of automation of mapping dynamic elements, such as land use/land cover, degradation profile and computing the priority categorisation of sub-watersheds. The present study demonstrates the application of remote sensing, GIS and distributed parameter model Agricultural Non-Point Source Pollution Model (AGNPS) in the assessment of hazardous non-point source pollution in a watershed. The ARC-INFO GIS and remote sensing provided the input data to support modelling, while the AGNPS model predicted runoff, sediment and pollutant (N and P) transport within a watershed. The integrated system is used to evaluate the sediment pollution in about 2700 ha Karso watershed located in Hazaribagh area of Jharkhand State, India. The predicted values of runoff and sediment yield copared reasonably well with the measured values. It is important to emphasize that this study is not intended to characterise, in an exhaustive manner. Instead, the goal is to illustrate the implications and potential advantages of GIS and remote sensing based Hydrology and Water quality (H/WQ) modelling framework.  相似文献   

11.
不透水面不仅是城市非点源污染的主要来源,还是流域生态环境变化的主要因素之一。不透水面的数量、位置、几何形状、分布格局以及透水率与不透水率的比值,均影响着流域的水文环境,因此成为研究热点。本文以天津于桥水库流域为例,综合遥感(RS)与地理信息系统(GIS)技术,从流域尺度上研究1984~2013年间不透水面覆盖度的变化。在ENVI 5.1软件支持下,利用遥感影像获取1984,1994,2004和2013年4个时相的不透水面信息。采用修正后的归一化水体指数剔除水体信息,排除水体对不透水面提取精度的影响。运用线性光谱混合分析法(Linear Spectral Mixture Analysis,LSMA),提取流域不透水面覆盖度。结果表明:流域内不透水面覆盖度大多集中在1~5级,植被覆盖程度较高。近30年间不透水面比例逐年增加,2013年比1984年增加了2.802%,呈线性增长。中等分辨率的遥感影像适合流域尺度的不透水面提取的结果可作为流域水文及规划管理的重要基础性数据。  相似文献   

12.
An integration between a visual programming environment and GIS has been developed to create and run spatial models. The visual programming environment provides graphical objects to create flowchart-like models of spatial phenomena using GIS data. The integrated system is object-oriented and designed to lessen the technical burdens of GIS programming. The system capabilities are demonstrated using a hydrological model example, and the model execution speed is compared with an equivalent model implementation in a traditional raster-based modelling system.  相似文献   

13.
This study is aimed at evolving a watershed prioritization of reservoir catchment based on vegetation, morphological and topographical parameters, and average annual soil loss using geographic information system (GIS) and remote sensing techniques. A large multipurpose river valley project, Upper Indravati reservoir, situated in the state of Orissa, India, has been chosen for the present work. Watershed prioritization is useful to soil conservationist and decision makers. This study integrates the watershed erosion response model (WERM) and universal soil loss equation (USLE) with a geographic information system (GIS) to estimate the erosion risk assessment parameters of the catchment. The total catchment is divided into 15 sub-watersheds. Various erosion risk parameters are determined for all the sub-watersheds separately. Average annual soil loss is also estimated for the sub-watersheds using USLE. The integrated effect of all these parameters is evaluated to recommend the priority rating of the watersheds for soil conservation planning.  相似文献   

14.
安徽省大别山区江子河小流域的水文模拟与分析   总被引:1,自引:0,他引:1  
目前,许多发达国家的研究已经证实,农业非点源污染是导致水环境恶化的主要原因之一。土壤侵蚀与非点源污染是一对密不可分的共生现象,特别在农业非点源污染中,土壤侵蚀是主要的发生形式,是一种重要的非点源污染。本文主要应用目前使用较广泛的非点源污染模型—SWAT模型对淮河流域安徽省大别山区水土流失较严重的江子河小流域进行径流量和泥沙量的模拟,并得到该小流域径流量和泥沙流失量的空间分布图。  相似文献   

