首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Degassed magmatic water was potentially the major source of surficial water on Mars. We measured Li, B, and Be abundances and Li isotope profiles in pyroxenes, olivines, and maskelynite from four compositionally different shergottites—Shergotty, QUE 94201, LAR 06319, and Tissint—using secondary ion mass spectrometry (SIMS). All three light lithophile elements (LLE) are incompatible: Li and B are soluble in H2O‐rich fluids, whereas Be is insoluble. In the analyzed shergottites, Li concentration decreases and Be concentration increases from cores to rims in pyroxenes. However, B concentrations do not vary consistently with Li and Be abundances, except in QUE 94201 pyroxenes. Additionally, abundances of these three elements in olivines show a normal igneous‐fractionation trend consistent with the crystallization of olivine before magma ascent and degassing. We expect that kinetic effects would lead to fractionation of 6Li in the vapor phase compared to 7Li during degassing. The Li isotope profiles, with increasing δ7Li from cores to rims, as well as Li and B profiles indicate possible degassing of hydrous fluids only for the depleted shergottite QUE 94201, as also supported by degassing models. Conversely, Shergotty, LAR 06319, and Tissint appear to have been affected by postcrystallization diffusion, based on their LLE and Li isotope profiles, accompanied by diffusion models. This process may represent an overlay on a degassing pattern. The LLE profiles and isotope profiles in QUE 94201 support the hypothesis that degassing of some basaltic shergottite magmas provided water to the Martian surface, although evidence may be obscured by subsolidus diffusion processes.  相似文献   

2.
Abstract— North West Africa (NWA) 480 is a new martian meteorite of 28 g found in the Moroccan Sahara in November 2000. It consists mainly of large gray pyroxene crystals (the largest grains are up to 5 mm in length) and plagioclase converted to maskelynite. Excluding the melt pocket areas, modal analyses indicate the following mineral proportions: 72 vol% pyroxenes extensively zoned, 25% maskelynite, 1% phosphates (merrillite and chlorapatite), 1% opaque oxides (ilmenite, ulvöspinel and chromite) and sulfides, and 1% others such as silica and fayalite. The compositional trend of NWA 480 pyroxenes is similar to that of Queen Alexandra Range (QUE) 94201 but in NWA 480 the pyroxene cores are more Mg‐rich (En77‐En65). Maskelynites display a limited zoning (An42–50Ab54‐48Or2–4). Our observations suggest that NWA 480 formed from a melt with a low nuclei density at a slow cooling rate. The texture was achieved via a single‐stage cooling where pyroxenes grew continuously. A similar model was previously proposed for QUE 94201 by McSween et al. (1996). NWA 480 is an Al‐poor ferroan basaltic rock and resembles Zagami or Shergotty for major elements and compatible trace element abundances. The bulk rock analysis for oxygen isotopes yields Δ17O = +0.42%, a value in agreement at the high margin, with those measured on other shergottites (Clayton and Mayeda, 1996; Romanek et al., 1998; Franchi et al., 1999). Its CI‐normalized rare earth element pattern is similar to those of peridotitic shergottites such as Allan Hills (ALH)A77005, suggesting that these shergottites shared a similar parent liquid, or at least the same mantle source.  相似文献   

