首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The age, structure, composition, and petrogenesis of the martian lithosphere have been constrained by spacecraft imagery and remote sensing. How well do martian meteorites conform to expectations derived from this geologic context? Both data sets indicate a thick, extensive igneous crust formed very early in the planet's history. The composition of the ancient crust is predominantly basaltic, possibly andesitic in part, with sediments derived from volcanic rocks. Later plume eruptions produced igneous centers like Tharsis, the composition of which cannot be determined because of spectral obscuration by dust. Martian meteorites (except Allan Hills 84001) are inferred to have come from volcanic flows in Tharsis or Elysium, and thus are not petrologically representative of most of the martian surface. Remote‐sensing measurements cannot verify the fractional crystallization and assimilation that have been documented in meteorites, but subsurface magmatic processes are consistent with orbital imagery indicating thick crust and large, complex magma chambers beneath Tharsis volcanoes. Meteorite ejection ages are difficult to reconcile with plausible impact histories for Mars, and oversampling of young terrains suggests either that only coherent igneous rocks can survive the ejection process or that older surfaces cannot transmit the required shock waves. The mean density and moment of inertia calculated from spacecraft data are roughly consistent with the proportions and compositions of mantle and core estimated from martian meteorites. Thermal models predicting the absence of crustal recycling, and the chronology of the planetary magnetic field agree with conclusions from radiogenic isotopes and paleomagnetism in martian meteorites. However, lack of vigorous mantle convection, as inferred from meteorite geochemistry, seems inconsistent with their derivation from the Tharsis or Elysium plumes. Geological and meteoritic data provide conflicting information on the planet's volatile inventory and degassing history, but are apparently being reconciled in favor of a periodically wet Mars. Spacecraft measurements suggesting that rocks have been chemically weathered and have interacted with recycled saline groundwater are confirmed by weathering products and stable isotope fractionations in martian meteorites.  相似文献   

2.
Enstatite chondrites and aubrites are meteorites that show the closest similarities to the Earth in many isotope systems that undergo mass‐independent and mass‐dependent isotopic fractionations. Due to the analytical challenges to obtain high‐precision K isotopic compositions in the past, potential differences in K isotopic compositions between enstatite meteorites and the Earth remained uncertain. We report the first high‐precision K isotopic compositions of eight enstatite chondrites and four aubrites and find that there is a significant variation of K isotopic compositions among enstatite meteorites (from ?2.34‰ to ?0.18‰). However, K isotopic compositions of nearly all enstatite meteorites scatter around the bulk silicate earth (BSE) value. The average K isotopic composition of the eight enstatite chondrites (?0.47 ± 0.57‰) is indistinguishable from the BSE value (?0.48 ± 0.03‰), thus further corroborating the isotopic similarity between Earth's building blocks and enstatite meteorite precursors. We found no correlation of K isotopic compositions with the chemical groups, petrological types, shock degrees, and terrestrial weathering conditions; however, the variation of K isotopes among enstatite meteorite can be attributed to the parent‐body processing. Our sample of the main‐group aubrite MIL 13004 is exceptional and has an extremely light K isotopic composition (δ41K = ?2.34 ± 0.12‰). We attribute this unique K isotopic feature to the presence of abundant djerfisherite inclusions in our sample because this K‐bearing sulfide mineral is predicted to be enriched in 39K during equilibrium exchange with silicates.  相似文献   

3.
Abstract— Oxygen‐isotopic compositions were determined for a suite of enstatite chondrites and aubrites. In agreement with previous work (Clayton et al., 1984), most samples have O‐isotopic compositions close to the terrestrial fractionation line (TFL), and there appear to be no significant differences in O‐isotopic compositions between individual EH and EL chondrites and aubrites. Five enstatite meteorites have O‐isotopic compositions that are significantly different from the other samples and >0.2% away from the TFL. Two of these have petrographic evidence of brecciation and interaction between other meteorite types; for the other three, similar scenarios are suggested. There appears to be a systematic increase in δ18O from enstatite chondrites (both EH and EL) of petrologic type 3 to those of type 6. There is also good evidence that the EH meteorites do not fall along a mass fractionation line but along a line slope 0.66. At the present time, detailed understanding of the origin of these O‐isotopic systematics remain elusive but clearly point to a complex accretion history, parent‐body evolution, or both.  相似文献   

