首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we propose a new numerical method, named as Traction Image method, to accurately and efficiently implement the traction-free boundary conditions in finite difference simulation in the presence of surface topography. In this algorithm, the computational domain is discretized by boundary-conforming grids, in which the irregular surface is transformed into a 'flat' surface in computational space. Thus, the artefact of staircase approximation to arbitrarily irregular surface can be avoided. Such boundary-conforming gridding is equivalent to a curvilinear coordinate system, in which the first-order partial differential velocity-stress equations are numerically updated by an optimized high-order non-staggered finite difference scheme, that is, DRP/opt MacCormack scheme. To satisfy the free surface boundary conditions, we extend the Stress Image method for planar surface to Traction Image method for arbitrarily irregular surface by antisymmetrically setting the values of normal traction on the grid points above the free surface. This Traction Image method can be efficiently implemented. To validate this new method, we perform numerical tests to several complex models by comparing our results with those computed by other independent accurate methods. Although some of the testing examples have extremely sloped topography, all tested results show an excellent agreement between our results and those from the reference solutions, confirming the validity of our method for modelling seismic waves in the heterogeneous media with arbitrary shape topography. Numerical tests also demonstrate the efficiency of this method. We find about 10 grid points per shortest wavelength is enough to maintain the global accuracy of the simulation. Although the current study is for 2-D P-SV problem, it can be easily extended to 3-D problem.  相似文献   

2.
基于栅格的分布式降雨径流模拟系统及应用   总被引:6,自引:5,他引:1  
研制了一套基于栅格的分布式降雨径流模拟系统,利用流域地形、土壤、土地利用等空间数据和水文气象数据,可以进行流域特征提取、空间数据内插、降雨径流模拟及计算结果的三维动态显示和统计。通过在黄土岭流域的应用,说明该系统具有较好的模拟降雨径流过程的能力,而且使用方便。  相似文献   

3.
Summary. Wave-induced stress in a porous elastic medium is studied on the basis of Biot's linearized theory which is a special case of the mixture theory. For sufficiently high frequencies which are pertinent to ocean waves and seismic waves, a boundary layer of Stokes' type is shown to exist near the free surface of the solid. Outside the boundary layer, fluid and the solid skeleton move together according to the laws of classical elasticity for a single phase. This division simplifies the analysis of the equations governing the two phases; and several examples of potential interest to geophysics and foundation mechanics are treated analytically.  相似文献   

4.
This paper investigates possible long-period oscillations of the earth's fluid outer core. Equations describing free oscillations in a stratified, self-gravitating, rotating fluid sphere are developed using a regular perturbation on the equations of hydrodynamics. The resulting system is reduced to a finite set of ordinary differential equations by ignoring the local horizontal component of the earth's angular velocity vector, Ω, and retaining only the vertical component. The angular dependence of the eigensolutions is described by Hough functions, which are solutions to Laplace's tidal equation.
The model considered here consists of a uniform solid elastic mantle and inner core surrounding a stratified, rotating, inviscid fluid outer core. The quantity which describes the core's stratification is the Brunt—Väisälä frequency N , and for particular distributions of this parameter, analytical solutions are presented. The interaction of buoyancy, and rotation results in two types of wave motion, the amplitudes of which are confined predominantly to the outer core: (1) internal gravity waves which exist when N 2 > 0, and (2) inertial oscillations which exist when N 2<4Ω2. For a model with a stable density stratification similar to that proposed by Higgins & Kennedy (1971), the resulting internal gravity wave eigenperiods are all at least 8 hr, and the fundamental modes have periods of at least 13 hr. A model with an unstable density stratification admits no internal gravity waves but does admit inertial oscillations whose eigenperiods have a lower bound of 12hr.  相似文献   