3.
Abstract— Radiometric age dating of the shergottite meteorites and cratering studies of lava flows in Tharsis and Elysium both demonstrate that volcanic activity has occurred on Mars in the geologically recent past. This implies that adiabatic decompression melting and upwelling convective flow in the mantle remains important on Mars at present. I present a series of numerical simulations of mantle convection and magma generation on Mars. These models test the effects of the total radioactive heating budget and of the partitioning of radioactivity between crust and mantle on the production of magma. In these models, melting is restricted to the heads of hot mantle plumes that rise from the core‐mantle boundary, consistent with the spatially localized distribution of recent volcanism on Mars. For magma production to occur on present‐day Mars, the minimum average radioactive heating rate in the martian mantle is 1.6 times 10?12 W/kg, which corresponds to 39% of the Wanke and Dreibus (1994) radioactivity abundance. If the mantle heating rate is lower than this, the mean mantle temperature is low, and the mantle plumes experience large amounts of cooling as they rise from the base of the mantle to the surface and are, thus, unable to melt. Models with mantle radioactive heating rates of 1.8 to 2.1 times 10 ?12 W/kg can satisfy both the present‐day volcanic resurfacing rate on Mars and the typical melt fraction observed in the shergottites. This corresponds to 43–50% of the Wanke and Dreibus radioactivity remaining in the mantle, which is geochemically reasonable for a 50 km thick crust formed by about 10% partial melting. Plausible changes to either the assumed solidus temperature or to the assumed core‐mantle boundary temperature would require a larger amount of mantle radioactivity to permit present‐day magmatism. These heating rates are slightly higher than inferred for the nakhlite source region and significantly higher than inferred from depleted shergottites such as QUE 94201. The geophysical estimate of mantle radioactivity inferred here is a global average value, while values inferred from the martian meteorites are for particular points in the martian mantle. Evidently, the martian mantle has several isotopically distinct compositions, possibly including a radioactively enriched source that has not yet been sampled by the martian meteorites. The minimum mantle heating rate corresponds to a minimum thermal Rayleigh number of 2 times 106, implying that mantle convection remains moderately vigorous on present‐day Mars. The basic convective pattern on Mars appears to have been stable for most of martian history, which has prevented the mantle flow from destroying the isotopic heterogeneity.  相似文献   

4.
Abstract— We present the results of a combined mineralogic‐petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)‐enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe‐Ti oxides and the size of Eu anomalies in the earliest‐formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed‐system crystal fractionation from a LREE‐depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.  相似文献   

5.
Abstract— We report on major and trace element analyses obtained by, respectively, inductively coupled plasma‐atomic emission spectrometry (ICP‐AES) and inductively coupled plasma‐mass spectrometry (ICP‐MS) of three different aliquots of the new Saharan shergottite Dar al Gani (DaG) 476. The new analyses are in excellent agreement with previous data (Zipfel et al., 2000). Ba, Sr and U abundances, together with the presence of carbonate, suggest that the sample has been significantly weathered. Three rare earth element (REE) patterns (normalized to CI) determined on three different aliquots of the sample all show similar shapes. The heavy REEs are flat with a slight depletion at the heavy end and a strong depletion from Dy to Pr. All of the patterns display an upturn to La which we interpret as being caused by the introduction of a terrestrial component. Taking the terrestrial contamination into account, this study demonstrates that DaG 476 is one of the most depleted of the shergottites, and, just like Queen Alexandra Range (QUE) 94201 (Dreibus et al., 1996), displays very low Zr/Hf ratios. It appears that the Zr/Hf ratios of shergottites are not uniform, and have been significantly fractionated by martian mantle processes.  相似文献   