4.
Abstract— To determine the possible building blocks of the Earth and Mars, 225,792,840 possible combinations of the bulk oxygen isotopic and chemical compositions of 13 chondritic groups at 5% mass increments were examined. Only a very small percentage of the combinations match the oxygen isotopic composition, the assumed bulk FeO concentration, and the assumed Fe/Al weight ratio for the Earth. Since chondrites are enriched in silicon relative to estimates of the bulk Earth, none of the combinations fall near the terrestrial magmatic fractionation trend line in Mg/Si‐Al/Si space. More combinations match the oxygen isotopic composition and the assumed bulk FeO concentration for Mars. These combinations fall near the trend for shergottite meteorites in Mg/Si‐Al/Si space. One explanation for the difficulty in forming Earth out of known chondrites is that the Earth may be composed predominately of material that did not survive to the present day as meteorites. Another explanation could be that significant amounts of silicon are sequestered in the core and/or lower mantle of the Earth.  相似文献   

5.
Abstract— The objective of this study was to identify and map possible source regions for all 5 known martian meteorite lithologies (basalt, lherzolite, clinopyroxenite, orthopyroxenite, and dunite) using data from the Mars Global Surveyor Thermal Emission Spectrometer (MGS TES). We deconvolved the TES data set using laboratory spectra of 6 martian meteorites (Los Angeles, Zagami, ALH A77005, Nakhla, ALH 84001, and Chassigny) as end members, along with atmospheric and surface spectra previously derived from TES data. Global maps (16 pixels/degree) of the distribution of each meteorite end member show that meteorite‐like compositions are not present at or above TES detectability limits over most of the planet's dust‐free regions. However, we have confidently identified local‐scale (100s‐1000s km2) concentrations of olivine‐ and orthopyroxene‐bearing materials similar to ALH A77005, Chassigny, and ALH 84001 in Nili Fossae, in and near Ganges Chasma, in the Argyre and Hellas basin rims, and in Eos Chasma. Nakhla‐like materials are identified near the detection limit throughout the eastern Valles Marineris region and portions of Syrtis Major. Basaltic shergottites were not detected in any spatially coherent areas at the scale of this study. Martian meteorite‐like lithologies represent only a minor portion of the dust‐free surface and, thus, are not representative of the bulk composition of the ancient crust. Meteorite‐like spectral signatures identified above TES detectability limits in more spatially restricted areas (<tens of km) are targets of ongoing analysis.  相似文献   

6.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

7.
Abstract— Correlated in situ analyses of the oxygen and magnesium isotopic compositions of aluminum‐rich chondrules from unequilibrated enstatite chondrites were obtained using an ion microprobe. Among eleven aluminum‐rich chondrules and two plagioclase fragments measured for 26Al‐26Mg systematics, only one aluminum‐rich chondrule contains excess 26Mg from the in situ decay of 26Al; the inferred initial ratio (26Al/27Al)o = (6.8 ± 2.4) × 10?6 is consistent with ratios observed in chondrules from carbonaceous chondrites and unequilibrated ordinary chondrites. The oxygen isotopic compositions of five aluminum‐rich chondrules and one plagioclase fragment define a line of slope ?0.6 ± 0.1 on a three‐oxygen‐isotope diagram, overlapping the field defined by ferromagnesian chondrules in enstatite chondrites but extending to more 16O‐rich compositions with a range in δ18O of about ?12‰. Based on their oxygen isotopic compositions, aluminum‐rich chondrules in unequilibrated enstatite chondrites are probably genetically related to ferromagnesian chondrules and are not simple mixtures of materials from ferromagnesian chondrules and calcium‐aluminum‐rich inclusions (CAIs). Relative to their counterparts from unequilibrated ordinary chondrites, aluminum‐rich chondrules from unequilibrated enstatite chondrites show a narrower oxygen isotopic range and much less resolvable excess 26Mg from the in situ decay of 26Al, probably resulting from higher degrees of equilibration and isotopic exchange during post‐crystallization metamorphism. However, the presence of 26Al‐bearing chondrules within the primitive ordinary, carbonaceous, and now enstatite chondrites suggests that 26Al was at least approximately homogeneously distributed across the chondrite‐forming region.  相似文献   

