首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hazardous sinkholes started to appear in alluvial fans and unconsolidated sediments along the western Dead Sea coast in 1990. Since then hundreds of sinkholes have appeared from north to south along the shoreline. The Electrical Resistivity Tomography (ERT) method was used to achieve a better understanding of the subsurface geoelectric structure at the sinkhole development sites, taking into account that electric parameters (such as resistivity or conductivity) are very sensitive to formation properties and their variations in time. Fifteen image lines were surveyed at the Ein Gedi area during a period of active sinkhole development (in 2001–2002) over an area of 300 × 550 m2. Resistivity cross-sections and maps were constructed from 2-D linear surveys. The process of sinkhole formation in the surveyed area is located in a strip 50–70 m wide and 300–500 m long, extending approximately in a north–south direction. The sinkholes are arranged along a tortuous line within this strip. On resistivity maps and sections this U-shaped zone appears as an alternation of high resistivity anomalies of 350–1000 Ωm (at sinkhole group locations) with narrow background resistivity zones of 50–100 Ωm. The large size of resistivity anomalies (250 × 300 m2), which are considerably greater than those of the sinkholes, form one of the features of the sinkhole sites in the Ein Gedi area. The anomalies continue down to the water table or even deeper (maximum of 25–35 m depth). A low resistivity layer of 1–8 Ωm underlies them. The combined analysis of the image results and other geophysical data shows that high resistivity anomalies are associated with the decompaction of the soil mass at the sinkhole development sites and surrounding areas. Recent studies have shown that sinkholes in the Ein Gedi area are developing along the salt western edge located at a depth of 50 m. The subsurface high resistivity anomaly conforms to the sinkhole line (and salt boundary). They are presumably located above the great dissolution caverns at the salt edge. The heterogeneity of the resistivity structure within the high resistivity anomaly (seen in both lateral and vertical planes) confirms that a disintegration of internal formation structure takes place. Away from the sinkhole sites the subsurface resistivity distribution is homogeneous.  相似文献   

2.
1D resistivity sounding and 2D resistivity imaging surveys were integrated with geological and hydrochemical data to assess the aquifer vulnerability and saltwater intrusion in the north of Nile Delta, Egypt. In the present study, the El-Gharbyia main drain was considered as a case study to map the sand bodies within the upper silt and clay aquitard. Twenty Schlumberger soundings and six 2D dipole-dipole profiles were executed along one profile close to the western side of the main drain. In addition, 14 groundwater samples and 4 surface water samples from the main drain were chemically analyzed to obtain the major and trace elements concentrations.The results from the resistivity and hydrochemical data were used to assess the protection of the groundwater aquifer and the potential risk of groundwater pollution. The inverted resistivities and thicknesses of the layers above the aquifer layer were used to estimate the integrated electrical conductivity (IEC) that can be used for quantification of aquifer vulnerability. According to the aquifer vulnerability assessment of an underlying sand aquifer, the southern part of the area is characterized by high vulnerability zone with slightly fresh to brackish groundwater and resistivity values of 11-23 Ω.m below the clay cap. The resistivity sections exhibit some sand bodies within the clay cap that lead to increase the recharging of surface waste water (650 mg/l salinity) and flushing the upper part of underlying saltwater aquifer. The region in the north has saltwater with resistivity less than 6 Ω.m and local vulnerable zones within the clay cap. The inverted 2D dipole-dipole profiles in the vulnerable zones, in combination with drilling information have allowed the identification of subsoil structure around the main drain that is highly affected by waste water.  相似文献   

3.
A combination of geophysical methods including continuous electrical resistivity and high-resolution Chirp sub-bottom profiling were utilized to characterize geologic controls on pore fluid salinity in the nearshore of Long Bay, SC. Resistivity values ranged from less than 1 Ω m to greater than 40 Ω m throughout the bay. Areas of elevated electrical resistivity suggest the influence of relatively fresher water on pore water composition. Geophysical evidence alone does not eliminate all ambiguity associated with lithological and porosity variations that may also contribute to electrical structure of shallow marine sediments. The anomalous field is of sufficient magnitude that lithological variation alone does not control the spatial distribution of elevated electrical resistivity zones. Geographical distribution of electrical anomalies and structures interpreted from nearby sub-bottom profiles indicates abrupt changes in shallow geologic units control preferential pathways for discharge of fresh water into the marine environment. Shore parallel resistivity profiles show dramatic decreases in magnitude with increasing distance from shore, suggesting a significant portion of the terrestrially driven fresh SGD in Long Bay is occurring via the surficial aquifer within a few hundred meters of shore.  相似文献   