6.
Abstract— Isotopic and trace element compositions of Martian meteorites show that early differentiation of Mars produced complementary crustal and mantle reservoirs that were sampled by later magmatic events. This paper describes a mass balance model that estimates the rare earth element (REE) content and thickness of the crust of Mars from the compositions of shergottites. The diverse REE and Nd isotopic compositions of shergottites are most easily explained by variable addition of light rare earth element (LREE)–enriched crust to basaltic magmas derived from LREE-depleted mantle source regions. Antarctic shergottites EET 79001, ALH 77005, LEW 88516, and QUE 94201 all have strongly LREE-depleted patterns and positive initial 143Nd isotopic compositions, which is consistent with the generation of these magmas from depleted mantle sources and little or no interaction with enriched crust. In contrast, Shergotty and Zagami have negative initial 143Nd isotopic compositions and less pronounced depletions of the LREE, which have been explained by incorporation of enriched crustal components into mantle-derived magmas (Jones, 1989; Longhi, 1991; Borg et al., 1997). The mass balance model presented here derives the REE composition of the crustal component in Shergotty by assuming it represents a mixture between a mantle-derived magma similar in composition to EET 79001A and a LREE-enriched crustal component. The amount of crust in Shergotty is constrained by mixing relations based on Nd-isotopic compositions, which allows the REE pattern of the crustal component to be calculated by mass balance. The effectiveness of this model is demonstrated by the successful recovery of important characteristics of the Earth's continental crust from terrestrial Columbia River basalts. Self-consistent results for Nd-isotopic compositions and REE abundances are obtained if Shergotty contains ~10–30% of LREE-enriched crust with >10 ppm Nd. This crustal component would have moderately enriched LREE (Sm/Nd = 0.25–0.27; 147Sm/144Nd = 0.15–0.17; La/Yb = 2.7–3.8), relatively unfractionated heavy rare earth elements (HREE), and no Eu anomaly. Crust with these characteristics can be produced from a primitive lherzolitic Martian mantle by modest amounts (2–8%) of partial melting, and it would have a globally averaged thickness of <45 km, which is consistent with geophysical estimates. Mars may serve as a laboratory to investigate planetary differentiation by extraction of a primary basaltic crust.  相似文献   

7.
The chemical compositions of shergottite meteorites, basaltic rocks from Mars, provide a broad view of the origins and differentiation of these Martian magmas. The shergottite basalts are subdivided based on their Al contents: high‐Al basalts (Al > 5% wt) are distinct from low‐Al basalts and olivine‐phyric basalts (both with Al < 4.5% wt). Abundance ratios of highly incompatible elements (e.g., Th, La) are comparable in all the shergottites. Abundances of less incompatible elements (e.g., Ti, Lu, Hf) in olivine‐phyric and low‐Al basalts correlate well with each other, but the element abundance ratios are not constant; this suggests mixing between components, both depleted and enriched. High‐Al shergottites deviate from these trends consistent with silicate mineral fractionation. The “depleted” component is similar to the Yamato‐980459 magma; approximately, 67% crystal fractionation of this magma would yield a melt with trace element abundances like QUE 94201. The “enriched” component is like the parent magma for NWA 1068; approximately, 30% crystal fractionation from it would yield a melt with trace element abundances like the Los Angeles shergottite. This component mixing is consistent with radiogenic isotope and oxygen fugacity data. These mixing relations are consistent with the compositions of many of the Gusev crater basalts analyzed on Mars by the Spirit rover (although with only a few elements to compare). Other Mars basalts fall off the mixing relations (e.g., Wishstone at Gusev, Gale crater rocks). Their compositions imply that basalt source areas in Mars include significant complexities that are not present in the source areas for the shergottite basalts.  相似文献   

8.
The fall and recovery of the Tissint meteorite in 2011 created a rare opportunity to examine a Martian sample with a known, short residence time on Earth. Tissint is an olivine‐phyric shergottite that accumulated olivine antecrysts within a single magmatic system. Coarse olivine grains with nearly homogeneous cores of Mg# >80 suggest slow re‐equilibration. Many macroscopic features of this sample resemble those of LAR 06319, including the olivine crystal size distribution and the presence of evolved oxide and olivine compositions. Unlike LAR 06319, however, no magmatic hydrous phases were found in the analyzed samples of Tissint. Minor and trace element compositions indicate that the meteorite is the product of closed‐system crystallization from a parent melt derived from a depleted source, with no obvious addition of a LREE‐rich (crustal?) component prior to or during crystallization. The whole‐rock REE pattern is similar to that of intermediate olivine‐phyric shergottite EETA 79001 lithology A, and could also be approximated by a more olivine‐rich version of depleted basaltic shergottite QUE 94201. Magmatic oxygen fugacities are at the low end of the shergottite range, with log fO2 of QFM‐3.5 to ‐4.0 estimated based on early‐crystallized minerals and QFM‐2.4 estimated based on the Eu in pyroxene oxybarometer. These values are similarly comparable to other depleted shergottites, including SaU 005 and QUE 94201. Tissint occupies a previously unsampled niche in shergottite chemistry: containing olivines with Mg# >80, resembling the enriched olivine‐phyric shergottite LAR 06319 in its crystallization path, and comparable to intermediate olivine‐phyric shergottite EETA 79001A, depleted olivine‐phyric shergottite DaG 476, and depleted basaltic shergottite QUE 94201 in its trace element abundances and oxygen fugacity. The apparent absence of evidence for terrestrial alteration in Tissint (particularly in trace element abundances in the whole‐rock and individual minerals) confirms that exposure to the arid desert environment results in only minimal weathering of samples, provided the exposure times are brief.  相似文献   