8.
Hf‐W isotopic systematics of Martian meteorites have provided evidence for the early accretion and rapid core formation of Mars. We present the results of numerical simulations performed to study the early thermal evolution and planetary scale differentiation of Mars. The simulations are confined to the initial 50 Myr (Ma) of the formation of solar system. The accretion energy produced during the growth of Mars and the decay energy due to the short‐lived radio‐nuclides 26Al, 60Fe, and the long‐lived nuclides, 40K, 235U, 238U, and 232Th are incorporated as the heat sources for the thermal evolution of Mars. During the core‐mantle differentiation of Mars, the molten metallic blobs were numerically moved using Stoke's law toward the center with descent velocity that depends on the local acceleration due to gravity. Apart from the accretion and the radioactive heat energies, the gravitational energy produced during the differentiation of Mars and the associated heat transfer is also parametrically incorporated in the present work to make an assessment of its contribution to the early thermal evolution of Mars. We conclude that the accretion energy alone cannot produce widespread melting and differentiation of Mars even with an efficient consumption of the accretion energy. This makes 26Al the prime source for the heating and planetary scale differentiation of Mars. We demonstrate a rapid accretion and core‐mantle differentiation of Mars within the initial ~1.5 Myr. This is consistent with the chronological records of Martian meteorites.  相似文献   

9.
Abstract— We report noble gas, oxygen isotope, 14C and 10Be data of Itqiy as well as noble gas, 14C and 10Be results for Zak?odzie. Both samples have been recently classified as anomalous enstatite meteorites and have been compared in terms of their mineralogy and chemical composition. The composition of enstatite and kamacite and the occurrence of specific sulfide phases in Itqiy indicate it formed under similar reducing conditions to those postulated for enstatite chondrites. The new results now seem to point at a direct spatial link. The noble gas record of Itqiy exhibits the presence of a trapped subsolar component, which is diagnostic for petrologic types 4–6 among enstatite chondrites. The concentration of radiogenic 4He is very low in Itqiy and indicates a recent thermal event. Its 21Ne cosmic‐ray exposure age is 30.1 ± 3.0 Ma and matches the most common age range of enstatite chondrites (mostly EL6 chondrites) but not that of Zak?odzie. Itqiy's isotopic composition of oxygen is in good agreement with that observed in Zak?odzie as well as those found in enstatite meteorites suggesting an origin from a common oxygen pool. The noble gas results, on the other hand, give reason to believe that the origin and evolution of Itqiy and Zak?odzie are not directly connected. Itqiy's terrestrial age of 5800 ± 500 years sheds crucial light on the uncertain circumstances of its recovery and proves that Itqiy is not a modern fall, whereas the 14C results from Zak?odzie suggest it hit Earth only recently.  相似文献   

