首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
A small Kuroko-type Cu-Zn deposit exhibiting metal zoning and alteration assemblages comparable with documented proximal volcanogenic deposits, occurs at the top of a felsic fragmental pile, mantling a large sodic rhyolite domal complex. The domal complex occurs within predominantly mafic to intermediate lavas and volcaniclastic rocks with low-potash island-arc tholeiitic affinities, representing the basal section of the early Tertiary (Eocene to middle Miocene) Wainimala Group near the southern coast of Viti Levu, Fiji.Lithogeochemical trends identified in analyses of rock chip samples from traverses across the domal complex reflect alteration zoning. Sodium, Ca and Sr are strongly depleted within the quartz-sericite foot-wall alteration zone (Zone I) 200 m below mineralization. Potassium, Rb and weaker Mn, Zn and Co depletion and Cu, Pb and Mg enrichment define clay-sericite (Zone II) and clay carbonate (Zone III) footwall alteration 600 to 1200 m below mineralization. Hanging-wall albite-chlorite-calcite-zeolite alteration (Zone IV) is accompanied by enhanced Zn, Pb, Co, Mn, Sr and Na values.Significant mine-scale lithogeochemical trends obtained from systematic sampling of a mineralized borehole section include K and Rb enrichment in the zone of strongest quartz-sericite alteration associated with mineralization and broad depletion of Mn, Na, Ca and Sr within altered footwall fragmental rocks. Minor Cu, Pb, Zn and Ag enrichment has accompanied low-grade propylitic alteration of hanging-wall rocks up to 50 m above mineralization. Analysis of weathered bedrock samples from traverses above the mineralized borehole section indicates that primary geochemical trends occur in the weathered zone. Outcropping gossan has strongly anomalous Cu (535 ppm-21.5%), Zn (3300 ppm-6.15%), Pb (420–8200 ppm), As (200–7000 ppm) and Hg (33–670 ppm) values.Application of lithogeochemistry as a follow-up exploration method in a tropical area such as Wainaleka was investigated as a possible replacement for ridge, spur and base-of-slope soil sampling techniques. Ridge-top auger samples and creek outcrop samples were collected at approximately 100 m intervals and a density of 70/km2. Elements (including Cu, Pb, Zn, Mn, Rb, Sr, Na, K, Ca and Mg) were selected for analysis because of specific associations with mineralization and alteration, and low analytical costs. Single- and multi-element dispersions effectively outline mineralization and attendant alteration.  相似文献   

2.
The Murgul (Artvin, NE Turkey) massive sulfide deposit is hosted dominantly by Late Cretaceous calc-alkaline to transitional felsic volcanics. The footwall rocks are represented by dacitic flows and pyroclastics, whereas the hanging wall rocks consist of epiclastic rocks, chemical exhalative rocks, gypsum-bearing vitric tuff, purple vitric tuff and dacitic flows. Multi-element variation diagrams of the hanging wall and footwall rocks exhibit similar patterns with considerable enrichment in K, Rb and Ba and depletion in Nb, Sr, Ti and P. The chondrite-normalized rare earth element (REEs) patterns of all the rocks are characterized by pronounced positive/negative Eu anomalies as a result of different degrees of hydrothermal alteration and the semi-protected effects of plagioclase fractionation.Mineralogical results suggest illite, illite/smectite + chlorite ± kaolinite and chlorite in the footwall rocks and illite ± smectite ± kaolinite and chlorite ± illite in the hanging wall rocks. Overall, the alteration pattern is represented by silica, sericite, chlorite and chlorite–carbonate–epidote–sericite and quartz/albite zones. Increments of Ishikawa alteration indexes, resulting from gains in K2O and losses in Na2O and the chlorite–carbonate–pyrite index towards to the center of the stringer zone, indicate the inner parts of the alteration zones. Calculations of the changes in the chemical mass imply a general volume increase in the footwall rocks. Abnormal volume increases are explained by silica and iron enrichments and a total depletion of alkalis in silica zone. Relative K increments are linked to the sericitization of plagioclase and glass shards and the formation of illite/smectite in the sericite zone. In addition, Fe enrichment is always met by pyrite formation accompanied by quartz and chlorite. Illite is favored over chlorite, smectite and kaolinite in the central part of the ore body due to the increase in the (Al + K)/(Na + Ca) ratio. Although the REEs were enriched in the silicification zone, light REEs show depletion in the silicification zone and enrichment in the other zones in contrast to the heavy REEs' behavior. Hydrothermal alteration within the hanging wall rocks, apart from the gypsum-bearing vitric tuffs, is primarily controlled by chloritization with proportional Fe and Mg enrichments and sericitization.The δ18O and δD values of clay minerals systematically change with increasing formation temperature from 6.6 to 8.7‰ and − 42 to − 50‰ for illites, and 8.6 and − 52‰ for chlorite, respectively. The O- and H-stable isotopic data imply that hydrothermal-alteration processes occurred at 253–332 °C for illites and 136 °C for chlorite with a temperature decrease outward from the center of the deposit. The positive δ34S values (20.3 to 20.4‰) for gypsum suggest contributions from seawater sulfate reduced by Fe-oxide/-hydroxide phases within altered volcanic units. Thus, the hydrothermal alteration possibly formed via a dissolution–precipitation mechanism that operated under acidic conditions. The K–Ar dating (73–62 Ma) of the illites indicates an illitization process from the Maastrichtian to Early Danian period.  相似文献   