9.
Abstract— Isotopic abundances of the noble gases were measured in the following Martian meteorites: two shock glass inclusions from Elephant Moraine (EET) 79001, shock vein glass from Shergotty and Yamato (Y) 793605, and whole-rock samples of Allan Hills (ALH) 84001 and Queen Alexandra Range (QUE) 94201. These glass samples, when combined with literature data on a separate single glass inclusion from EET 79001 and a glass vein from Zagami, permit examination in greater detail of the isotopic composition of Ne, Ar, Kr, and Xe trapped from the Martian atmosphere. The isotopic composition of Martian Ne, if actually present in these glasses, remains poorly defined. The 40Ar/36Ar ratio of trapped Martian atmospheric Ar is probably considerably lower than the nominal ratio of 3000 measured by Viking, and data on impact glasses suggest a value of ~1900. The atmospheric 36Ar/38Ar ratio is ≤4.0. Martian atmospheric Kr may be enriched in lighter isotopes by ~0.5%/amu compared to both solar-wind Kr and to the Martian composition previously reported. The isotopic composition of Xe in these glasses agrees with that previously reported in the literature. The Martian atmospheric 36Ar/132Xe and 84Kr/132Xe elemental ratios are higher than those reported by Viking by factors of ~2.5–1.6 (depending on the 40Ar/36Ar ratio adopted) and ~1.8, respectively, and are discussed in a separate paper. Cosmogenic gases indicate space exposure ages of 2.7 ± 0.6 Ma for QUE 94201 and Shergotty and 14 ± 1 Ma for ALH 84001. Small amounts of 21Ne produced by energetic solar protons may be present in QUE 94201 but are not present in ALH 84001 or Y-793605. The space exposure age for Y-793605 is 4.9 ± 0.6 Ma and appears to be distinctly older than the ages for basaltic shergottites. However, uncertainties in cosmogenic production rates still makes somewhat uncertain the number of Martian impact events required to produce the exposure ages of Martian meteorites.  相似文献   

10.
Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine‐hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine–phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76‐70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66‐55). REE‐plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole‐rock. Model calculations indicate two‐stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in ~10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole‐rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE‐rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.  相似文献   

11.
Abstract— The newly found meteorite Northwest Africa 6234 (NWA 6234) is an olivine (ol)‐phyric shergottite that is thought, based on texture and mineralogy, to be paired with Martian shergottite meteorites NWA 2990, 5960, and 6710. We report bulk‐rock major‐ and trace‐element abundances (including Li), abundances of highly siderophile elements, Re‐Os isotope systematics, oxygen isotope ratios, and the lithium isotope ratio for NWA 6234. NWA 6234 is classified as a Martian shergottite, based on its oxygen isotope ratios, bulk composition, and bulk element abundance ratios, Fe/Mn, Al/Ti, and Na/Al. The Li concentration and δ7Li value of NWA 6234 are similar to that of basaltic shergottites Zagami and Shergotty. The rare earth element (REE) pattern for NWA 6234 shows a depletion in the light REE (La‐Nd) compared with the heavy REE (Sm‐Lu), but not as extreme as the known “depleted” shergottites. Thus, NWA 6234 is suggested to belong to a new category of shergottite that is geochemically “intermediate” in incompatible elements. The only other basaltic or ol‐phyric shergottite with a similar “intermediate” character is the basaltic shergottite NWA 480. Rhenium‐osmium isotope systematics are consistent with this intermediate character, assuming a crystallization age of 180 Ma. We conclude that NWA 6234 represents an intermediate compositional group between enriched and depleted shergottites and offers new insights into the nature of mantle differentiation and mixing among mantle reservoirs in Mars.  相似文献   