4.
Groundwater constitutes the main source of freshwater in Shalatein, on the western coast of the Red Sea, in Egypt. The fresh aquifer of Shalatein is intensively dissected by shallow and deep faults associated with the occurrence of dykes and/or dyke swarms. In this context, synthesis of electrical resistivity, ground magnetics, and borehole data was implemented to investigate the freshwater aquifer condition, locate the intrusive dykes and/or dyke swarms, and demarcate the potential freshwater zones. Nine Schlumberger VES’s with maximum current electrode half-spacing (AB/2) of 682 m were conducted. The subsurface was successfully delineated by general four layers. The fresh aquifer of the Quaternary and Pre-Quaternary alluvium sediments was effectively demarcated with true resistivities ranged from 30 to 105 Ωm and thickness ranged between 20 and 60 m. A ground magnetic survey comprised 35 magnetic profiles, each 7 km in length. Magnetic data interpretation of the vertical derivatives (first and second order), downward continuation (100 m), apparent susceptibility (depth of 100 m), and wavelength filters (Butterworth high-pass of wavelengths <100 m and Band-Pass of wavelengths 30–100 m) successfully distinguished the near surface structure with five major clusters of dyke swarms, whereas filters of the upward continuation (300 m) and Butterworth low-pass (wavelengths >300 m) clearly reflected the deep-seated structure. The computed depth by the 3D Euler deconvolution for geological contacts and faults (SI = 0) ranged from 14 to 545 m, whereas for dyke and sill (SI = 1), it ranged from 10 to 1,095 m. The western part of the study area is recommended as a potential freshwater zone as it is characterized by depths >100 m to the top of the dykes, higher thickness of the fresh aquifer (45–60 m), depths to the top of the fresh aquifer ranging from 25 to 40 m, and higher resistivities reflecting better freshwater quality (70–105 Ωm).  相似文献   

5.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

6.
In this work we present the hydrogeophysical imaging of a key sector of the Quaternary Po foreland basin (northern Italy), focussing on the reconstruction of clastic aquifers and aquitards in a complex tectono-sedimentary subsurface architecture. The study area includes the relic reliefs of Casalpusterlengo and Zorlesco, two smooth morphological features involving uplifted and gently folded Pleistocene marine to alluvial sediments, plausibly linked to the buried Northern Apennines thrust and fold belt. The geophysical data include 35 Direct Current Vertical Electrical Soundings collected over a 37 km2 wide area, acquired with Schlumberger array and maximum half-spacing of 500 m. 1-D resistivity-depth profiles were computed for each VES. An integrated hydrostratigraphic approach was applied, to constrain the interpretation of the geophysical data along several cross-sections, including the comparison of resistivity soundings to stratigraphic logs, borehole electric logs and the pore-water properties.The resistivity interfaces, traceable with the same laterally continuous vertical polarity, were used to develop an electrostratigraphic model in order to portray the stacking of electrostratigraphic units down to 200 m below ground surface. Their vertical associations show a general upward increase of electrical resistivity. This assemblage mimics the regional coarsening upwards depositional trend, from the conductive units of the Plio-Pleistocene marine-to-transitional depositional systems to the resistive units of the Middle–Late Pleistocene fluvial and alluvial plain depositional systems. Middle Pleistocene depositional systems host an alternation of North-dipping, high-to-intermediate permeability aquifer systems (70–180 Ωm, thickness of 5–70 m) separated by low permeability aquitards (20–50 Ωm, thickness up to 40 m). These units pinch out against the Casalpusterlengo and Zorlesco relic reliefs, where they cover the uplifted and folded regional aquitard (20–50 Ωm) formed by Pliocene-Lower Pleistocene clays to sandy silts with gravel lenses in agreement with borehole data. In the deepest part of the local stratigraphy, a broad low-resistivity anomaly (< 10 Ωm) was clearly mapped through the study area. By comparison with electrical borehole logs in deep oil-wells, it could be interpreted as the fresh–saltwater interface due to the presence of connate waters and brines hosted by the marine-to-transitional shales.  相似文献   