3.
The Guelb Moghrein copper–gold deposit in the Islamic Republic of Mauritania reopened in 2006 and has produced copper concentrate and gold since then. The deposit is hosted in Neoarchaean–Palaeoproterozoic Fe–Mg carbonate-dominated metamorphic rocks interpreted as carbonate-facies iron formation. It forms tabular orebodies controlled by shear zones in the hanging wall and footwall of this meta-iron formation. Copper and gold are hosted in a complex sulfide ore in tectonic breccia replacing Fe–Mg carbonate and magnetite. Hydrothermal monazite dates the mineralization at 2492 ± 9 Ma. Two types of aqueous fluid inclusions suggest fluid mixing at 0.75–1.80 kbar and ~ 410 °C as the mineralization and precipitation mechanism, which is temporally coincident with regional retrograde metamorphism at 410 ± 30 °C (garnet-biotite). Distal alteration zones are enriched in K, Rb and Cu, whereas orebodies are depleted in K, Rb, Sr and Ba. The copper–gold mineralization at Guelb Moghrein formed during retrograde shearing in metamorphic rocks and contemporaneous hydrothermal alteration. The stable isotope signature of alteration and ore minerals suggest an external crustal fluid source. Fluids were focused in the reactive and competent meta-iron formation. Potassium alteration, magnetite and copper–gold mineralization suggest an IOCG mineral system akin similar deposits in Australia and Brazil.  相似文献   

4.
The Sullivan Pb-Zn-Ag massive sulphide deposit in southeastern British Columbia occurs within middle Proterozoic argillite, siltstone and quartz wacke of the Purcell Group. Rock samples were collected from the hangingwall and footwall of the eastern section of the mine and from outcrop up to 50 km from the Sullivan deposit. The samples were analyzed for Cu, Pb, Zn, S, Mn, Ba, Fe, K, Ca, Na and specific conductance. A stepwise discriminant analysis applied to the analytical data determined the group of variables that differentiate between hangingwall, footwall and outcrop or “Background” samples. Hangingwall and footwall rock samples were most effectively discriminated from “background” rock samples on the basis of specific conductance with Cu, Pb, S, Na, and Ba selected as less efficient discriminators. The variables that discriminate hangingwall from footwall rock samples are Cu, Zn and S. The selection of the discriminating variables in each case can be explained in terms of the chemical changes that occur as a result of host rock alteration and sulphide deposition during the mineralizing event at the Sullivan deposit.Stepwise discriminant analysis was used to reduce a number of potential pathfinder variables to an optimum group of pathfinder variables. These optimum pathfinders represent the variables that most effectively differentiate the host rocks of the Sullivan deposit from rocks outside of the mineralized zone that apparently do not contain massive sulphide mineralization.  相似文献   

