首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Borings from the barrier island/lagoon system of the Eastern Shore of Virginia penetrated an unconformity which separates Pleistocene barrier island and offshore marine sediments from the overlying Holocene tidal delta and barrier island sediments. Offshore marine sediments and deposits within the flood-tidal delta (marsh, tidal flat-bay, inlet-mouth bar complex) are recognized on the basis of sediment color, composition, grain-size changes in the vertical sequence, presence of organic matter, and faunal suite. Subsurface data, historical records, and morphology of lateral accretion on barrier islands suggest that major inlets in the vicinity of Wachapreague have been relatively stable throughout Holocene time; they appear to be located where Pleistocene stream valleys previously existed. Holocene barrier islands apparently developed on drainage divide areas following post-Wisconsin transgression of the sea.

The initial phase of tidal delta development was characterized by vertically accreting, fan-shaped, inlet-mouth bars; tidal channels stabilized after bar crests had shoaled sufficiently for marsh to form. With landward progradation across the lagoon, sand-rich deposits graded laterally away from the inlets and vertically into clayey sand and silty clay of the tidal flat-bay and marsh environments.

Ebb inlet-mouth bars developed asymmetrically southward in response to littoral drift. Flood tidal deltas also built preferentially toward the south as indicated by: (1) sand distribution of the inlet-mouth bar complex; and (2) greater development of marsh south of the inlets.  相似文献   


2.
普拉姆岛(Plum island)是美国东北部缅因湾最大的障壁海岸,岛内向陆一侧为新英格兰地区最大潟湖和沼泽区,它们是晚第四纪末次冰期冰川作用和冰后期海岸作用的沉积响应。通过普拉姆岛研究区上更新统—全新统160个钻孔描述,识别出8种沉积物: 泥炭、冰川黏土、黏土、粉砂、细砂、中粗砂、砾、坠石。根据沉积物类型及其组合特征,结合沉积环境,共划分出8种沉积微相: 障壁沙丘、滨岸沙、水下临滨沙、河道、潮汐水道、潟湖、潮坪、沼泽。研究区在晚第四纪末次冰盛期(MIS2)被劳伦斯蒂德冰盖(Laurentide Ice Sheet)覆盖,发育冰川地貌,冰川泥覆盖在基岩之上,形成底层沉积; 冰后期(MIS1),冰盖消融,海平面发生变化,在冰川地貌鼓丘附近形成沙坝,最终沉积演化为障壁岛—潟湖环境,潟湖通过潮汐水道与广海相连通。  相似文献   

3.
The upper part of the Riley Formation, Cambrian of central Texas, is primarily composed of a sequence of thoroughly trough cross-stratified deposits. The dominant lithologies range from fossiliferous glaucarenite to highly glauconitic bio-sparrudite. These cross-stratified deposits accumulated within a tidal inlet and associated lagoonal tributary and distributary channels. Tidal inlet-fill strata are underlain by shallow, open marine oosparites and biomicrites and are overlain by parallel bedded glaucarenites which accumulated as part of a barrier island complex. The parallel bedded deposits exhibit large scale, gently inclined strata, ripple cross-stratification, and a minor amount of vertical burrows. Some glaucarenite units within the tidal inlet-fill have local concentrations of skeletal material, primarily trilobite carapaces. These concentrations are most abundant in the bottoms of troughs. Cementation by bladed to fibrous spar between the carapaces has resulted in the nodular appearance of these skeletal accumulations. Calcite clasts, with relict evaporite textures, occur within the carbonate nodules and surrounding glaucarenite. These clasts were eroded from the shallow subsurface of the barrier island as the tidal inlet migrated. The presence of the former evaporite clasts attest to an arid climate at the time of their formation.  相似文献   

4.
Size and shape sorting in a Dutch tidal inlet   总被引:1,自引:0,他引:1  
A tidal inlet system with an outer tidal, delta, situated between two barrier islands along the north coast of Holland was studied for size and shape sorting. With size data different sand types can be distinguished and in individual samples distinct grain populations can be recognized in some cases. Graphs of shape values, plotted against the size intervals of samples also reveal the presence of different grain populations, together with their genetical significance. The following conclusions could be drawn. There is no sand transport directly from island to island. Sand up to 400 μm enters the tidal inlet, is sorted out in the tidal flat area and partly re-enters the sea via the outer tidal delta. On the delta, the sediment is split up again in different populations. A lag deposit is left behind on the frontal part of the delta. The rest of the sand either re-enters the tidal inlet cycle or contributes to the beach building of the next island. In the offshore environment, sand movement by wave-induced currents is restricted to the shallow zone. In deeper water, part of the sediment is relatively immobile and has preserved inherited characteristics from the early Holocene transgressive phase. In front of Ameland, fossil barrier-face deposits-are present, off Schiermonnikoog the sea floor contains old tidal channel deposits.  相似文献   