10.
Abstract— Considerable evidence points to a martian origin of the SNC meteorites. Noble gas isotopic compositions have been measured in most SNC meteorites. The 129Xe/132Xe vs. 84Kr/132Xe ratios in Chassigny, most shergottites, and lithology C of EETA 79001 define a linear array. This array is thought to be a mixing line between martian mantle and martian atmosphere. One of the SNC meteorites, Nakhla, contains a leachable component that has an elevated 129Xe/132Xe ratio relative to its 84Kr/132Xe ratio when compared to this approximately linear array. The leachable component probably consists in part of iddingsite, an alteration product produced by interaction of olivine with aqueous fluid at temperatures lower than 150 °C. The elevated Xe isotopic ratio may represent a distinct reservoir in the martian crust or mantle. More plausibly, it is elementally fractionated martian atmosphere. Formation of sediments fractionates the noble gases in the correct direction. The range of sediment/atmosphere fractionation factors is consistent with the elevated 129Xe/132Xe component in Nakhla being contained in iddingsite, a low temperature weathering product. The crystallization age of Nakhla is 1.3 Ga. Its low-shock state suggests that it was ejected from near the surface of Mars. As liquid water is required for the formation of iddingsite, these observations provide further evidence for the near surface existence of aqueous fluids on Mars more recently than 1.3 Ga.  相似文献   

11.
Abstract— The major element, trace element, and isotopic compositional ranges of the martian basaltic meteorite source regions have been modeled assuming that planetary differentiation resulted from crystallization of a magma ocean. The models are based on low to high pressure phase relationships estimated from experimental runs and estimates of the composition of silicate Mars from the literature. These models attempt to constrain the mechanisms by which the martian meteorites obtained their superchondritic CaO/Al2O3 ratios and their source regions obtained their parent/daughter (87Rb/86Sr, 147Sm/144Nd, and 176Lu/177Hf) ratios calculated from the initial Sr, Nd, and Hf isotopic compositions of the meteorites. High pressure experiments suggest that majoritic garnet is the liquidus phase for Mars relevant compositions at or above 12 GPa. Early crystallization of this phase from a martian magma ocean yields a liquid characterized by an elevated CaO/Al2O3 ratio and a high Mg#. Olivine‐pyroxene‐garnet‐dominated cumulates that crystallize subsequently will also be characterized by superchondritic CaO/Al2O3 ratios. Melting of these cumulates yields liquids with major element compositions that are similar to calculated parental melts of the martian meteorites. Furthermore, crystallization models demonstrate that some of these cumulates have parent/daughter ratios that are similar to those calculated for the most incompatible‐element‐depleted source region (i.e., that of the meteorite Queen Alexandra [QUE] 94201). The incompatible‐element abundances of the most depleted (QUE 94201‐like) source region have also been calculated and provide an estimate of the composition of depleted martian mantle. The incompatible‐element pattern of depleted martian mantle calculated here is very similar to the pattern estimated for depleted Earth's mantle. Melting the depleted martian mantle composition reproduces the abundances of many incompatible elements in the parental melt of QUE 94201 (e.g., Ba, Th, K, P, Hf, Zr, and heavy rare earth elements) fairly well but does not reproduce the abundances of Rb, U, Ta and light rare earth elements. The source regions for meteorites such as Shergotty are successfully modeled as mixtures of depleted martian mantle and a late stage liquid trapped in the magma ocean cumulate pile. Melting of this hybrid source yields liquids with major element abundances and incompatible‐element patterns that are very similar to the Shergotty bulk rock.  相似文献   

12.
Abstract— The N and C abundances and isotopic compositions of acid-insoluble carbonaceous material in thirteen primitive chondrites (five unequilibrated ordinary chondrites, three CM chondrites, three enstatite chondrites, a CI chondrite and a CR chondrite) have been measured by stepped combustion. While the range of C isotopic compositions observed is only ~δ13C = 30%, the N isotopes range from δ15N ' -40 to 260%. After correction for metamorphism, presolar nanodiamonds appear to have made up a fairly constant 3–4 wt% of the insoluble C in all the chondrites studied. The apparently similar initial presolar nanodiamond to organic C ratios, and the correlations of elemental and isotopic compositions with metamorphic indicators in the ordinary and enstatite chondrites, suggest that the chondrites all accreted similar organic material. This original material probably most closely resembles that now found in Renazzo and Semarkona. These two meteorites have almost M-shaped N isotope release profiles that can be explained most simply by the superposition of two components, one with a composition between δ15N = -20 and -40% and a narrow combustion interval, the other having a broader release profile and a composition of δ15N ~ 260%. Although isotopically more subdued, the CI and the three CM chondrites all appear to show vestiges of this M-shaped profile. How and where the components in the acid-insoluble organics formed remains poorly constrained. The small variation in nanodiamond to organic C ratio between the chondrite groups limits the local synthesis of organic matter in the various chondrite formation regions to at most 30%. The most 15N-rich material probably formed in the interstellar medium, and the fraction of organic N in Renazzo in this material ranges from 40 to 70%. The isotopically light component may have formed in the solar system, but the limited range in nanodiamond to total organic C ratios in the chondrite groups is consistent with most of the organic material being presolar.  相似文献   