5.
范世家  薛伟 《地质论评》2021,67(5):67060010-67060010
本文以焦家断裂带深部上盘发现金矿体的地质事实为依据,将焦家断裂在成矿后对矿体的破坏作用作为讨论重点,根据现今焦家断裂上、下盘金矿体以断层泥为界,有被错断的明显特征,指出发育在焦家断裂主断裂面中的断层泥为成矿后断裂活动的产物。依据上、下盘金矿在矿石类型、围岩蚀变、矿石矿物、成矿阶段等方面具有极为相似一致特征,提出在117.69~121 Ma成矿期,焦家断裂带中的上、下盘蚀变岩型金矿统一形成于深度3~9 km之间成矿期的焦家断裂带中,二者在成矿时具有时、空上的完全统一性。受焦家断裂总体正断层效应影响,现今焦家断裂深部新发现的上盘金矿(化)体应为下盘金矿(化)体被错断的部分。  相似文献   

6.
乌拉根铅锌矿床和萨热克铜矿床是西南天山中新生代盆地最有代表性的两个层控砂砾岩型矿床,乌拉根铅锌矿床产于下白垩统克孜勒苏群第五岩性段(K1kz5)的粗砂质细砾岩中,后期经历了弱的构造改造作用;萨热克铜矿床产于上侏罗统库孜贡苏组上段(J3k2)杂砾岩中,其北矿段后期经历了强烈的构造改造作用,南矿段可见岩浆热液蚀变作用后的褪色化及叠加成矿作用。为了研究成矿流体和岩浆热液在岩石中的运移规律,分别对上述两个矿区以沉积作用、构造改造作用和岩浆作用为主的代表性岩石测定了孔隙度和渗透率。测试结果表明乌拉根矿区岩(矿)石的孔隙度和渗透率总体比萨热克矿区岩石的孔隙度和渗透率要小;乌拉根铅锌矿区和萨热克铜矿区北矿段矿石的孔隙度和渗透率均小于下盘围岩的孔隙度和渗透率;萨热克铜矿区南矿段经历了岩浆热液蚀变,岩石的孔隙度和渗透率明显小于未受岩浆作用的岩石孔隙度和渗透率,且辉绿岩脉下盘岩石的孔隙度和渗透率明显小于上盘。同时通过岩(矿)石组构分析,上述岩(矿)石在成岩和成矿后孔隙度和渗透率的变化均与成矿流体或岩浆热液的作用密切相关。在西南天山中新生代层控型矿床中,当成矿流体沿切层断裂上升后会优先选择孔隙度和渗透率高的岩层进行渗滤、扩散、充填和交代作用。岩石中的砾石砾径越大,砾石间隙越大;岩石的硬度越大,其在后期构造变形中越容易形成构造裂隙,对成矿越有利,这也是造成萨热克铜矿北矿带中的金属硫化物颗粒明显大于乌拉根铅锌矿中金属硫化物的重要原因。上述结果表明沉积盆地中成矿流体或岩浆热液的成矿作用越强,岩石受其影响在成岩成矿后的孔隙度和渗透率越会变小,从岩石的孔隙度和渗透率可间接反映成矿过程中成矿作用的强弱,为寻找富矿体提供理论依据。   相似文献   