5.
We design a numerical algorithm for wave simulation in a borehole due to multipole sources. The stress–strain relation of the formation is based on the Kelvin–Voigt mechanical model to describe the attenuation. The modelling, which requires two anelastic parameters and twice the spatial derivatives of the lossless case, simulates 3-D waves in an axisymmetric medium by using the Fourier and Chebyshev methods to compute the spatial derivatives along the vertical and horizontal directions, respectively. Instabilities of the Chebyshev differential operator due to the implementation of the fluid–solid boundary conditions are solved with a characteristic approach, where the characteristic variables are evaluated at the source central frequency. The algorithm uses two meshes to model the fluid and the solid. The presence of the logging tool is modelled by imposing rigid boundary conditions at the inner surface of the fluid mesh. Examples illustrating the propagation of waves are presented, namely, by using monopoles, dipoles and a quadrupoles as sources in hard and soft formations. Moreover, the presence of casing and layers is considered. The modelling correctly simulates the features—traveltime and attenuation—of the wave modes observed in sonic logs, namely, the P and S body waves, the Stoneley wave, and the dispersive S waves in the case of multipole sources.  相似文献   

6.
7.
When interpreting electromagnetic fields observed at the Earth's surface in a realistic geophysical environment it is often necessary to pay special attention to the effects caused by inhomogeneities of the subsurface sedimentary and/or water layer and by inhomogeneities of the Earth's crust. The inhomogeneities of the Earth's crust are expected to be especially important when the electromagnetic field is generated by a source located in a magma chamber of a volcano. The simulation of such effects can be carried out using generalized thin-sheet models, which were independently introduced by Dmitriev (1969 ) and Ranganayaki & Madden (1980 ). In the first part of the paper, a system of integral equations is derived for the horizontal current that flows in the subsurface inhomogeneous conductive layer and for the vertical current crossing the inhomogeneous resistive layer representing the Earth's mantle. The terms relating to the finite thickness of the laterally inhomogeneous part of the model are retained in the equations. This only marginally complicates the equations, whilst allowing for a significant expansion of the approximation limits.
  The system of integral equations is solved using the iterative dissipative method developed by the authors in the period from 1978 to 1988. The method can be applied to the simulation of the electromagnetic field in an arbitrary inhomogeneous medium that dissipates the electromagnetic energy. When considered on a finite numerical grid, the integral equations are reduced to a system of linear equations that possess the same contraction properties as the original equations. As a result, the rate at which the iterative-perturbation sequence converges to the solution remains independent of the numerical grid used for the calculations. In contrast to previous publications on the method, aspects of the algorithm implementation that guarantee its effectiveness and robustness are discussed here.  相似文献   

8.
A coupled water and heat transport mode is established based on the Richards equation to study water flow and heat transport in soil during freezing process. Both the finite difference and finite element method are used in the discretization, respectively. Two different computer programs are written and used to simulate an indoor unidirectional frozen test. The freezing depth, freezing rate and temperature variation are compared among lab tests, finite difference calculation simulation and finite element calculation simulation. Result shows that: the finite difference method has a better performance in freezing depth simulation while the finite element method has a better performance in numerical stability in one-dimensional freezing simulation.  相似文献   

9.
Summary. Dynamical rupture process on the fault is investigated in a quasi-three-dimensional faulting model with non-uniform distributions of static frictions or the fracture strength under a finite shearing pre-stress. The displacement and stress time functions on the fault are obtained by solving numerically the equations of motion with a finite stress—fracture criterion, using the finite difference method.
If static frictions are homogeneous or weakly non-uniform, the rupture propagates nearly elliptically with a velocity close to that of P waves along the direction of pre-stress and with a nearly S wave velocity in the direction perpendicular to it. The rise time of the source function and the final displacements are larger around the centre of the fault. In the case when the static frictions are heavily non-uniform and depend on the location, the rupture propagation becomes quite irregular with appreciably decreased velocities, indicating remarkable stick-slip phenomena. In some cases, there remain unruptured regions where fault slip does not take place, and high stresses remain concentrated up to the final stage. These regions could be the source of aftershocks at a next stage.
The stick—slip faulting and irregular rupture propagation radiate high-frequency seismic waves, and the near-field spectral amplitudes tend to show an inversely linear frequency dependence over high frequencies for heavily non-uniform frictional faults.  相似文献   