7.
Electrical and electromagnetic methods are well suited for coastal aquifer studies because of the large contrast in resistivity between fresh water-bearing and salt water-bearing formations. Interpretation models for these aquifers typically contain four layers: a highly resistive unsaturated zone; a surficial fresh water aquifer of intermediate resistivity; an underlying conductive, salt water saturated aquifer; and resistive substratum. Additional layers may be added to allow for variations in lithology within the fresh water and salt water layers. Two methods are evaluated: direct current resistivity and time domain electromagnetic soundings. Use of each method alone produces nonunique solutions for resistivities and/or thicknesses of the different layers. We show that joint inversion of vertical electric and time domain electromagnetic soundings produces a more tightly constrained interpretation model at three test sites than is produced by inversion methods applied to each data set independently.  相似文献   

8.
We use electrical resistivity tomography to obtain a 6.8‐km electrical resistivity image to a depth of approximately 150 m.b.s.l. along the coast of Monterey Bay. The resulting image is used to determine the subsurface distribution of saltwater‐ and freshwater‐saturated sediments and the geologic controls on fluid distributions in the region. Data acquisition took place over two field seasons in 2011 and 2012. To maximize our ability to image both vertical and horizontal variations in the subsurface, a combination of dipole–dipole, Wenner, Wenner‐gamma, and gradient measurements were made, resulting in a large final dataset of approximately 139,000 data points. The resulting resistivity section extends to a depth of 150 m.b.s.l., and is used, in conjunction with the gamma logs from four coastal monitoring wells to identify four dominant lithologic units. From these data, we are able to infer the existence of a contiguous clay layer in the southern portion of our transect, which prevents downward migration of the saltwater observed in the upper 25 m of the subsurface to the underlying freshwater aquifer. The saltwater and brackish water in the northern portion of the transect introduce the potential for seawater intrusion into the hydraulically connected freshwater aquifer to the south, not just from the ocean, but also laterally from north to south.  相似文献   

9.
Lahcen Zouhri 《水文研究》2010,24(10):1308-1317
An electrical prospecting survey is conducted in the Rharb basin, a semi‐arid region in the southern part of the Rifean Cordillera (Morocco) to delineate characteristics of the aquifer and the groundwater affected by the marine intrusion related to Atlantic Ocean. Analysis and interpretations of electrical soundings, bi‐logarithmic diagrams and the geoelectrical sections highlight a monolayer aquifer in the southern part, a multilayer system in the northern part of the Rharb basin and lenticular semi‐permeable formations. Several electrical layers have been deduced from the analysis of bi‐logarithmic diagrams: resistant superficial level (R0), conducting superficial level (C0), resistant level (R), intermediary resistant level (R′), conducting level (Cp) and intermediary layer of resistivity (AT). Spatial distribution of the resistivity deduced from the interpretation of apparent resistivity maps (AB = 400 and 1000 m) and the decreasing of resistivity values (35–10 Ωm), in particular in the coastal zone show that this heterogeneity is related to several anomalies identified in the coastal area, which result from hydraulic and geological processes: (i) heterogeneous hydraulic conductivity in particular in the southern part of the Rharb; (ii) lateral facies and synsedimentary faulting and (iii) the relationship between the electrical conductivity and chloride concentration of groundwater shows that salinity is the most important factor controlling resistivity. The distribution of fresh/salt‐water zones and their variations in space along geoelectrical sections are established through converting subsurface depth‐resistivity models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The subsurface spatial variation in clay soils, such as thin-layered sand seams, affects the mechanical strength and electrical resistivity. The objective of this study is the development and application of cone resistivity penetrometer (CRP), which measures the cone tip resistance, sleeve friction, and electrical resistivity to evaluate the subsurface spatial variability. The electrical resistivity is measured at the cone tip to increase its resolution. Two outer diameters of the cone resistivity penetrometers (CRPs) are developed: D=10 mm CRP with a projected area of 0.78 cm2 and D=15 mm CRP with a projected area of 1.76 cm2. The cone tip resistance is effectively separated using a friction sleeve. Strain gauges are used to measure the mechanical strength, and coaxial type electrodes monitor the electrical resistivity. The application tests in the laboratory are conducted using layered soils and saturated sands. In addition, the penetration tests in the field are carried out and compared with the standard piezocone test. The penetration tests show that the soil layers and the density changes are clearly detected by the electrical resistivity and mechanical strength. Field tests show that CRP clearly evaluates the subsurface profile. This study suggests that CRP may be a useful technique for the evaluation of subsurface spatial variability during penetration testing.  相似文献   