7.
An 1800-m-deep borehole into the Nojima fault zone was drilled at Nojima-Hirabayashi, Japan, after the 1995 Hyogo-ken Nanbu (Kobe) earthquake. Three possible fracture zones were detected at depths of about 1140, 1300, and 1800 m. To assess these fracture zones in this recently active fault, we analyzed the distributions of fault rocks, minerals, and chemical elements in these zones. The central fault plane in the shallowest fracture zone was identified by foliated blue-gray gouge at a depth of 1140 m. The degree of fracturing was evidently greater in the hanging wall than in the footwall. Minerals detected in this zone were quartz, orthoclase, plagioclase, and biotite, as in the parent rock (granodiorite), and also kaolinite, smectite, laumontite, stilbite, calcite, ankerite, and siderite, which are related to hydrothermal alteration. Biotite was absent in both the hanging wall and footwall across the central fault plane, but it was absent over a greater distance from the central fault plane in the hanging wall than in the footwall. Major element compositions across this zone suggested that hydrothermal alteration minerals such as kaolinite and smectite occurred across the central fault plane for a greater distance in the hanging wall than in the footwall. Similarly, H2O+ and CO2 had higher concentrations in the hanging wall than in the footwall. This asymmetrical distribution pattern is probably due to the greater degree of wall–rock fracturing and associated alteration in the hanging wall. We attributed the characteristics of this zone to fault activity and fluid–rock interactions. We analyzed the other fracture zones along this fault in the same way. In the fracture zone at about 1300 m depth, we detected the same kinds of hydrothermal alteration minerals as in the shallower zone, but they were in fewer samples. We detected relatively little H2O+ and CO2, and little evidence for movement of the major chemical elements, indicating little past fluid–rock interaction. In the fracture zone at about 1800 m depth, H2O+ and CO2 were very enriched throughout the interval, as in the fracture zone at about 1140 m depth. However, smectite was absent and chlorite was present, indicating the occurrence of chloritization, which requires a temperature of more than 200 °C. Only smectite can form under the present conditions in these fracture zones. The chloritization probably occurred in the past when the fracture zone was deeper than it is now. These observations suggest that among the three fracture zones, that at about 1140 m depth was the most activated at the time of the 1995 Hyogo-ken Nanbu (Kobe) earthquake.  相似文献   

8.
Abstract: Tizapa volcanogenic massive sulfide (VMS) deposit is hosted in greenschist facies metamorphic rocks; footwall is green schist of felsic to mafic metavolcanic rocks and hanging wall is graphite schist of metasedmentary pelitic rock. Pb-Pb dating of ore samples indicates 103. 4Ma to 156. 3Ma for the age of mineralization (JICA/MMAJ, 1991).  相似文献   

9.
从矿床地球化学特征入手,对下金宝矿体矿石、矿体围岩的常量元素、稀土元素和微量元素特征进行探讨。结果表明:下金宝岩体的花岗斑岩类岩石属于硅酸过饱和类钙碱性过铝质岩石,属于A型花岗岩,且K、Nd、Hf、Th、Rb相对富集,而亏损Ta、Nb、Sr和Ti,说明其岩浆并非单纯来源于上地幔,在岩浆上升过程可能受到了地壳物质的混染;结合下金宝金矿床的控矿因素、蚀变分带特征、岩体地球化学特征、矿石结构构造、围岩蚀变、成矿温度,得出斑岩体是区内成矿的必要因素,下金宝金矿床应是以次火山热液作用为主的斑岩型金矿床。  相似文献   

10.
范世家  薛伟 《地质论评》2022,68(1):167-180
本文以焦家断裂带深部上盘发现金矿体的地质事实为依据,将焦家断裂在成矿后对矿体的破坏作用作为讨论重点,根据现今焦家断裂上、下盘金矿体以断层泥为界,有被错断的明显特征,指出发育在焦家断裂主断裂面中的断层泥为成矿后断裂活动的产物.依据上、下盘金矿在矿石类型、围岩蚀变、矿石矿物、成矿阶段等方面具有极为相似一致特征,提出在117...  相似文献   