12.
We present a study of the petrology and geochemistry of basaltic shergottite Northwest Africa 2975 (NWA 2975). NWA 2975 is a medium‐grained basalt with subophitic to granular texture. Electron microprobe (EMP) analyses show two distinct pyroxene compositional trends and patchy compositional zoning patterns distinct from those observed in other meteorites such as Shergotty or QUE 94201. As no bulk sample was available to us for whole rock measurements, we characterized the fusion crust and its variability by secondary ion mass spectrometer (SIMS) measurements and laser ablation inductively coupled plasma spectroscopy (LA‐ICP‐MS) analyses as a best‐available proxy for the bulk rock composition. The fusion crust major element composition is comparable to the bulk composition of other enriched basaltic shergottites, placing NWA 2975 within that sample group. The CI‐normalized REE (rare earth element) patterns are flat and also parallel to those of other enriched basaltic shergottites. Merrillite is the major REE carrier and has a flat REE pattern with slight depletion of Eu, parallel to REE patterns of merrillites from other basaltic shergottites. The oxidation state of NWA 2975 calculated from Fe‐Ti oxide pairs is NNO‐1.86, close to the QFM buffer. NWA 2975 represents a sample from the oxidized and enriched shergottite group, and our measurements and constraints on its origin are consistent with the hypothesis of two distinct Martian mantle reservoirs: a reduced, LREE‐depleted reservoir and an oxidized, LREE‐enriched reservoir. Stishovite, possibly seifertite, and dense SiO2 glass were also identified in the meteorite, allowing us to infer that NWA 2975 experienced a realistic shock pressure of ~30 GPa.  相似文献   

13.
Abstract— The crystallization ages of martian (SNC) meteorites give evidence that martian volcanism has continued until recent times‐perhaps until the present. These meteorites also indicate that the mantle source regions of this volcanism are modestly to extremely depleted by terrestrial standards. These 2 observations produce a conundrum. How is it that such depleted source regions have produced basaltic magma for such a long time? This contribution attempts to quantify the radiogenic heat production in 2 distinct martian mantle source regions: those of the shergottites and nakhlites. Compared to the depleted upper mantle of the Earth (MORB), the nakhlite source region is depleted by about a factor of 2, and the shergottite source region is depleted by a factor of 6. According to current geophysical models, the nakhlite source contains the minimum amount of radioactive heat production to sustain whole‐mantle convection and basalt generation over geologic time. A corollary of this conclusion is that the shergottite source contains much too little radioactivity to produce recent (<200 Ma) basalts. A model martian interior with a deep nakhlite mantle that is insulated by a shallow shergottite mantle may allow basalt production from both source regions if the divide between the nakhlite‐shergottite mantles acts as a thermal boundary layer. Similarities between lunar and martian isotopic reservoirs indicate that the Moon and Mars may have experienced similar styles of differentiation.  相似文献   