11.
Three types of sinkhole have been mapped in a 50 km2 stretch of the Ebro River valley downstream of Zaragoza: large collapse sinkholes, large shallow subsidence depressions and small cover-collapse sinkholes. The sinkholes relate to the karstification of evaporitic bedrock that wedges out abruptly downstream, giving way to a shale substratum. Twenty-three collapse sinkholes, up to 50 m in diameter by 6 m deep, and commonly hosting saline ponds, have been identified in the floodplain. They have been attributed to the upward stoping of dissolutional cavities formed within the evaporitic bedrock by rising groundwater flows. Twenty-four large shallow subsidence depressions were mapped in the floodplain. These may reach 850 m in length and were formed by structurally controlled interstratal karstification of soluble beds (halite or glauberite? and gypsum) by rising groundwater flow and the progressive settlement of the overlying bedrock and overburden sediments. A total of 447 small cover-collapse, or dropout, sinkholes have been recognized in a perched alluvial level along the southern margin of the valley. These sinkholes result from the upward propagation of voids through the alluvial mantle caused by the downward migration of detrital sediments into dissolutional voids. The majority of these sinkholes, commonly 1·5–2 m in diameter, are induced by human activities. Over the karstic bedrock, there is a significant increase in sinkhole density downstream. This is interpreted as being a result of the evaporitic bedrock wedging out and the convergence of the groundwater flow lines in the karstic aquifer. The collapse sinkholes in this area, locally with a probability of occurrence higher than 140 sinkholes/km2/year, cause substantial damage to the linear infrastructures, buildings and agriculture, and they might eventually cause the loss of human lives. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Integrated geophysical and chemical study of saline water intrusion   总被引:3,自引:0,他引:3  
Choudhury K  Saha DK 《Ground water》2004,42(5):671-677
Surface geophysical surveys provide an effective way to image the subsurface and the ground water zone without a large number of observation wells. DC resistivity sounding generally identifies the subsurface formations-the aquifer zone as well as the formations saturated with saline/brackish water. However, the method has serious ambiguities in distinguishing the geological formations of similar resistivities such as saline sand and saline clay, or water quality such as fresh or saline, in a low resistivity formation. In order to minimize the ambiguity and ascertain the efficacy of data integration techniques in ground water and saline contamination studies, a combined geophysical survey and periodic chemical analysis of ground water were carried out employing DC resistivity profiling, resistivity sounding, and shallow seismic refraction methods. By constraining resistivity interpretation with inputs from seismic refraction and chemical analysis, the data integration study proved to be a powerful method for identification of the subsurface formations, ground water zones, the subsurface saline/brackish water zones, and the probable mode and cause of saline water intrusion in an inland aquifer. A case study presented here illustrates these principles. Resistivity sounding alone had earlier failed to identify the different formations in the saline environment. Data integration and resistivity interpretation constrained by water quality analysis led to a new concept of minimum resistivity for ground water-bearing zones, which is the optimum value of resistivity of a subsurface formation in an area below which ground water contained in it is saline/brackish and unsuitable for drinking.  相似文献   

13.
The aquifer of Nador has suffered significant salinization due to seawater intrusion. It was strongly exploited during the 1980s and 1990s. A piezometric analysis in April 2012 showed the piezometric level to lie at 0 m a.s.l. over the plain; as a result, this aquifer is highly sensitive to the marine intrusion with an electrical conductivity of the groundwater in of exceeds 2500 μS/cm and so there are no abstractions for irrigation or drinking purpose from these sectors. The geoelectric study also showed the lateral variation in the electrical resistivity for two moments separated in time by more than 45 years. The fall in resistivity may be due to the encroachment of seawater into previously freshwater zones and/or infiltration during the era of pumped abstractions downstream. The resistivity surveys reveal two distinct sectors: the saturated aquifer in brackish and saltwater having resistivity values to 36-10 Ωm, which extends nearly 1600 m inland.  相似文献   