11.
Structural and geochemical patterns of heterogeneously deformed diamictite in northern Utah (USA) record interrelations between strain accumulation, fluid–rock interaction, and softening processes across a major fault (Willard thrust). Different clast types in the diamictite have varying shape fabrics related to competence contrasts with estimated effective viscosity ratios relative to micaceous matrix of: ∼6 and 8 for large quartzite clasts respectively in the Willard hanging wall and footwall; ∼5 and 2 for less altered and more altered granitic clasts respectively in the hanging wall and footwall; and ∼1 for micaceous clasts that approximate matrix strain. Within the footwall, matrix XZ strain ratios increase from ∼2 to 8 westward along a distinct deformation gradient. Microstructures record widespread mass transfer, alteration of feldspar to mica, and dislocation creep of quartz within matrix and clasts. Fluid influx along microcracks and mesoscopic vein networks increased westward and led to reaction softening and hydrolytic weakening, in conjunction with textural softening from alignment of muscovite aggregates. Consistent Si, Al, and Ti concentrations between matrix, granitic clasts, and protoliths indicate limited volume change. Mg gain and Na loss reflect alteration of feldspar to phengitic muscovite. Within the hanging wall, strain is overall lower with matrix XZ strain ratios of ∼2 to 4. Microstructures record mass transfer and dislocation creep concentrated in the matrix. Greater Al and Ti concentrations and lower Si concentrations in matrix indicate volume loss by quartz dissolution. Na gain in granitic clasts reflects albitization. Large granitic clasts have less mica alteration and greater competence compared to smaller clasts. Differences in strain and alteration patterns across the Willard thrust fault suggest overall downward (up-temperature) fluid flow in the hanging wall and upward (down-temperature) fluid flow in the footwall.  相似文献   

12.
以沙坪沟钼矿主要的赋矿岩石——石英正长岩和花岗斑岩为对象,通过对比不同蚀变强度岩石的岩相学、岩石地球化学和同位素特征,研究该矿床的钾质交代作用-矿化特征,探讨不同热液蚀变的元素组合、蚀变过程中的元素迁移和Sr-Nd同位素的变化及其成因、不同蚀变的物理化学条件差异及其与矿化的关系,进而揭示蚀变-成矿热液流体的特征和起源。研究表明,石英正长岩和花岗斑岩的地球化学特征总体相似,显示其属同源岩浆演化产物,二者均受到钾质蚀变,但蚀变强度相差较大。钾质蚀变岩石的化学成分表现为高K_2O、Rb和低Na_2O、CaO、Sr、Ba,不同蚀变强度的岩石Rb/Sr和Sr同位素组成差别较大,花岗斑岩样品数据更显离散,甚至出现异常低的锶同位素初始值,表明热液蚀变强烈改造了Rb-Sr同位素体系,而Sm-Nd体系基本保持稳定。这一现象在东秦岭-大别钼矿带中典型的斑岩钼矿床也有出现,显示该成矿带具有相似的蚀变类型、热液起源和演化特征。而且钾长石化后期至黄铁云(绢)英岩化阶段也是最主要的钼成矿期,表明这期间流体系统pH值的降低致使Mo元素从流体中沉淀成矿。对比斑岩铜、铜-钼矿床和钼矿床的蚀变特征及其过程中元素和同位素的变化可以发现,这3种矿床均发育碱质交代作用,但蚀变强度、热液的Rb-Sr分异程度及其对原岩的改造程度存在较大差异,这暗示了各自特有的成岩、成矿物质和流体来源及大地构造背景。  相似文献   

13.
胶东玲珑金矿田煌斑岩蚀变过程元素迁移行为及其意义   总被引:4,自引:1,他引:3  
胶东矿集区内普遍发育煌斑岩脉,对煌斑岩的热液蚀变现象进行研究可以揭示蚀变流体的地球化学特性。对玲珑金矿田两处新鲜与蚀变煌斑岩进行了56项氧化物和微量元素分析,结果发现玲珑金矿田的煌斑岩为富钾煌斑岩,稀土元素在煌斑岩蚀变过程中未发生明显分异现象。确定煌斑岩蚀变过程中的不活动元素可以采用坪台法,其优点在于克服了等浓度图解法中拟合过原点直线的技术缺陷。质量平衡计算法与元素含量比值法的本质区别在于二者相差一比例系数,即蚀变岩与原岩的质量比率,元素含量比值法可视为质量平衡计算法在岩石轻微蚀变时的一个特例。玲珑金矿田的煌斑岩与金矿成矿流体具有相同的构造通道,引起煌斑岩蚀变的这期金矿成矿流体富K2O、Rb、Be、Ba、W、Pb、Zn、Sb、B、Mn、Ta,贫Na2O、CaO、MgO、Sr等元素,可选取W、Pb、Zn、Sb、B、Be、Rb、Ba为该区金矿的成矿指示元素。  相似文献   

