首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
利用新方法制作出含可控裂缝的双孔隙人工砂岩物理模型,具有与天然岩石更为接近的矿物成分、孔隙结构和胶结方式,其中裂缝密度、裂缝尺寸和裂缝张开度等裂缝参数可以控制以得到实验所需要的裂缝参数,岩样具有真实的孔隙和裂缝空间并可以在不同饱和流体状态下研究流体性质对于裂缝介质性质的影响.本次实验制作出一组具有不同裂缝密度的含裂缝人工岩样,对岩样利用SEM扫描电镜分析可以看到真实的孔隙结构和符合我们要求的裂缝参数,岩样被加工成八面棱柱以测量不同方向上弹性波传播的速度,用0.5 MHz的换能器使用透射法测量在饱和空气和饱和水条件下各个样品不同方向上的纵横波速度,并得出纵横波速度、横波分裂系数和纵横波各向异性强度受裂缝密度和饱和流体的影响.研究发现流体对于纵波速度和纵波各向异性强度的影响较强,而横波速度、横波分裂系数和横波各向异性强度受饱和流体的影响不大,但是对裂缝密度的变化更敏感.  相似文献   

2.
采用有限元分析软件ANSYS对裂缝的双侧向测井视电阻率与裂缝孔隙度、泥浆电阻率、裂缝倾角和基岩电阻率的关系进行了计算. 在大量正演数据的基础上得出双侧向测井响应反演公式和裂缝孔隙度计算公式,提出更为精细的裂缝倾角的弹性划分模型,用双侧向视电阻率值近似估算裂缝倾角的方法,提高了利用双侧向测井求裂缝产状与裂缝孔隙度(裂缝宽度)的精度.  相似文献   

3.
Underground fractures play an important role in the storage and movement of hydrocarbon fluid. Fracture rock physics has been the useful bridge between fracture parameters and seismic response. In this paper, we aim to use seismic data to predict subsurface fractures based on rock physics. We begin with the construction of fracture rock physics model. Using the model, we may estimate P-wave velocity, S-wave velocity and fracture rock physics parameters. Then we derive a new approximate formula for the analysis of the relationship between fracture rock physics parameters and seismic response, and we also propose the method which uses seismic data to invert the elastic and rock physics parameters of fractured rock. We end with the method verification, which includes using well-logging data to confirm the reliability of fracture rock physics effective model and utilizing real seismic data to validate the applicability of the inversion method. Tests show that the fracture rock physics effective model may be used to estimate velocities and fracture rock physics parameters reliably, and the inversion method is resultful even when the seismic data is added with random noise. Real data test also indicates the inversion method can be applied into the estimation of the elastic and fracture weaknesses parameters in the target area.  相似文献   

4.
基于贝叶斯线性AVAZ的TTI介质裂缝参数反演   总被引:2,自引:0,他引:2       下载免费PDF全文
裂缝储层岩石物理参数的准确获得对地下裂缝预测具有重要意义,而叠前方位AVA地震反演是获得裂缝岩石物理参数的有效手段.假设地下岩石为倾斜横向各向同性(TTI)介质,本文从裂缝岩石物理等效模型的构建出发,从测井数据中估计出纵横波相对反射系数和裂缝柔度参数.通过推导含裂缝柔度的方位各向异性反射系数公式,基于贝叶斯反演框架建立了P波线性AVAZ反演方法.合成地震数据应用表明基于贝叶斯理论的TTI介质裂缝柔度反演方法具有一定抗噪性,可以降低裂缝柔度估测的不确定性,为地下裂缝预测提供有力的依据.  相似文献   

5.
结合有限差分方法和等效介质理论,模拟了离散分布裂缝介质中地震波的传播. 基于等效介质理论,利用二维有限差分实现封闭裂缝的离散分布;裂缝可以处理成固体岩石中的高度柔性界面,并可以用线性滑动或者位移间断模型进行裂缝的物理描述. 对于含有多组裂隙的破裂固体,其有效柔度可以认为是固体骨架背景柔度和裂缝附加柔度之和. 在一阶近似条件下,固体骨架和裂缝参数可以通过有效各向异性系数联系起来,有效各向异性系数决定了各向异性(裂缝效应)对于地震波传播的影响. 通过与射线理论方法的对比检验,说明本文提出的模拟方法的有效性,并通过几个数值算例说明本方法可有效模拟不同的裂缝分布效应. 结果表明,即使在裂缝密度很小的情况下,具有相同裂缝密度的不同的空间分布可以产生不同的波场特征. 同时,也验证了不同裂缝尺度对波长的不同影响,以及裂缝尺度具有幂率分布(分形)时,尺度对波场的影响. 最后得出结论:在运用建立在等效介质理论基础上的地震各向异性概念来描述裂缝固体的特征时,要倍加小心,等效介质理论中尚未合理处理的裂缝尺度和空间分布对波的传播特征具有重要的影响.  相似文献   