5.
Large, well-developed flood tidal deltas on a barrier island coastline generally indicate a wave-dominated, microtidal sedimentary regime. Vibracores in a lagoon behind the barrier island Shackleford Banks, North Carolina contain an upward fining sequence of coarse-medium, very shelly sand, medium-fine laminated sand, fine-very fine cross-laminated sand and marsh mud. This sequence is interpreted as being a flood tidal delta deposit based on analogy with modern flood tidal delta sediments and represents lagoonal deposition in response to a migrating or closing inlet. The sand facies defined in lagoonal vibracores is found to be continuous beneath a lagoonal marsh and correlative with inlet sections identified in Shackleford Banks drill holes. The correlation of flood tidal delta deposits with inlet sequences in this microtidal environment indicates a close relationship between barrier and backbarrier inlet controlled sedimentation.  相似文献   

6.
ABSTRACT
The Robbedale and Jydegård Formations (Berriasian-Valanginian) of the Danish island of Bornholm represent a 100 m thick vertical sequence from shoreface, foreshore and beach sands of a high-energy coast through backbarrier flat, bay margin pond and distal washover fan sand and clay, brackish bay clay, to fluvial sands. The longevity of the backbarrier-bay system (c. 10 Myr), thickness (100 m) of the bay deposits and apparently stacked nature of the facies belts suggest a relatively stationary position of the individual subenvironments, with only minor progradation. This reflects strong tectonic control of the depositional system during an important phase of synsedimentary block faulting and wrenching along the Tornquist Zone. The importance of washover fan sands in the backbarrier deposits, and the lack of tidal indications in the whole sequence, suggest a microtidal regime. A system of migrating mud banks formed in shallow water on the landward side of the barrier. The bay waters varied from almost fresh to brackish, and anoxic conditions commonly occurred at the bottom. Adverse living conditions for most organisms in the bay caused seasonal, possibly toxic, dinoflagellate blooms resulting in mass mortality of infaunal bivalves. Bay-margin ponds underwent periodic desiccation, leading to mass mortality of freshwater gastropods. As a general scenario it is envisaged that longshore currents redistributed bedload from a major delta and formed an extensive NW-SE barrier-spit which partly enclosed a major bay to the NE. The barrier was breached during heavy storms and the sand transported along the resulting washover channels was deposited on the backbarrier flat made up of the subaerial parts of coalescent washover fans. Enormous amounts of suspension load from the delta travelled further along the barrier to be deposited in the lee-side bay.  相似文献   

7.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

8.
汪寿松  陈昌明  Irion  G 《沉积学报》1988,6(2):78-96
本文目的在于说明有限区域内潮坪小环境沉积物的矿物学和地球化学特点及沉积过程的改造作用。沉积物样品取自汪额诺格岛与联邦德国的德国湾南岸之间的障壁潮坪。粒度分析表明,障壁潮坪由大体平行于大陆的泥坪、混合坪到砂坪三个带组成。粘土矿物以伊利石为主,其次为蒙脱石、高岭石和绿泥石,与北海粘土矿物组合一致。粘土矿物组成和重金属Fe、Mn、Cu、Pb、Zn含量在潮坪不同部位相差无几,说明沉积物受到潮汐水流反覆侵蚀和再沉积作用的混合作用。近潮口附近有机碳含量增高是潮汐水流从北海通过进潮口携入有机物的结果。  相似文献   

9.
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea‐level rise (1·03 cm year?1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross‐sections and prograding ebb‐tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2·2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb‐tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey‐brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75–100%) compared with the distal delta sediments (60–80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb‐tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb‐tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb‐tidal delta lithosome is presently no more than 5 m thick and is generally only 2–3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine‐grained sedimentation seaward of the inlets and the encasement of the ebb‐tidal delta lithosome in mud. The ebb‐tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand‐rich coasts by their muddy content and lack of large‐scale stratification produced by channel cut‐and‐fills and bar migration.  相似文献   