14.
At Avoca, Eire, Kuroko-like sulfide mineralization comprising massive stratiform cupriferous pyrite, accompanied by hanging-wall galena-sphalerite mineralization and footwall stringer pyrite, is hosted by Ordovician sediments, calc-alkaline lavas and pyroclastics. The sequence has been subjected to low-grade regional metamorphism, isoclinal folding and thrusting. The surficial cover comprises nonexotic glacial drift some 2 m thick. Previous work has demonstrated that major-element lithogeochemistry reflects the wall-rock alteration associated with the mineralization, but these signatures are absent from the overlying till. There is a poor heavy metal-expression at surface of the concealed mineralization.Analysis of wall rock, basal till and surface till samples for the chalcophile pathfinder elements As, Sb, Bi and Se (by rapid techniques which involve the introduction of their volatile hydrides into an inductively coupled plasma emission spectrometer) shows that a primary zonation of these elements around the mineralization can, in part, be traced to surface. In wall rocks, Bi enrichment is associated with the massive pyrite and footwall mineralization, Sb and Se anomalies occur in the hanging wall, and an As halo extends across all three types of mineralization. At surface, Bi and As anomalies are found over the massive pyrite and footwall zones, and an Sb anomaly occurs above the hanging-wall mineralization. The development of these patterns is attributed to mainly hydromorphic dispersion.The primary and surficial dispersion patterns of the chalcophile pathfinders should prove useful in exploration for other examples of Kuroko-type mineralization. The determination of these elements in geochemical exploration can be carried out quickly and cost-effectively.  相似文献   

15.
内蒙古乌努格吐山斑岩型铜钼矿床元素迁移定量探讨   总被引:2,自引:0,他引:2  
元素的富集贫化是矿床中固有的客观规律。在以往相关研究中, 研究者们多从定性的角度对此进行讨论, 定量研究不够系统。本文以内蒙古乌努格吐山斑岩型铜钼矿床为例, 利用Grant方程, 定量探讨了该矿床蚀变围岩中元素的带入、带出特征。结果表明, 不同元素的质量迁移在矿化蚀变范围内表现出一定的规律性, 相对于原岩而言, 各蚀变带中Cu、Mo、Au、Ag、W、Sn、As、F、Hg、S等表现为明显的带入特征, 而CaO、Na2O、TiO2、Zr、Ba、Sr、Rb和REE则表现为明显的带出特征。这些元素的带入带出导致矿床及蚀变围岩中元素的富集贫化。元素质量迁移定量计算思路和方法, 为地球化学勘查向定量化方向发展提供了可行的途径。  相似文献   