6.
Fluid identification in fractured reservoirs is a challenging issue and has drawn increasing attentions. As aligned fractures in subsurface formations can induce anisotropy, we must choose parameters independent with azimuths to characterize fractures and fluid effects such as anisotropy parameters for fractured reservoirs. Anisotropy is often frequency dependent due to wave-induced fluid flow between pores and fractures. This property is conducive for identifying fluid type using azimuthal seismic data in fractured reservoirs. Through the numerical simulation based on Chapman model, we choose the P-wave anisotropy parameter dispersion gradient (PADG) as the new fluid factor. PADG is dependent both on average fracture radius and fluid type but independent on azimuths. When the aligned fractures in the reservoir are meter-scaled, gas-bearing layer could be accurately identified using PADG attribute. The reflection coefficient formula for horizontal transverse isotropy media by Rüger is reformulated and simplified according to frequency and the target function for inverting PADG based on frequency-dependent amplitude versus azimuth is derived. A spectral decomposition method combining Orthogonal Matching Pursuit and Wigner–Ville distribution is used to prepare the frequency-division data. Through application to synthetic data and real seismic data, the results suggest that the method is useful for gas identification in reservoirs with meter-scaled fractures using high-qualified seismic data.  相似文献   

7.
Fractured rock is often modelled under the assumption of perfect fluid pressure equalization between the fractures and equant porosity. This is consistent with laboratory estimates of the characteristic squirt-flow frequency. However, these laboratory measurements are carried out on rock samples which do not contain large fractures. We consider coupled fluid motion on two scales: the grain scale which controls behaviour in laboratory experiments and the fracture scale. Our approach reproduces generally accepted results in the low- and high-frequency limits. Even under the assumption of a high squirt-flow frequency, we find that frequency-dependent anisotropy can occur in the seismic frequency band when larger fractures are present. Shear-wave splitting becomes dependent on frequency, with the size of the fractures playing a controlling role in the relationship. Strong anisotropic attenuation can occur in the seismic frequency band. The magnitude of the frequency dependence is influenced strongly by the extent of equant porosity. With these results, it becomes possible in principle to distinguish between fracture- and microcrack-induced anisotropy, or more ambitiously to measure a characteristic fracture length from seismic data.  相似文献   

8.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

9.
《水文科学杂志》2013,58(6):1125-1138
Abstract

Type curves are derived analytically for radial flow in rough horizontal fractures toward a well. The basic assumptions are that there is no turbulent flow near the borehole and the well storage is ignored. The basis of the methodology is to write explicit expressions for the continuity and cubic law flow equations, which are combined using a Boltzmann transformation leading to a simple ordinary differential equation for groundwater movement. Solutions are presented as a set of type curves for different fracture apertures. It is observed that the solutions provide a method of uniquely identifying fracture hydraulic parameters when the fracture is smooth, but pose ambiguity for rough fracture parameter estimations. However, large time portions of these type curves appear as straight lines on semi-logarithmic paper, which provides a unique way for rough fracture parameter determination. Identification of the fracture parameters, namely, the aperture and relative roughness, is possible in a unique manner with the use of these lines and the dimensionless time drawdown concept. The cubic law is the asymptotic behaviour, either for large times or large fracture apertures. Prior to this asymptotic part, there is a non-cubic portion which gives rise to systematic deviations from the cubic law. The technique presented is useful, especially for evaluating pumping tests from a single major fracture isolated by packers.  相似文献   

10.
为了解决各向异性下的流体识别问题,将纵波各向异性裂缝预测以及Russell的流体因子融合到直角坐标系中,提出了一种能够同时检测裂缝发育情况以及流体性质的新的裂缝流体因子(Factor of Fluid-filled Fracture,FFF),并通过一组岩性参数检验了裂缝流体因子在裂缝预测及流体识别中的有效性.在理论研究的基础上,选取松辽盆地某地区的火成岩裂缝及流体识别研究为应用实例.通过与测井流体及裂缝信息的对比验证,裂缝流体因子能够较为准确地预测研究区裂缝和流体的分布情况,且裂缝流体因子在单井上的计算结果与单井含气饱和度吻合度较高.此外,根据实际应用效果,指出裂缝流体因子在应用中的局限性:裂缝流体因子在平面成图时受地层厚度影响较大,且无法预测裂缝方向.  相似文献   