10.
We derive asymptotic formulae for the toroidal and spheroidal eigenfrequencies of a SNREI earth model with two discontinuities, by considering the constructive interference of propagating SH and P-SV body waves. For a model with a smooth solid inner core, fluid outer core and mantle, there are four SH and 10 P-SV ray parameters regimes, each of which must be examined separately. The asymptotic eigenfrequency equations in each of these regimes depend only on the intercept times of the propagating wave types and the reflection and transmission coefficients of the waves at the free surface and the two discontinuities. If the classical geometrical plane-wave reflection and transmission coefficients are used, the final eigenfrequency equations are all real. In general, the asymptotic eigenfrequencies agree extremely well with the exact numerical eigenfrequencies; to illustrate this, we present comparisons for a crustless version of earth model 1066A.  相似文献   

11.
The vibration of a fluid-filled crack is considered to be one of the most plausible source mechanisms for the long-period events and volcanic tremors occurring around volcanoes. As a tool for the quantitative interpretation of source process of such volcanic seismic signals, we propose a method to numerically simulate the dynamic response of a fluid-filled crack. In this method, we formulate the motions of the fluid inside and the elastic solid outside of the crack, using boundary integrals in the frequency domain and solve the dynamic interactions between the fluid and the elastic solid using the point collocation method. The present method is more efficient compared with the time-domain finite difference method, which has been used in simulations of a fluid-filled crack and enables us to study the dynamics of a fluid-filled crack over a wide range of physical parameters. The method also allows us direct calculation of the attenuation quality factor of the crack resonance, which is an indispensable parameter for estimating the properties of the fluid inside the crack. The method is also designed to be flexible to many applications, which may be encountered in volcano seismology, and thus, extensions of the method to more complicated problems are promising.  相似文献   

12.
Finite difference (FD) simulation of elastic wave propagation is an important tool in geophysical research. As large-scale 3-D simulations are only feasible on supercomputers or clusters, and even then the simulations are limited to long periods compared to the model size, 2-D FD simulations are widespread. Whereas in generally 3-D heterogeneous structures it is not possible to infer the correct amplitude and waveform from 2-D simulations, in 2.5-D heterogeneous structures some inferences are possible. In particular, Vidale & Helmberger developed an approach that simulates 3-D waveforms using 2-D FD experiments only. However, their method requires a special FD source implementation technique that is based on a source definition which is not any longer used in nowadays FD codes. In this paper, we derive a conversion between 2-D and 3-D Green tensors that allows us to simulate 3-D displacement seismograms using 2-D FD simulations and the actual ray path determined in the geometrical optic limit. We give the conversion for a source of a certain seismic moment that is implemented by incrementing the components of the stress tensor.
Therefore, we present a hybrid modelling procedure involving 2-D FD and kinematic ray-tracing techniques. The applicability is demonstrated by numerical experiments of elastic wave propagation for models of different complexity.  相似文献   

13.
The effect of cracks on the elastic properties of an isotropic elastic solid is studied when the cracks are saturated with a soft fluid. A polynomial equation in effective Poisson's ratio is obtained, whose coefficients are functions of Poisson's ratio of the uncracked solid, crack density and saturating fluid parameter. Elastic and dynamical constants used in Blot's theory of wave propagation in poroelastic solids are modified for the introduction of cracks. The effects of cracks on the velocities of three types of waves are observed numerically. The frequency equation is derived for the propagation of Rayleigh-type surface waves in a saturated poroelastic half-space lying under a uniform layer of liquid. Dispersion curves for a particular model of oceanic crust containing cracks are plotted. The effects of variations in crack density and saturation on the phase and group velocity are also analysed.  相似文献   