13.
We present petrologic and isotopic data on Northwest Africa (NWA) 4799, NWA 7809, NWA 7214, and NWA 11071 meteorites, which were previously classified as aubrites. These four meteorites contain between 31 and 56 vol% of equigranular, nearly endmember enstatite, Fe,Ni metal, plagioclase, terrestrial alteration products, and sulfides, such as troilite, niningerite, daubréelite, oldhamite, and caswellsilverite. The equigranular texture of the enstatite and the presence of the metal surrounding enstatite indicate that these rocks were not formed through igneous processes like the aubrites, but rather by impact processes. In addition, the presence of pre‐terrestrially weathered metal (7.1–14 vol%), undifferentiated modal abundances compared to enstatite chondrites, presence of graphite, absence of diopside and forsterite, low Ti in troilite, and high Si in Fe,Ni metals suggest that these rocks formed through impact melting on chondritic and not aubritic parent bodies. Formation of these meteorites on a parent body with similar properties to the EHa enstatite chondrite parent body is suggested by their mineralogy. These parent bodies have undergone impact events from at least 4.5 Ga (NWA 11071) until at least 4.2 Ga (NWA 4799) according to 39Ar‐40Ar ages, indicating that this region of the solar system was heavily bombarded early in its history. By comparing NWA enstatite chondrite impact melts to Mercury, we infer that they represent imperfect petrological analogs to this planet given their high metal abundances, but they could represent important geochemical analogs for the behavior and geochemical affinities of elements on Mercury. Furthermore, the enstatite chondrite impact melts represent an important petrological analog for understanding high‐temperature processes and impact processes on Mercury, due to their similar mineralogies, Fe‐metal‐rich and FeO‐poor silicate abundances, and low oxygen fugacity.  相似文献   

14.
Meteoritical Bulletin 106 contains 1868 meteorites including 10 falls (Aiquile, Broek in Waterland, Degtevo, Dingle Dell, Dishchii'bikoh, Hradec Králové, Kheneg Ljouâd, Oudiyat Sbaa, Serra Pelada, Tres Irmaos), with 1386 ordinary chondrites, 166 carbonaceous chondrites, 119 HED achondrites, 48 Lunar meteorites, 37 iron meteorites, 36 ureilites, 19 Martian meteorites, 13 enstatite chondrites, 12 Rumuruti chondrites, 9 primitive achondrites, 8 mesosiderites, 5 enstatite achondrites, 4 ungrouped achondrites, 4 pallasites, and 1 relict meteorite. A total of 958 meteorites are from Africa, 405 from Antarctica, 245 from Asia, 228 from South America, 12 from North America, 8 from Europe, 5 from Mars, 4 from Oceania, and 1 from an unknown location.  相似文献   