11.
In this study, a numerical manifold method (NMM) model is developed to analyze flow in porous media with discrete fractures in a non-conforming mesh. This new model is based on a two-cover-mesh system with a uniform triangular mathematical mesh and boundary/fracture-divided physical covers, where local independent cover functions are defined. The overlapping parts of the physical covers are elements where the global approximation is defined by the weighted average of the physical cover functions. The mesh is generated by a tree-cutting algorithm. A new model that does not introduce additional degrees of freedom (DOF) for fractures was developed for fluid flow in fractures. The fracture surfaces that belong to different physical covers are used to represent fracture flow in the direction of the fractures. In the direction normal to the fractures, the fracture surfaces are regarded as Dirichlet boundaries to exchange fluxes with the rock matrix. Furthermore, fractures that intersect with Dirichlet or Neumann boundaries are considered. Simulation examples are designed to verify the efficiency of the tree-cutting algorithm, the calculation's independency from the mesh orientation, and accuracy when modeling porous media that contain fractures with multiple intersections and different orientations. The simulation results show good agreement with available analytical solutions. Finally, the model is applied to cases that involve nine intersecting fractures and a complex network of 100 fractures, both of which achieve reasonable results. The new model is very practical for modeling flow in fractured porous media, even for a geometrically complex fracture network with large hydraulic conductivity contrasts between fractures and the matrix.  相似文献   

12.
— A numerical fracture flow simulation based on the lubrication approximation is used to investigate the influence of roughness on the flow inside a rough fracture, at low Reynolds number. Facing surfaces are described as self-affine topographies with identical roughness magnitude. Resolution of the Reynolds equation is achieved using two distinct numerical schemes, with consistency. Fracture closure is studied assuming perfect plastic contact between facing surfaces. Long-range correlations are shown to exist in the local aperture field due to the fracture geometry and subsequently in the local fluxes inside the fracture. Flow channeling is the result of these correlations in terms of spatial distribution of the flow, and is responsible for either flow-enhancing or flow-inhibiting behavior of the fracture. Matching between the two surfaces at scales larger than a mismatch scale is studied. The mismatch scale is the upper limit scale for the local apertures scale invariance. It appears to control flow channeling and the related dispersion of the possible behaviors over a large statistics of fractures with identical statistical features. Hydraulic anisotropy of a given fracture is investigated: the dependence of the fracture transmittivity on the pressure drop orientation is proved to be sinusoidal, with an amplitude that is controlled by the mismatch scale.  相似文献   

13.
Although it is believed that natural fracture sets predominantly have near‐vertical orientation, oblique stresses and some other mechanisms may tilt fractures away from the vertical. Here, we examine an effective medium produced by a single system of obliquely dipping rotationally invariant fractures embedded in a transversely isotropic with a vertical symmetry axis (VTI) background rock. This model is monoclinic with a vertical symmetry plane that coincides with the dip plane of the fractures. Multicomponent seismic data acquired over such a medium possess several distinct features that make it possible to estimate the fracture orientation. For example, the vertically propagating fast shear wave (and the fast converted PS‐wave) is typically polarized in the direction of the fracture strike. The normal‐moveout (NMO) ellipses of horizontal reflection events are co‐orientated with the dip and strike directions of the fractures, which provides an independent estimate of the fracture azimuth. However, the polarization vector of the slow shear wave at vertical incidence does not lie in the horizontal plane – an unusual phenomenon that can be used to evaluate fracture dip. Also, for oblique fractures the shear‐wave splitting coefficient at vertical incidence becomes dependent on fracture infill (saturation). A complete medium‐characterization procedure includes estimating the fracture compliances and orientation (dip and azimuth), as well as the Thomsen parameters of the VTI background. We demonstrate that both the fracture and background parameters can be obtained from multicomponent wide‐azimuth data using the vertical velocities and NMO ellipses of PP‐waves and two split SS‐waves (or the traveltimes of PS‐waves) reflected from horizontal interfaces. Numerical tests corroborate the accuracy and stability of the inversion algorithm based on the exact expressions for the vertical and NMO velocities.  相似文献   