10.
This study examined grain‐size distributions to address questions regarding geological and oceanographic controls on island morphodynamics along one of the longest undeveloped, mixed‐energy barrier island systems in the world. In particular, statistical analyses (i.e. analysis of variance, Tukey honest significant difference multiple comparison tests, nonparametric statistics and linear regression analysis) of 230 barrier island samples from Ocean City Inlet, Maryland, to the mouth of the Chesapeake Bay and 134 nearshore samples (d ≤ 10 m) identified grain‐size trends related to the morphodynamic characteristics of these systems. In general, the Virginia barrier islands north of Wachapreague Inlet and Assateague Island form a statistically different subset of grain sizes (medium‐grained to coarse‐grained sand) from the islands south of Wachapreague Inlet (fine‐grained sand). These textural trends corroborate the Pleistocene headlands of the Delmarva coastal compartment as the sediment source and indicate that some of the coarse‐grained to medium‐grained sediment bypasses the large sinks in the net southward longshore sediment transport system (i.e. Fishing Point and Chincoteague Inlet). This research also demonstrates that the preferential accumulation of coarse‐grained to medium‐grained sand on the ebb‐tidal delta at Wachapreague Inlet probably controls the erosional morphodynamics of the islands located downdrift (south) of the inlet. These results suggest that an increase in tidal prism, set up by sea‐level rise and/or a shift in wave climate/refraction patterns, may lead to barrier island fragmentation and a runaway transgression of this predominantly natural barrier island system. Consequently, a grain analysis of major coastal compartments, across multiple driving forces, can be used to assess coastal morphodynamics and the potential impact of climate change on coastal systems.  相似文献   

11.
钱塘江下切河谷充填物沉积序列和分布模式   总被引:1,自引:1,他引:0       下载免费PDF全文
以最新钻取的SE2孔沉积物为重点研究对象,对晚第四纪以来钱塘江下切河谷充填物的沉积特征和沉积相进行了精细研究,重建了研究区地层结构和层序地层格架,总结了强潮型钱塘江河口湾和下切河谷的沉积模式。钱塘江下切河谷充填物自下而上依次发育河床、河漫滩、古河口湾、近岸浅海和现代河口湾5种沉积相类型,表现为一个较完整的Ⅰ型层序,其内部层序界面、初始海泛面、最大海泛面、海侵和海退潮流侵蚀面、体系域内海侵面发育。钱塘江下切河谷充填物自海向陆可划分为海向段、近海段、近陆段和陆向段4段,各段沉积序列和海陆相互作用程度不同。在钱塘江下切河谷充填物中海陆过渡部位首次明确划分出了古河口湾相,并对其沉积特征和分布模式进行了初步探讨;其形成时间在9000 a BP左右,具有与现代河口湾不同的沉积特征,表现为中部为潮道砂体沉积,向陆渐变为受潮流影响的河流沉积,两侧被潮坪或盐沼沉积包围,沉积物在平面上自陆向海呈现粗-细-粗的分布模式。现代河口湾平面上自陆向海依次发育受潮流影响的河流沉积、粉砂质砂坎、潮道-潮流砂脊复合体和湾口泥质沉积区,沉积物呈现粗-细-粗-细的分布模式,与大多数河口湾常见的粗-细-粗的分布格局明显不同。  相似文献   

12.
Topsail Sound is a marsh-filled barrier lagoon in southeastern North Carolina. This study quantified changes within a 477-ha tidal marsh located landward of Lea and Coke islands in southern Topsail Sound. Aerial photographs from 1949, 1966, and 1984 were enlarged, and sample areas of salt marsh were digitized and compared. Since 1949, Old Topsail Inlet has migrated southwest 1.2 km. As the inlet migrated, new Spartina alterniflora marsh colonized 33.2 ha of intertidal sand flats within the inlet flood tidal delta, adjacent islands, and primary tidal creeks. Landward of the flood tidal delta, site specific gains and losses of marsh were recorded. It is estimated that since 1949, approximately 34.1 ha of the marsh area occupying the zone landward of the flood tidal delta has drowned. This loss of marsh, combined with the colonization of marsh mentioned above, resulted in a net decrease of 1 ha in the total area of marsh. This study provides evidence that, although lagoonal marshes may be drowning as a result of soil waterlogging, reduced sediment supply, and sea-level rise, potential marsh environments are created by oceanic inputs of sand when inlets migrate.  相似文献   