16.
A multi-element geochemical study of the wall rocks of intermediate to felsic volcanic-hosted massive sulfide deposits was carried out to identify pathfinder elements which significantly enlarge the size of exploration targets. Drill core samples from the Crandon massive sulfide deposit in Wisconsin, and outcrop samples from the United Verde and Iron King deposits in Arizona, and from the Captains Flat, Mt. Costigan, and Wiseman Creek deposits in New South Wales, Australia were analyzed. Because anomalously high fluorine values have been described in several volcanic-hosted ore systems, fluorine was included in the study.All of the above deposits have patterns of fluorine enrichment around ore. Drill core samples from two noneconomic prospects within ten miles of the Crandon deposit contain background to only weakly anomalous fluorine values.At the large Crandon deposit (> 50 million tons of zinc, copper ore), fluorine enrichment extends approximately 320 m into the footwall rocks and at least 220 m into the hanging wall rocks. At the large United Verde deposit (> 50 million tons of copper, zinc ore), fluorine enrichment is recognizable in the footwall rocks at least 650 m from the ore. At the smaller Iron King deposit (five million tons production of zinc, lead, copper ore), fluorine enrichment extends for a distance of approximately 60 m into the footwall rocks. At the small deposits in New South Wales (< five million tons production of zinc, lead, copper ore), fluorine enrichment is easily recognizable, but with the samples collected, the limits of the anomalous patterns cannot be defined.Fluorine occurs in some hydrothermal systems unassociated with mineralization and is therefore not a specific signature of ore-forming processes. From the work completed, many massive sulfide deposits in volcanic rocks occur in hydrothermal systems which contain fluorine. On the basis of the data presented, if anomalously high fluorine values do exist in an exploration search area, the chances of finding a massive sulfide ore deposit are improved.Genetic models for volcanic-hosted massive sulfide ore deposits have concentrated on rock textures, alteration mineralogy, and geochemistry of the ore metals. From the data presented, fluorine should be considered as a component of massive sulfide systems in intermediate to felsic volcanic rocks, and should be considered as a possible complexing agent for the ore metals.  相似文献   

17.
This whole rock and silicate mineral study focuses on the genesis of the Merensky reef sequence, as well as the footwall and hanging wall norites at an area of Rustenburg Platinum Mines in a demonstrably normal (undisturbed) environment. Continuous sampling provides major and trace element variations and mineral compositions and allows an evaluation of the post- liquidus processes which affected the sequence. Following the formation of liquidus phases three stages are envisaged to have modified the rocks. These are (a) migration of fluid during early compaction of cumulates, (b) circulation of fluids within the crystal mush, and (c) reaction and solidification of trapped liquid. Liquidus compositions are nowhere preserved in the sequence. A strong link is demonstrated between orthopyroxene compositions (e.g. Mg# and TiO2) and the incompatible trace element content of the whole rocks. The final amount of trapped liquid is shown to have been variable but never exceeded 10%. Calculated liquidus (pre-equilibration) orthopyroxene compositions show an up- sequence progression of evolving compositions from the footwall norite to the hanging wall norite. Initial Sr isotopic values do not support a simple magma mixing model by which radiogenic Main Zone magma mixes with that of the Critical Zone at the level of the Merensky reef. There is evidence that the hanging wall norite formed from a much more evolved magma. These conclusions have implications for the distribution and origin of the PGE-enriched Merensky reef package. Received: 7 October 1998 / Accepted: 5 March 1999  相似文献   

18.
治岭头金矿位于浙江省遂昌县,是我国东南沿海的一座大型金矿床。该矿床围岩蚀变发育,类型有硅化、绢云母化、绿泥石化、黄铁矿化、方解石化和菱锰矿化。从矿体到围岩可以划分为4个蚀变带:强硅化带、弱硅化-黄铁绢英岩化带、绢云母化带和绿泥石化带。沿矿体走向,蚀变强度整体上呈波动性变化,与矿体呈透镜状产出特征一致。硅化、黄铁矿化、菱锰矿化与金矿化关系最密切,而且这些蚀变具有相似的变化趋势。绢云母化和绿泥石化与硅化的变化趋势不同,且与矿化关系不密切。另外,矿区还发育方解石化,且强度较弱。金矿化及围岩蚀变均发育在古元古界八都群变质岩中,未进入上覆中生代火山岩盖层,证明治岭头金矿成矿作用与中生代火山活动无关。定量计算结果显示:蚀变过程中Al_2O_3、TiO_2、P_2O_5为惰性组分;SiO_2、CaO、MnO、Au、Ag、Cu、Pb、Zn等为明显带入组分;Fe_2O_3、FeO、MgO、K_2O、Na_2O、Ba、Sr等为明显带出组分。根据围岩蚀变和稳定同位素分析,推断治岭头金矿原始成矿热液流体应是富含Si、Ca、Mn、Au、Ag、Cu、Pb、Zn等组分的岩浆热液,后期有大气降水的加入。  相似文献   