14.
Abstract— Antarctic meteorite Queen Alexandra Range (QUE) 94201 is a 12 g basaltic achondrite dominated by plagioclase (now maskelynite) and zoned low‐ and high‐Ca pyroxene. Petrologic, geochemical, and isotopic analyses indicate that it is related to previously described basaltic and Iherzolitic shergottites, which are a group of igneous meteorites that are believed to be from Mars. Unlike previous shergottites, however, QUE 94201 represents a bulk melt rather than a cumulate fraction, meaning it can be used to infer magmatic source regions and the compositions of other melts on Mars. This melt has much more Fe and P than basaltic melts produced on Earth and formed at a much lower oxygen fugacity. This has altered the crystallization sequence of the melt, removing olivine from the liquidus to produce a plagioclase and 2‐pyroxene assemblage. If the high‐phosphorus and low‐oxygen fugacity conditions represented by QUE 94201 are common in magmatic regions of Mars, then olivine may be rare in marrian basalts. No solar cosmic ray effects were seen in the concentrations of 10Be, 26A1, and 36C1 with depth in the meteorite, implying at least 3 cm of ablation during entry to Earth. Significant excesses of neutron capture noble gas isotopes (80,82Kr and 128,131Xe) suggest that the QUE 94201 sample came from a depth >22 cm in a meteoroid of at least that radius. The meteorite also has very low 21Ne/22Ne, which would often be interpreted to mean little ablation (contradicting above evidence) but, in this case, appears to reflect a very low abundance of Mg (the principal target element for Ne) in the meteorite, consistent with our bulk chemical analyses. The meteorite has a terrestrial 36C1 age of 0.29 ± 0.05 Myr and a 10Be exposure age of 2.6 ± 0.5 Myr in a 47π geometry, implying an ejection age of 2.9 ± 0.5 Myr.  相似文献   

15.
Abstract— Cosmic‐ray exposure (CRE) ages and Mars ejection times were calculated from the radionuclide 81Kr and stable Kr isotopes for seven martian meteorites. The following 81Kr‐Kr CRE ages were obtained: Los Angeles = 3.35 ± 0.70 Ma; Queen Alexandra Range 94201 = 2.22 ± 0.35 Ma; Shergotty = 3.05 ± 0.50 Ma; Zagami = 2.98 ± 0.30 Ma; Nakhla = 10.8 ± 0.8 Ma; Chassigny = 10.6 ± 2.0 Ma; and Allan Hills 84001 = 15.4 ± 5.0 Ma. Comparison of these ages with previously obtained CRE ages from the stable noble gas nuclei 3He, 21Ne, and 38Ar shows excellent agreement. This indicates that the method for the production rate calculation for the stable nuclei is reliable. In all martian meteorites we observe effects induced by secondary cosmic‐ray produced epithermal neutrons. Epithermal neutron fluxes, φn (30–300 eV), are calculated based on the reaction 79Br(n, γβ)80Kr. We show that the neutron capture effects were induced in free space during Mars‐Earth transfer of the meteoroids and that they are not due to a pre‐exposure on Mars before ejection of the meteoritic material. Neutron fluxes and slowing down densities experienced by the meteoroids are calculated and pre‐atmospheric sizes are estimated. We obtain minimum radii in the range of 22–25 cm and minimum masses of 150–220 kg. These results are in good agreement with the mean sizes reported for model calculations using current semiempirical data.  相似文献   

16.
Abstract— An experimental investigation of the Shergotty meteorite was performed at 0.1 MPa under anhydrous conditions at the quartz‐fayalite‐magnetite buffer and at 100 and 200 MPa under H2O‐saturated conditions at the nickel‐nickel oxide buffer. The results of these experiments are used to infer magmatic conditions recorded by co‐crystallization of augite and pigeonite phenocrysts found in Shergotty and to investigate the effect of H2O on fractional crystallization paths followed by shergottite magmas. The phase relations and compositions of the homogeneous magnesian pyroxene cores in Shergotty are most closely approximated by crystallization under H2O‐saturated conditions at 1120 °C (± 10 °C) and 56 MPa (± 18 MPa), corresponding to dissolved H2O contents of 1.8 wt% (± 0.6 wt%) and a depth of 5 km (± 1.5 km) in the martian crust (uncertainties are 2s? values). The Shergotty magma then lost this water during ascent and eruption. Fractional crystallization of the Shergotty magma under anhydrous conditions produces liquids that follow a strong Fe‐enrichment trend at nearly constant SiO2. Crystallization under H2O‐saturated conditions generates derivative liquids, depleted in FeO and Al2O3 and enriched in SiO2, that are compositionally similar to the Mars Pathfinder andesite rock composition. The presence of ~1.8 wt% water in Shergotty parental magmas could result from assimilation of hydrated crustal materials or from dehydration of hydrous phases in the mantle source region.  相似文献   