14.
This study provides baseline information on the extent of contamination in sediments of the Jobos Bay estuary and surrounding areas in Puerto Rico. Sediments from Jobos Bay area (n = 14) had higher overall average concentrations than those from La Parguera area (n = 5, used as reference site), in μg/g dw, for As (17 vs 9), Cu (29 vs 14), Pb (11 vs 4), and Zn (64 vs 28); and in %, for Fe (2.6 vs 0.6). Sediments (n = 8) screened for PAHs and PCBs exhibited total concentrations (ng/g dw) that ranged from 40.4 to 1912, and from not detected to 11.21, respectively. The quality of sediments of Jobos Bay could be classified as low to moderate pollution. The proximity to anthropogenic sources of contamination warrants a monitoring program for inorganic and organic pollutants in Jobos Bay area for an effective coastal management program of this tropical ecosystem.  相似文献   

15.
Jamal Asfahani 《水文研究》2007,21(8):1085-1097
A resistivity survey is conducted in Khanasser Valley, a semi‐arid region in northern Syria, to delineate the characteristics of ground water affected by the salt‐water intrusion related to Al‐Jaboul Sabkha. Existing wells were used to measure salinity and conductivity of water samplings. Vertical electrical sounding was carried out near the existing wells. The combination of resistivity and hydrogeological data enables the establishment of empirical relationships between earth resistivity, water resistivity, and the amount of total dissolved solids. These relationships are then used in order to derive salinity maps for electrode spacings of 70, 100, and 150 m. The distribution of fresh, brackish and salt‐water zones and their variations in space along two longitudinal profiles (LP1 and LP2) are established through converting subsurface depth–resistivity models into different ground‐water areas. The constructed ground‐water area maps allow interfaces between different water zones to be determined. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Stream bottom resistivity tomography to map ground water discharge   总被引:2,自引:0,他引:2  
This study investigates the effectiveness of direct current electrical resistivity as a tool for assessing ground water/surface water interactions within streams. This research has shown that patterns of ground water discharge can be mapped at the meter scale, which is important for understanding stream water quality and ecosystem function. Underwater electrical resistivity surveys along a 107-m stream section within the Burd Run Watershed in South Central Pennsylvania identified three resistivity layers: a resistive (100 to 400 Ωm) surface layer corresponding to the streambed sediments, a conductive (20 to 100 Ωm) middle layer corresponding to residual clay sediments, and a resistive (100 to 450 Ωm) bottom layer corresponding to the carbonate bedrock. Tile probing to determine the depth to the bedrock and resistivity test box analysis of augered sediment samples confirmed these interpretations of the resistivity data. Ground water seeps occurred where the resistivity data showed that the residual clays were thinnest and bedrock was closest to the streambed. Plotting the difference in resistivity between two surveys, one conducted during low-stage and the other during high-stage stream conditions, showed changes in the conductivity of the pore fluids saturating the sediments. Under high-stream stage conditions, the top layer showed increased resistivity values for sections with surface water infiltration but showed nearly constant resistivity in sections with ground water seeps. This was expressed as difference values less than 50 Ωm in the area of the seeps and greater than 50 Ωm change for the streambed sediments saturated by surface water. Thus, electrical resistivity aided in characterizing ground water discharge zones by detecting variations in subsurface resistivity under high- and low-stream stage conditions as well as mapping subsurface heterogeneities that promote these exchanges.  相似文献   