19.
The Dashui gold deposit is a structurally controlled, Carlin-type gold deposit hosted by recrystallised limestone in the West Qinling Orogen of Central China. The major, structurally late east-trending Dashui Fault forms the hanging wall to the gold mineralisation at the Dashui mine and defines the contact between Middle Triassic limestone and a steeply dipping overlying succession of Middle Triassic argillaceous limestone, dolomite, and sandstone. Multiple carbonate veins and large-scale supergene enrichment, represented by hematite, goethite, limonite and jarosite, characterise the deposit. Detailed geochronological investigation using zircon SHRIMP U-Pb dating reveals that volcanic rocks closely associated with the Dashui gold deposit were synchronous with the Ge’erkuohe Granite and pre-date mineralisation. The igneous dyke sample from the hanging wall has the same U-Pb zircon age as the footwall, ca. 213 Ma. (U-Th)/He thermochronology on dykes in the hanging wall and footwall of the Dashui Fault yields identical (U-Th)/He zircon ages of ca. 210 Ma but distinct (U-Th)/He apatite ages of ca. 136 and 211 Ma, respectively. Therefore, the hanging wall and footwall are interpreted as having distinct post-mineralisation exhumation histories. Reverse fault movement exhumed the hanging wall ~2 to 4 km since the Late Triassic with the main component of faulting taking place between the Late Triassic and Early Cretaceous. These relationships suggest a Late Triassic to Early Cretaceous age for the primary gold mineralisation at the Dashui gold deposit, with the corollary that any ‘missing portion’ of the deposit, previously hypothesised to exist in the hanging wall of the Dashui Fault, has been eroded away. The mineralisation in the footwall may have been supergene enriched soon after the primary mineralisation was emplaced, because it has been located at shallow depth since the Late Triassic. Semi-quantitative results obtained in this study also constrain the maximum depth of formation of the Dashui gold at no more than 2 km.  相似文献   

20.
The Western Tharsis disseminated Cu–Au orebody, which occurs within the Cambrian Mt Read Volcanics of Western Tasmania, is surrounded by a pyritic halo that extends 100–200 m stratigraphically above and below the ore zone. Although this halo extends laterally along the same stratigraphic position to the south, it probably closes off to the north based on limited surface and drill hole data. The ore zone is characterized by extreme enrichment (the enrichments and depletions referred to herein are relative to background; these have not been established using mass balance techniques) in As, Bi, Ce, Cu, Mo, Ni, S and Se; with the exception of Mo, these elements are also enriched, but at a much lower level, in the pyrite halo.Pronounced depletion in K, Cs and Mg occurs in 20–30 m wide stratiform zones that flank the orebody on both sides within the pyritic halo. These anomalies and depletions in Be, Ga, Rb, Y, MREE and HREE are associated with a pyrophyllite-bearing alteration zone that wraps around the main pyrite–chalcopyrite-bearing ore zone. This zone is also characterized by positive Eu anomalies which persist up to 150 m both into the hanging wall and footwall of the orebody. The depletion of these elements is consistent with the advanced argillic alteration assemblage developed about acid-sulfate Cu–Au deposits.The pyrite halo is surrounded by a peripheral carbonate halo which is highly enriched in C, CaO and MnO, and weakly enriched in Zn and Tl. Zinc and Tl are most enriched in the upper 100–150 m of the stratigraphically lower halo. In the stratigraphically upper halo, Zn and Tl values are anomalously high but erratic.Barium and Sr enrichment, although mainly restricted to the pyrite halo, extends into the stratigraphically lower carbonate halo by up to 100 m. A Na depletion anomaly extends from 150 m below the orebody and to at least the Owen contact (i.e. ≥400 m)in the hanging wall.The dispersion patterns observed at Western Tharsis are quite unlike those of Zn–Pb-rich volcanic-hosted massive sulfide (VHMS) deposits in western Tasmania. Rather, the dispersion patterns observed at Western Tharsis are more akin to those surrounding porphyry Cu deposits and related acid-sulfate Cu–Au deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号