15.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

16.
Abstract– Dhofar (Dho) 225 and Dho 735 are carbonaceous chondrites found in a hot desert and having affinities to Belgica‐like Antarctic chondrites (Belgica [B‐] 7904 and Yamato [Y‐] 86720). Texturally they resemble CM2 chondrites, but differ in mineralogy, bulk chemistry and oxygen isotopic compositions. The texture and main mineralogy of Dho 225 and Dho 735 are similar to the CM2 chondrites, but unlike CM2 chondrites they do not contain any (P, Cr)‐sulfides, nor tochilinite 6Fe0.9S*5(Fe,Mg)(OH)2. H2O‐contents of Dho 225 and Dho 735 (1.76 and 1.06 wt%) are lower than those of CM2 chondrites (2–18 wt%), but similar to those in the metamorphosed carbonaceous chondrites of the Belgica‐like group. Bulk compositions of Dho 225 and Dho 735, as well as their matrices, have low Fe and S and low Fe/Si ratios relative to CM2 chondrites. X‐ray powder diffraction patterns of the Dho 225 and Dho 735 matrices showed similarities to laboratory‐heated Murchison CM2 chondrite and the transformation of serpentine to olivine. Dho 225 and 735’s oxygen isotopic compositions are in the high 18O range on the oxygen diagram, close to the Belgica‐like meteorites. This differs from the oxygen isotopic compositions of typical CM2 chondrites. Experimental results showed that the oxygen isotopic compositions of Dho 225 and Dhofar 725, could not be derived from those of typical CM2 chondrites via dehydration caused by thermal metamorphism. Dho 225 and Dho 735 may represent a group of chondrites whose primary material was different from typical CM2 chondrites and the Belgica‐like meteorites, but they formed in an oxygen reservoir similar to that of the Belgica‐like meteorites.  相似文献   

17.
The origin of water on Mars   总被引:1,自引:0,他引:1  
This paper considers the origin of water on Mars, in the context of a dynamical model that accounts for most of the Earth's water as a product of collisions between the growing Earth and planet-sized “embryos” from the asteroid belt. Mars' history is found to be different; to explain the present mass of Mars requires that it suffer essentially no giant collisions and the bulk of its growth is through addition of smaller bodies. Asteroids and comets from beyond 2.5 AU provide the source of Mars' water, which totals 6-27% of the Earth's present ocean (1 Earth ocean≡1.5×1021 kg), equivalent to 600-2700-m depth on the martian surface. The D/H ratio of this material is 1.2-1.6 times Standard Mean Ocean Water, the smaller value obtaining for the larger amount of water accreted. The upper half of the range of total water accreted, while many times less than that acquired by the Earth, is consistent with geological data on Mars, and the D/H value is that derived for martian magmatic water from SNC meteorites. Both together are consistent with published interpretations of the high D/H in present-day martian atmospheric water in terms of water loss through atmospheric escape.  相似文献   

18.
Abstract— The Rumuruti chondrites (R chondrites) constitute a new, well-established, chondrite group different from carbonaceous, ordinary, and enstatite chondrites. Most samples of this group are gas-rich regolith breccias showing the typical light/dark structure and consist of abundant fragments of various parent body lithologies embedded in a fine-grained, olivine-rich matrix. Most R chondrites contain the typical components of primitive chondrites including chondrules, chondrule and mineral fragments, sulfides, and rare calcium-aluminum-rich inclusions (CAIs). In Hughes 030, an interesting CAI consisting of abundant hibonite and spinel was found. Mg isotopic analyses revealed excess 26Mg in components of R chondrites for the first time. The hibonite grains with high Al/Mg values (∼1500 to 2600) show resolved 26Mg excess. The slope of the correlation line yields an initial 26Al/ 27Al = (1.4 ± 0.3) × 10−6, which is ∼40 times lower than the initial value measured in CAIs from primitive meteorites. The inferred difference in 26Al abundance implies a time difference of ∼4 million years for the closure of the Al-Mg system between CAIs from primitive chondrites and the Hughes 030 CAI. Based on mineralogy and the petrographic setting of the hibonite-rich CAI, it is suggested that 4 million years reflect the time interval between the formation of the CAI and the end of its secondary alteration. It is also suggested that most of this alteration may have occurred in the nebula (e.g. Zn- and Fe-incorporation in spinels). However, the CAI could not have survived in the nebula as a free floating object for a long period of time. Therefore, the possibility of storage in a precursor planetesimal for a few million years, resetting the magnesium-aluminum isotopic system, prior to impact brecciation, excavation, and accretion of the final R chondrite parent body cannot be ruled out.  相似文献   