17.
We document, analyse, and interpret direct and rapid infiltration of precipitation to the southern margin of the Salar de Atacama halite‐hosted brine aquifer during two intense precipitation events in 2012–2013. We present physical, geochemical, and stable and radioactive isotope data to detail this influx of water. The two events differ distinctly in the mechanisms of recharge. The 2012 event did not produce direct precipitation onto the salar surface, while the 2013 event did. Both events are recorded by abrupt changes in head in observation wells along the halite aquifer margin. Spatially distributed water levels rose by over 30 cm during the larger 2013 event consistent with remotely sensed observations of surface water extent. The lithium concentration and stable isotopic composition of water indicate dilution of brine and dissolution of salt with fresh water. Tritium measurements of precipitation, surface water, and groundwater all indicate modern influx of water to the halite aquifer along the southern margin. We extend these observations by examining the response of the halite aquifer as a whole to precipitation events during the period of 2000–2010. This study suggests that local recharge to the aquifer during sporadic precipitation onto the halite nucleus is an important component of the modern water budget in this hyper‐arid environment. The rapid dissolution and salinization along the southern margin of the salar halite nucleus are aided by such precipitation events contributing a modern fresh water component to the water budget of the economically valuable lithium‐rich brine. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
The eruptions of Mt Ruapehu in the North Island of New Zealand in 1995 and 1996 caused a tephra barrier to be formed across the outlet of Crater Lake. By 2005 seepage from the refilled lake into the barrier raised the possibility of an eventual collapse of the barrier, releasing a catastrophic lahar down the mountain.As part of an extensive monitoring programme of the tephra barrier, direct current (dc) resistivity surveys were carried out on a number of lines along and across it in order to test whether the extent of the seepage could be measured (and monitored) by geophysical means. Two dimensional inversion of measured apparent resistivity data showed that between the initial measurements, made in January 2005, and February 2006, there was a gradual decrease in resistivity above the old outlet from ~ 50–60 Ωm to ~ 30 Ωm. This gave the first indication that lake water was seeping into the barrier. Between October and December 2006 there was a rapid rise in lake level to only 2 m below the top of the barrier, and a further resistivity survey in January 2007 showed that there had been a further decrease in resistivity throughout the entire barrier with values dropping to < 10 Ωm. The extent of this low resistivity indicated that the barrier was now saturated. At this stage lake water was penetrating the barrier and starting to cause erosion on its downstream side. Catastrophic collapse occurred on 18 March 2007, accompanied by a lahar in the Whangaehu river valley.Subsequent forward 3D numerical modelling of the resistivity structure of the barrier has confirmed that the observed changes in measured resistivity were directly related to the progress of seepage of lake water into the barrier.  相似文献   

19.
Integrated electrical resistance tomography (ERT) and short-offset transient electromagnetic (TEM) measurements were carried out to investigate a geothermal area in the Main Central Thrust (MCT) zone of Garhwal Himalayan region, India. The study area is located around Helang on either side of Alaknanda River and it is dotted with hot water springs with water temperature of 45°–55 °C emerging at the surface.To assess the geothermal potential and its lateral and vertical extension in and around the hot water springs in the study area, 7 ERT profiles and 21 TEM stations on 7 profiles were established around the hot water spring and at far distant locations. The 2D inversion of ERT data indicates a low resistivity (< 50 Ωm) zone in the vicinity of hot springs, which appears to be associated with an underground water channel through the fractured rock. The bedrock resistivity is very high (> 1000 Ωm) whereas the resistivity of the weathered near surface soil at a far distant location from the hot spring is low (< 100 Ωm) again. A common feature of all TEM data is the sign reversal observed at roughly 10 μs. The consistent sign reversal in all TEM data indicates the existence of the multi-dimensionality of the geoelectrical structure. Therefore, the TEM data were treated by using the SLDM (Spectral Lanczos Decomposition Method) 2D/3D forward modeling code based on the finite difference algorithm. The resistivity structure obtained from ERT data was used as an input for the modeling of TEM data. Based on the joint analysis of the ERT and TEM data it can be inferred that geothermal anomalies associated with the hot spring in the MCT zone are a local feature appearing as a low resistivity zone (< 50 Ωm) at shallow depth (< 100 m) in the vicinity of the hot spring region.  相似文献   

20.
Magnetic resonance sounding (MRS) is an electromagnetic method designed for groundwater investigations. MRS can be applied not only for studying fresh-water aquifers, but also in areas where intrusion of saline water is rendering the subsurface electrically conductive. In the presence of rocks with a high electrical-conductivity attenuation and a phase shift of the MRS signal may influence the efficiency of the MRS method. We investigated the performance of MRS for allowing us to propose a procedure for interpreting MRS data under these conditions. For numerical modeling, we considered a subsurface with a resistivity between 0.5 and 10 Ω m. The results show that the depth of investigation with MRS depends upon the electrical conductivity of groundwater and surrounding rocks, on the depth of the saline water layer, and on the amount of fresh water above the saline water. For interpreting MRS measurements, the electrical conductivity of the subsurface is routinely measured with an electrical or electromagnetic method. However, due to the equivalence problem, the result obtained with these methods may be not unique. Hence, we investigated the influence of the uncertainty in conductivity distribution provided by transient electromagnetic measurements (TEM) on MRS results. It was found that the uncertainty in TEM results has an insignificant effect on MRS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号