14.
Summary. A conducting slab of finite thickness divided into three segments of different conductivities and overlying a perfect conductor is proposed as a suitable two-dimensional 'control' model for testing the accuracy of the various numerical modelling programs that are available for calculating the fields induced in the Earth by an external, time-varying magnetic source. An analytic solution is obtained for this control model for the case of the magnetic field everywhere parallel to the conductivity boundaries ( B -polarization). Values of the field given by this solution for a particular set of model parameters are calculated at selected points on the surface and on a horizontal plane inside the conductor, and are tabulated to three figure accuracy for reference. They are used to check the accuracy of the results given by the finite difference program of Brewitt-Taylor & Weaver and the finite element program of Kisak & Silvester for the same model. Improved formulae for calculating the derived electric field components in B -polarization are first developed for incorporation in the finite difference program, and these give surface electric fields within 1 per cent of the analytic values, while all three field components inside the conductor are calculated to better than 96 per cent accuracy by the finite difference program. The results given by the finite element program are not quite so satisfactory. Errors somewhat greater than 10 per cent are present and although the program requires much less disk space it takes rather more CPU time to complete the calculations.  相似文献   

15.
Summary. The method of finite differences is applied to the elastic wave equation to generate synthetic seismograms for laterally varying seafloor structures. The results are compared with borehole seismic data from the Gulf of California (Deep Sea Drilling Project Site 485) in which lines were shot over flat and rough topography. The significant new phenomenon observed in both the synthetic seismograms and the field data is the generation of a 'double head wave' due to the interaction of the incident wavefront with the side of a hill and the flat seafoor adjacent to the hill.
In these models the hills are on the order of a seismic wavelength in height and steep velocity gradients occur over distances comparable to wavelengths. Ray theoretical methods would not be suitable for studying such structures. True amplitude record sections are obtained by the finite difference method, which show for these models that the head wave generated at the flat seafloor adjacent to the hill is lower in amplitude than if the hill were not present and is lower in amplitude than the head wave generated at the hill.
A second feature which is important for borehole receivers is the existence of the 'direct wave root' in the upper basement. This energy occurs below the sharp interface when the direct wave impinges on the interface from above. There is no corresponding Snell's law ray path for this energy and the energy is evanescent with depth in the lower medium.
The properties of both the double head wave and the direct wave root are clearly demonstrated in the finite difference 'snapshot' displays.  相似文献   

16.
Summary. The propagation of surface waves in a laterally varying medium can be described by representing the wavetrain as a superposition of modal contributions for a reference structure. As the guided waves propagate through a heterogeneous zone the modal coefficients needed to describe the wavetrain vary with position, leading to interconversions between modes and reflection into backward travelling modes. The evolution of the modal terms may be described by a set of first-order differential equations which allow for coupling to both forward and backward travelling waves; the coefficients in these equations depend on the differences between the actual structure and the reference structure. This system is established using the orthogonality properties of the modal eigenfunctions and is valid for SH -waves, P - SV -waves and full anisotropy.
The reflected and transmitted wavefields for a region of heterogeneity can be related to the incident wave by introducing reflection and transmission matrices which connect the modal coefficients in these fields to those in the incident wavetrain. By considering a sequence of models with increasing width of heterogeneity we are able to derive a set of Ricatti equations for the reflection and transmission matrices which may be solved by initial value techniques. This avoids an awkward two-point boundary value problem for a large number of coupled equations. The method is demonstrated for 1 Hz Lg - and Sn -waves in a multilayered model for which there are 19 coupled modes.
The method is applicable to three-dimensional heterogeneity, and we are able to show that the interconversion between Love and Rayleigh waves, in the presence of gradients in seismic properties transverse to the propagation path, leads to a net rate of increase of the transverse components of the seismogram at the expense of the other components.  相似文献   