13.
Shoreline changes are largely dependent on coastal morphology. South-west coast of India is a high energy coast characterised by monsoon high waves, steep beach face and medium-sized beach sand. Waves are generally from west and west south-west during rough monsoon season and from south-west during fair weather season. Shoreline change along this coast is studied with reference to coastal morphological features. Various morphological features, modifications and chronological positions of shoreline are analysed with the information derived from multidated satellite imageries, toposheets and GPS shoreline mapping along with extended field survey. Image processing and GIS techniques have been used for the analysis of data and presentation of results. Sediment accumulation on the leeward side of artificial structures such as harbour breakwaters and groynes is used as a sediment transport indicator. Artificial structures such as seawalls, groynes and harbour breakwaters modify morphology. Shoreline south of headlands/promontories and breakwaters are stable or accreting due to net northerly longshore sediment transport while erosion tendency is observed on the north side. Lateritic cliffs fronting the sea or with seasonal beach undergo slumping and cliff edge retreat as episodic events. Spits adjoining tidal inlets are prone to shoreline variations due to oscillations of inlet mouth. Interventions in the form of inlet stabilization and construction of coastal protection structures trigger erosion along adjoining coasts. Seawalls constructed along highly eroding coasts get damaged, whereas those constructed along monsoon berm crest with frontal beaches for protection against monsoon wave attack are retained. Fishing gaps within seawalls are areas of severe temporary erosion during rough monsoon season. Accretion or erosion accompanies construction of harbour breakwaters in a stable coastal plain. Close dependence of shoreline changes on morphology necessitates detailed understanding of impacts on morphology prior to introducing any intervention in the coastal zone.  相似文献   

14.
High-angle stratification (greater than 20°) is produced in several areas of shallow marine sedimentation along the barrier islands of the central Georgia coast. The maximum angle of inclination is 30° which is the angle of repose for the saturated, fine-grained, angular sand of this area. High-angle stratification forms in the following locations: (1) The depositional margin of tidal channel inlets. Under some wave and current conditions, sand accumulates near low tide level and steepens the depositional interface to the angle of repose. (2) The steep face of asymmetrical megaripples developed by tidal currents. Ripples with amplitudes as much as 3 ft. and wave lengths of 20–40 ft. commonly develop in channel inlets and other areas of sand sediments. (3) The steep face of sand waves formed in channel inlets. These large asymmetrical ripples have amplitudes as great as 12 ft. and wave lengths of ca. 300 ft. Lengths along the crests are over 600 ft. (4) The landward side of low bars developed on the beach. Bars and troughs (ridges and runnels) are common on the beaches of this area. The bars, which are as much as 5 ft. high, shift landward by deposition on the steep landward face. (5) The oceanward side of large sand waves at the mouth of offshore tidal channels. Large sand waves are located 6 miles offshore from Doboy Sound inlet in 20–25 ft. of water. The steep face of these asymmetrical sand waves is orientated toward the ocean. Amplitude of these large ripples is as much as 17 ft. and length along the crests is over 1/2 mile.  相似文献   

15.
The Eocene Trihueco Formation is one of the best exposed successions of the Arauco Basin in Chile. It represents a period of marine regression and transgression of second-order duration, during which barrier island complexes developed on a muddy shelf. The strata are arranged in classical shoaling-upward parasequences of shoreface and beach facies capped by coal-bearing, back-barrier lagoon deposits. These fourth-order cycles are superimposed upon third-order cycles which caused landward and seaward shifts of the coastal facies belts. The final, punctuated rise in sea level is represented by shelf mudrocks with transgressive incised shoreface sandstones. Relative sea-level oscillations as revealed in the stratigraphy of the Trihueco Formation show a reasonable correlation with published Eocene eustatic curves.  相似文献   