17.
Abstract— Dhofar 019 is a new martian meteorite found in the desert of Oman. In texture, mineralogy, and major and trace element chemistry, this meteorite is classified as a basaltic shergottite. Olivine megacrysts are set within a groundmass composed of finer grained olivine, pyroxene (pigeonite and augite), and maskelynite. Minor phases are chromite‐ulvöspinel, ilmenite, silica, K‐rich feldspar, merrillite, chlorapatite, and pyrrhotite. Secondary phases of terrestrial origin include calcite, gypsum, celestite, Fe hydroxides, and smectite. Dhofar 019 is most similar to the Elephant Moraine (EETA) 79001 lithology A and Dar al Gani (DaG) 476/489 shergottites. The main features that distinguish Dhofar 019 from other shergottites are lack of orthopyroxene; lower Ni contents of olivine; the heaviest oxygen‐isotopic bulk composition; and larger compositional ranges for olivine, maskelynite, and spinel, as well as a wide range for pyroxenes. The large compositional ranges of the minerals are indicative of relatively rapid crystallization. Modeling of olivine chemical zonations yield minimum cooling rates of 0.5‐0.8 °C/h. Spinel chemistry suggests that crystallization took place under one of the most reduced conditions for martian meteorites, at an fO2 3 log units below the quartz‐fayalite‐magnetite (QFM) buffer. The olivine megacrysts are heterogeneously distributed in the rock. Crystal size distribution analysis suggests that they constitute a population formed under steady‐state conditions of nucleation and growth, although a few grains may be cumulates. The parent melt is thought to have been derived from partial melting of a light rare earth element‐ and platinum group element‐depleted mantle source. Shergottites, EETA79001 lithology A, DaG 476/489, and Dhofar 019, although of different ages, comprise a particular type of martian rocks. Such rocks could have formed from chemically similar source(s) and parent melt(s), with their bulk compositions affected by olivine accumulation.  相似文献   

18.
19.
We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl‐rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36–73 ppm H2O and the depleted source has 14–23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust‐mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has ~1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of ~229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.  相似文献   

20.
Abstract— We report neutron activation analyses, including radiochemical determination of trace siderophile elements (Au, Ge, Ir, Ni, Os and Re), for three SNC/martian meteorites, and Os and Re results for numerous eucrites. Ratios such as Ga/Al in the SNC orthopyroxenite ALH84001 confirm its martian affinity—its many distinctive characteristics, most notably its near-primordial age, notwithstanding. To the list of ALH84001's idiosyncrasies can now be added extraordinarily low concentrations of Au, Ni and, especially, Re (17 pg/g), for a martian meteorite. We consider several possible origins for the anomalously low Re content in ALH84001, including metasomatism or alteration. The pyroxene-cumulate nature of this rock probably does not account for its low Re content. Other SNC meteorites are also cumulates. An examination of Re-Nd variations among terrestrial basalts and komatiites suggests that Re is compatible with mantle minerals in general and only incompatible with olivine (however, olivine dominates the mantle residuum, especially during komatiite genesis). Our preferred model is that the ALH84001 parent melt formed in a mantle source region that was far more Re-depleted, and/or at a substantially lower oxygen fugacity, than the sources of the young SNC meteorites. Such a contrast is consistent with models that replenish siderophile elements in planetary mantles by gradual admixture of late-accreting matter and similarly derive most planetary water (which serves as an oxidant) very late in accretion. According to this model, ALH84001 formed before the siderophile-rich matter and water had been mixed well into the martian interior. Possibly the martian mantle never became generally as Re-rich and/or oxidized as the source region(s) of the younger SNCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号