17.
We present a spectral-finite-element approach to the 2-D forward problem for electromagnetic induction in a spherical earth. It represents an alternative to a variety of numerical methods for 2-D global electromagnetic modelling introduced recently (e.g. the perturbation expansion approach, the finite difference scheme). It may be used to estimate the effect of a possible axisymmetric structure of electrical conductivity of the mantle on surface observations, or it may serve as a tool for testing methods and codes for 3-D global electromagnetic modelling. The ultimate goal of these electromagnetic studies is to learn about the Earth's 3-D electrical structure.
Since the spectral-finite-element approach comes from the variational formulation, we formulate the 2-D electromagnetic induction problem in a variational sense. The boundary data used in this formulation consist of the horizontal components of the total magnetic intensity measured on the Earth's surface. In this the variational approach differs from other methods, which usually use spherical harmonic coefficients of external magnetic sources as input data. We verify the assumptions of the Lax-Milgram theorem and show that the variational solution exists and is unique. The spectral-finite-element approach then means that the problem is parametrized by spherical harmonics in the angular direction, whereas finite elements span the radial direction. The solution is searched for by the Galerkin method, which leads to the solving of a system of linear algebraic equations. The method and code have been tested for Everett & Schultz's (1995) model of two eccentrically nested spheres, and good agreement has been obtained.  相似文献   

18.
Seismic wave propagation through the earth is often strongly affected by the presence of fractures. When these fractures are filled with fluids (oil, gas, water, CO2, etc.), the type and state of the fluid (liquid or gas) can make a large difference in the response of the seismic waves. This paper summarizes recent work on methods of deconstructing the effects of fractures, and any fluids within these fractures, on seismic wave propagation as observed in reflection seismic data. One method explored here is Thomsen's weak anisotropy approximation for wave moveout (since fractures often induce elastic anisotropy due to non-uniform crack-orientation statistics). Another method makes use of some very convenient crack/fracture parameters introduced previously that permit a relatively simple deconstruction of the elastic and wave propagation behaviour in terms of a small number of crack-influence parameters (whenever this is appropriate, as is certainly the case for small crack densities). Then, the quantitative effects of fluids on these crack-influence parameters are shown to be directly related to Skempton's coefficient B of undrained poroelasticity (where B typically ranges from 0 to 1). In particular, the rigorous result obtained for the low crack density limit is that the crack-influence parameters are multiplied by a factor  (1 − B )  for undrained systems. It is also shown how fracture anisotropy affects Rayleigh wave speed, and how measured Rayleigh wave speeds can be used to infer shear wave speed of the fractured medium in some cases. Higher crack density results are also presented by incorporating recent simulation data on such cracked systems.  相似文献   

19.
Summary. An improved finite difference scheme is applied to simulate wave propagation in the vicinity of a slot normal to the surface of an elastic half space. It provides visualization of the scattered wave pattern at a sequence of time steps, and also the components of displacement as functions of time at a series of observation points.
After being hit by a normally incident plane P pulse, the slot oscillates with two main cycles and two shear-compressional pairs of diffracted waves, and also Rayleigh pulses, are scattered from it. The resulting wavefronts are parallel to the vertical surfaces of the slot and curve in semicircular arcs around the bottom of the slot.
Experimental tests of the theory were performed, using 0.5–6 MHz ultrasonic pulses on duralumin cylinders with surface-breaking slots ranging from 0.5–2 mm in width and from 2–6 mm in depth. The numerical results were confirmed by these experiments.  相似文献   

20.
In this study, we test the adequacy of 2-D sensitivity kernels for fundamental-mode Rayleigh waves based on the single-scattering (Born) approximation to account for the effects of heterogeneous structure on the wavefield in a regional surface wave study. The calculated phase and amplitude data using the 2-D sensitivity kernels are compared to phase and amplitude data obtained from seismic waveforms synthesized by the pseudo-spectral method for plane Rayleigh waves propagating through heterogeneous structure. We find that the kernels can accurately predict the perturbation of the wavefield even when the size of anomaly is larger than one wavelength. The only exception is a systematic bias in the amplitude within the anomaly itself due to a site response.
An inversion method of surface wave tomography based on the sensitivity kernels is developed and applied to synthesized data obtained from a numerical simulation modelling Rayleigh wave propagation over checkerboard structure. By comparing recovered images to input structure, we illustrate that the method can almost completely recover anomalies within an array of stations when the size of the anomalies is larger than or close to one wavelength of the surface waves. Surface wave amplitude contains important information about Earth structure and should be inverted together with phase data in surface wave tomography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号