19.
Abstract— Isotopic compositions and abundances of boron were measured in sixteen chondrules from seven chondrites by ion microprobe mass spectrometry. The chondrules are of the porphyritic, barred, and radial type and host meteorites include carbonaceous, ordinary, and enstatite chondrites. Boron abundances are generally low with average boron concentrations of between 80 and 500 ppb. These abundances are lower than those of bulk chondrites (0.35 to 1.2 ppm; Zhai et al., 1996), confirming earlier suggestions that boron is mostly contained in the matrix. No significant variation in the 11B/10B ratio is observed among these chondrules, outside our experimental error limits of several permil, and B‐isotopic compositions agree with those reported for bulk chondrites. The lack of a significant isotope fractionation between chondrules and matrix implies that the low boron abundances are not the result of a Rayleigh fractionation during chondrule formation. Isotopic heterogeneities within individual chondrules are constrained to be < ±20%0 at > 95% confidence level at a spatial scale of 20–30 μm, significantly lower than the value of about ±40%0 previously reported for chondrules from carbonaceous and ordinary chondrites (Chaussidon and Robert, 1995, 1998). The observed B‐isotopic homogeneity does not conflict with the presence of decay products from extinct 10Be, with (10Be/9Be)0 ? 10?3, as was inferred for calcium‐aluminum‐rich inclusions. Extinct 10Be in chondrules would shift the abundance ratio 11B/10B at best by several permil because of their commonly observed low Be/B ratios (<2). The results show that potential B‐isotopic heterogeneities in the solar nebula due to the presence of components with different B‐isotopic signatures, such as boron produced by high‐energy galactic cosmic rays (11B/10B ? 2.5), or by the hypothetical low‐energy particle irradiation (11B/10B ? 3.5–11) or boron from type II supernovae (11B/10B >> 1), did not survive the chondrule formation processes to a measurable extent.  相似文献   

20.
Abstract— Research on extraterrestrial materials plays a critical role in formulating the science rationale and design for spacecraft missions, and, conversely, spaceflight holds great promise for solving perplexing problems in meteoritics. The connections between meteoritics and sample-return missions are obvious: Meteorite research can define sampling strategies, the capabilities of sampling devices, acceptable levels of chemical contamination and physical alteration of samples, and the conditions under which samples are stored prior to and during recovery. For their part, sample-return missions can provide geologic context for meteorites, increased sampling diversity (including materials not sampled as meteorites, such as unconsolidated regolith, ices, and atmosphere), calibration for crater-counting chronology, and ground truth for remote sensing measurements of meteorite parent bodies. Meteoritics also relates to spacecraft flyby, rendezvous, and lander missions that do not necessarily return samples. Specific illustrations of this mutual relationship, based on a selection of recent or planned spacecraft missions include: Identifying source asteroid classes for ordinary and carbonaceous chondrites and reconstructing their thermal and collisional histories (Galileo, NEAR, Clementine II, and Muses-C); determining the extent to which cometary dust and interstellar grains are found as interplanetary dust particles and assessing volatile abundances, isotopic compositions, and molecular species in cometary nuclei (Stardust and Rosetta); understanding the compositions of ancient Martian crust and the mantle sources for SNC meteorites, as well as inventorying the planet's volatile reservoirs and interactions (Mars Pathfinder, Mars Global Surveyor, and Mars Volatiles and Climate Surveyor); assessing whether lunar meteorites provide a more representative chemical sampling of the highlands crust and of mare volcanism than do Apollo samples (Galileo, Clementine, and Lunar Prospector). Spaceflight is the first priority of the space agencies that fund most research on extraterrestrial materials, and the continued level of support for such research may be linked, in part, to its use in exploration by spacecraft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号