16.
Washover sand bodies commonly develop along microtidal coastlines in beach/barrier island or spit settings. Wave runup, usually in conjunction with an abnormally high water level, may overtop the most landward berm of the beach and the foredune crest, if one exists, to produce overwash and subsequent runoff across the more landward subaerial surface. Two main elements of the resulting deposit are the washover fan and runoff channel. Newly formed, small-scale washover deposits were examined along the Outer Banks, North Carolina, near Pt Mugu, California, and at Presque Isle (Lake Erie), Pennsylvania. The fans were formed in response to unidirectional landward transport, and the runoff channels in response to unidirectional flow usually in a landward direction, but sometimes in shore-parallel then seaward direction. Where overwash carried across the fan surface and entered a pond or lagoon, a small-scale delta (microdelta) developed. In this case, the washover fan consisted of two subfacies, the wetted, but ‘subaerial’ part of the fan and the subaqueous washover delta. Flow associated with the development of the fan and runoff channel produced distinctive sets of bedforms and internal stratification. High velocity discontinuous surges moving across the fan surface resulted in the development of a plane bed and subhorizontal to low-angle (landward dipping) planar stratification which comprised the major part of the fan. Similarly, rhomboid forms were produced by high velocity sheet flow across the fan surface. Where flow carried into a standing body of water, delta-type foreset strata developed. For this case, the lateral structural sequence was subhorizontal, planar stratification merging landward into landward dipping, delta (tabular) foreset strata. In the runoff setting, where flow became channelized and continuous, both upper-flow and lower-flow regime currents were typical. Upper-flow regime bedforms included antidunes, standing waves, and plane beds. The most commonly observed lower-flow regime bedforms included microdelta-like bars, low-amplitude bars, linguoid ripples, and sinuous-crested current ripple trains. The sets of sedimentary structures comprising modern washover sand bodies provide criteria for the identification of similar deposits in ancient sediments and for more specific interpretation of the environment.  相似文献   

17.
Barrier islands developed on the southeastern flanks of a volcanic terrain during the Lower Silurian transgression of southwest Wales. The barriers are preserved in transgressive sequences overlying basalts and comprising from base upwards: lagoon→barrier island→offshore marine sediments. The thickness of the barrier island sediments varies from 5 m to 28 m. Comparison with modern barriers suggests that the thin sequences result from narrow (<2 km), steadily transgressing barrier islands, whereas the thicker sequences represent broad (2–4 km), slowly transgressing forms. In one case the barrier became narrower as the rate of migration accelerated in response to decreased fluviatile sediment supply caused by rising sea-level. Despite the high preservation potential of inlet fill deposits, the latter are generally absent in these Silurian barriers because inlet migration was slow compared with the rate of barrier retreat. Possibly much shell material was dissolved during early diagenesis.  相似文献   

18.
The Upper Silurian Keyser Limestone is a relatively thin (< 85 m) unit of lagoonal, barrier, and shallow offshore sediments that crops out in the central Appalachians. Lithologies include massive micritic limestones to calcarenites, calcisiltites, and calcareous quartz arenites. The barrier lithofacies is preserved predominantly as tidal inlet channel-fill. Its presence is supported by two lines of evidence: (1) the sequence of sedimentary textures and structures resembles that observed in modern inlets, and (2) the sequence occupies a position immediately above a disconformity, and is accompanied by an abrupt vertical change in faunal diversity, which is interpreted as representing the transgression of open marine over back-barrier environments The inlet channel sequence comprises fine- to medium-grained, well-sorted quartz arenites that disconformably overlie sediments deposited on carbonate tidal flats (laminated, mudcracked pelmicrites). The sandstone displays a fining-upward texture, and contains a broken and abraded mixed fauna. Cross-bedding is bipolar, with major modes oriented obliquely to depositional strike. Decimetre-scale sets of planar and trough cross-beds grade upward to centimetre-scale sets of ripple cross-lamination, washed-out ripples, and plane beds. This sequence represents the change from deep to shallow channel environments, and is attributed to lateral inlet migration. The inlet sequence was preferentially preserved during marine transgression because of its relative thickness and lower stratigraphic position with respect to overlying and adjacent barrier-beach sediments. The vertical relationships of this inlet-lagoon complex emphasize that care must be taken in interpreting shallow-water transgressive sequences. Vertical ‘jumps’ in faunal diversity accompanied by scour surfaces could be misconstrued as major unconformities. Instead, such sequences may represent the shoreface erosion normally associated with the transgressive migration of barrier islands. Whether or not the faunal jump is accompanied by a barrier lithosome is greatly dependent on the geometry, frequency, and migration rate of tidal inlets.  相似文献   