15.
The planning of conservation measures to conserve water and soil resources taking hydrological planning unit as micro-watershed is considered to be effective. The automated watershed delineation technique using the spline interpolated filled digital elevation model (DEM) is effective in converging slopes of the area in which the stream patterns match with the manually digitized stream patterns of the topographical map. The various vector spatial layers like the slope/aspect, land-use/land-cover, runoff potential, soil erosion potential and the associated attribute information governing the criteria for different conservation structures can act as input layers in integrated spatial analysis module in GIS environment to evolve derived layers indicating the locations of conservation sites meeting the requisite criteria. The reliability of suitable conservation sites suggested out of integrated spatial GIS analysis could be ascertained using the multi criteria analysis incorporating the various factors controlling soil erosion process in the micro-watershed groups. The details of the above work are discussed in the paper.  相似文献   

16.
数字流域中的WebGIS设计与实现   总被引:1,自引:0,他引:1  
研究了基于WebGIS体系的数字流域系统的建设,提出了以渭河流域为试点的数字流域建设的设计及实现方案,实现了该流域信息的可视化及地图交互操作。  相似文献   

17.
在基于LRIS-3D系统建立高分辨率DEM基础上,以黄土高原丘陵沟壑区桥沟小流域为对象,利用GIS工具,以三维激光扫描系统扫描数据为基础数据,研究基于DEM的数字地形特征和水文特征的提取与分析方法。研究结果表明:与普通DEM相比,高分辨率DEM提取研究区平均坡度变小、坡度标准差变大,总体地形向平坦转化,坡面曲率增大,沟壑密度增大,更详细地描述了地表特征。对流域水文过程分析、特别是对流域汇流的参数确定及汇流模型的建立有积极作用。  相似文献   

18.
This article presents SCOPED, an innovative approach for extracting environmental data using OGC services. In the field of water resource management, SCOPED‐W (‘W’ for ‘Water’) is a method that was developed in the framework of EU/FP7 IASON and EOPOWER projects. This platform supports the collection of data required to build a Soil and Water Assessment Tool (SWAT) model and the uptake, spatialization and dissemination of raw data generated from the outputs of different SWAT models for the Black Sea region. Scientists are documenting the data served by the platform in ISO standardized metadata to support informed use. SCOPED‐W primarily targets the community of SWAT users in the Black Sea region but it can easily be replicated in other geographical areas. Additionally, the SCOPED approach is based on data interoperability that makes it fully compatible with other domains of application as demonstrated here with three original use cases. The article also highlights the benefits of the approach for the GEO community and discusses future improvements for supporting integration with other platforms such as UNEP Live.  相似文献   

19.
Water stress during crop cultivation due to inconsistent rainfall is a common phenomenon in maize growing area of Shanmuganadi watershed, located in the semi-arid region of southern peninsular India. The objective is to estimate the supplementary irrigation required to improve the crop productivity during water stress period. Spatial hydrological model, Soil and Water Assessment Tool, has been applied to simulate the watershed hydrology and crop growth for rabi season (October–February) considering the rainfed and irrigated scenarios. The average water stress days of rainfed maize was 60 days with yield of 1.6 t/ha. Irrigated maize with supplementary irrigation of 93–126 mm was resulted in improved yield of 3.8 t/ha with 28 water stress days. The results also suggest that supplemental irrigation can be obtained from groundwater reserves and by adopting early sowing strategy can provide opportunities for improving water productivity in rainfed farming.  相似文献   

20.
This study reports results from evaluation of the quality of digital elevation model (DEM) from four sources viz. topographic map (1:50,000), Shuttle Radar Topographic Mission (SRTM) (90 m), optical stereo pair from ASTER (15 m) and CARTOSAT (2.5 m) and their use in derivation of hydrological response units (HRUs) in Sitla Rao watershed (North India). The HRUs were derived using water storage capacity and slope to produce surface runoff zones. The DEMs were evaluated on elevation accuracy and representation of morphometric features. The DEM derived from optical stereo pairs (ASTER and CARTOSAT) provided higher vertical accuracies than the SRTM and topographic map-based DEM. The SRTM with a coarse resolution of 90 m provided vertical accuracy but better morphometry compared to topographic map. The HRU maps derived from the fine resolution DEM (ASTER and CARTOSAT) were more detailed but did not provide much advantage for hydrological studies at the scale of Sitla Rao watershed (5800 ha).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号