19.
This study proposes a modification of the current model for abandoned channel fill stratigraphy produced in unidirectional flow river reaches to incorporate seasonal tidal deposition. Evidence supporting this concept came from a study of two consecutive channel abandonment sequences in Ropers Slough of the lower Eel River Estuary in northern California. Aerial photographs showed that Ropers Slough was abandoned around 1943, reoccupied after the 1964 flood, and abandoned again in 1974 with fill continuing to the present. Planform geomorphic characteristics derived from these images were used in conjunction with sub‐centimetre resolution stratigraphic analyses to describe depositional processes and their resultant sedimentary deposits. Both abandonment sequences recorded quasi‐annual scale fluvial/tidal deposition couplets. In both cases, tidal deposits contained very little sand, were higher in organic and inorganic carbon content than the sandier, fluvially dominated deposits, and possessed millimetre‐scale horizontal laminations. The two abandonment fills differed significantly in terms of the temporal progression of channel narrowing and fluvial sediment deposition characteristics. Aerial photographic analysis showed that the first abandonment sequence led to a more rapid narrowing of Ropers Slough and produced deposits with a positive relationship between grain size/deposit thickness and discharge. The second abandonment resulted in a much slower narrowing of Ropers Slough and generally thinner fluvial deposits with no clear relationship between grain size/deposit thickness and discharge. The δ13C values and organic nitrogen to organic carbon ratios of deposits from the first phase overlapped with Eel River suspended sediment characteristics found for low flows (one to five times mean discharge), while those of the second phase were consistent with suspended sediment from higher flows (seven to ten times mean discharge). When considered together, the results indicate that the early fill sequence recorded a reach experiencing regular fluvial deposition through flow conditions during the wet season, while the latter fill sequence records a reach more disconnected from the main stem in terms of flow and sediment. The major factor affecting the difference in sedimentation between the two fill periods appears to have been the morphology of the upstream river bend in relation to the position of the bifurcation node. During the first fill period, the upstream entrance to Ropers Slough seems to have remained open, in part due to the placement of its entrance on the outside of the mainstem river bend, and despite stronger tidal effects caused by a larger tidal prism and closer proximity to the tidal inlet. By the second fill sequence, the upstream bend morphology had altered, placing the entrance to Ropers Slough on the inner bank of the mainstem bend, which resulted in more rapid plug bar formation. The role of tidal effects in the geomorphic trajectory of the two abandonment sequences is unclear, but appears to have been less important than local bifurcation geometry.  相似文献   

20.
The Mono estuary is an infilled, microtidal estuary located on the wave-dominated Bight of Benin coast which is subject to very strong eastward longshore drift. The estuarine fill comprises a thick unit of lagoonal mud deposited in a ‘central basin’between upland fluvial deposits and estuary-mouth wave-tide deposits. This lagoonal fill is capped by organic-rich tidal flat mud. In addition to tidal flat mud, the superficial facies overlying the ‘central basin’fill include remnants of spits resting on transgressive/washover sand, an estuary-mouth association of beach, shoreface, flood-tidal delta and tidal inlet deposits, and a thin sheet of fluvial sediments deposited over tidal flat mud. After an initial phase of spit intrusion over the infilled central basin east of the present Mono channel, the whole estuary mouth became bounded by a regressive barrier formed from sand supplied by the Volta Delta during the middle Holocene eustatic highstand. Barrier progradation ceased late in the Holocene following the establishment of an equilibrium plan-form shoreline alignment that allowed through-drift of Volta sand to sediment sinks further downdrift. Over the same period, accretion, from fluvially supplied sediments, of the estuarine plain close to the limit of spring high tides, or, over much of the lower valley, into a fluvial plain no longer subject to tidal flooding, induced marked meandering of the Mono and its tidal distributaries in response to confinement of much of the tidal prism to these channels. The process resulted in erosion of spit/washover and regressive barrier sand, and in reworking of the tidal flat and floodbasin deposits. The strong longshore drift, equilibrium shoreline alignment and the year-round persistence of a tidal inlet maintained by discharge from the Mono and from Lake Ahémé have resulted in a stationary barrier that is reworked by a mobile inlet. The Mono example shows that advanced estuarine infill may result in considerable facies reworking, obliteration of certain facies and marked spatial imbrication of fluvial, estuarine and wave-tide-deposited facies, and confirms patterns of sedimentary change described for microtidal estuaries on wave-influenced coasts. In addition, this study shows that local environmental factors such as sediment supply relative to limited accommodation space, and strong longshore drift, which may preclude accumulation of sediments in the vicinity of the estuary mouth, may lead to infilled equilibrium or near-equilibrium estuaries that will not necessarily evolve into deltas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号