14.
Measurements of seismic anisotropy in fractured rock are used at present to deduce information about the fracture orientation and the spatial distribution of fracture intensity. Analysis of the data is based upon equivalent-medium theories that describe the elastic response of a rock containing cracks or fractures in the long-wavelength limit. Conventional models assume frequency independence and cannot distinguish between microcracks and macrofractures. The latter, however, control the fluid flow in many subsurface reservoirs. Therefore, the fracture size is essential information for reservoir engineers. In this study we apply a new equivalent-medium theory that models frequency-dependent anisotropy and is sensitive to the length scale of fractures. The model considers velocity dispersion and attenuation due to a squirt-flow mechanism at two different scales: the grain scale (microcracks and equant matrix porosity) and formation-scale fractures. The theory is first tested and calibrated against published laboratory data. Then we present the analysis and modelling of frequency-dependent shear-wave splitting in multicomponent VSP data from a tight gas reservoir. We invert for fracture density and fracture size from the frequency dependence of the time delay between split shear waves. The derived fracture length matches independent observations from borehole data.  相似文献   

15.
A theoretical method is proposed to estimate post‐fracturing fracture size and transmissivity, and as a test of the methodology, data collected from two wells were used for verification. This method can be employed before hydrofracturing in order to obtain estimates of the potential hydraulic benefits of hydraulic fracturing. Five different pumping test analysis methods were used to evaluate the well hydraulic data. The most effective methods were the Papadopulos‐Cooper model (1967), which includes wellbore storage effects, and the Gringarten‐Ramey model (1974), known as the single horizontal fracture model. The hydraulic parameters resulting from fitting these models to the field data revealed that as a result of hydraulic fracturing, the transmissivity increased more than 46 times in one well and increased 285 times in the other well. The model developed by dos Santos (2008) , which considers horizontal radial fracture propagation from the hydraulically fractured well, was used to estimate potential fracture geometry after hydrofracturing. For the two studied wells, their fractures could have propagated to distances of almost 175 m or more and developed maximum apertures of about 2.20 mm and hydraulic apertures close to 0.30 mm. Fracturing at this site appears to have expanded and propagated existing fractures and not created new fractures. Hydraulic apertures calculated from pumping test analyses closely matched the results obtained from the hydraulic fracturing model. As a result of this model, post‐fracturing geometry and resulting post‐fracturing well yield can be estimated before the actual hydrofracturing.  相似文献   

16.
A conceptual model for describing effective saturation in fractured hard rock is presented. The fracture network and the rock matrix are considered as an equivalent continuum medium where each fracture is conceptualized as a porous medium of granular structure and the rock matrix is assumed to be impermeable. The proposed model is based on the representation of a rough‐walled fracture by an equivalent porous medium, which is described using classical constitutive models. A simple closed‐form equation for the effective saturation is obtained when the van Genuchten model is used to describe saturation inside fractures and fractal laws are assumed for both aperture and number of fractures. The relative hydraulic conductivity for the fractured rock is predicted from a simple relation derived by Liu and Bodvarsson. The proposed constitutive model contains three independent parameters, which may be obtained by fitting the proposed effective saturation curve to experimental data. Two of the model parameters have physical meaning and can be identified with the reciprocal of the air entry pressure values in the fractures of minimum and maximum apertures. Effective saturation and relative hydraulic conductivity curves match fairly well the simulated constitutive relations obtained by Liu and Bodvarsson. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Computed tomography scan imaging techniques have been used on core samples to investigate the effect of natural open fractures on reservoir flow in the Snøhvit Gas Condensate Field. Firstly, computed tomography (CT) scanning was used to describe the 3D geometrical properties of the fracture network including orientation and fracture density. Two types of fractures were observed: F1 fractures are short and stylolite related and F2 fractures are longer, cross-cutting the core and without any obvious relationship to stylolites. Secondly, monitoring of single and two phase flow experiments on samples containing these two types of natural open fractures was performed under 10 and 80 bar net confining pressure while using CT scanning. 1-phase miscible flooding experiment shows approximately 3 times higher flooding velocity in an open F2 fracture than in the matrix. 2-phase flooding by gas injection into a 100% water saturated core gave early gas breakthrough due to flow in the fracture and thereafter very little water production. The flow experiments showed that the presence of open fractures has a significant local effect on fluid flow even in a case with relatively high matrix porosity (200–300 mD). The sample containing F1 fractures showed a complex flow pattern influenced both by open fractures and stylolites. The CT scan data enables an exact representation of the fracture network in core scale simulation models and therefore improves the understanding of fracture influence on flow in a fractured porous medium. CT scanning of core samples provides an effective tool for integrating geology and fluid flow properties of a porous fractured medium.  相似文献   

18.
Fluid flow in fractured rock is an increasingly central issue in recovering water and hydrocarbon supplies and geothermal energy, in predicting flow of pollutants underground, in engineering structures, and in understanding large-scale crustal behaviour. Conventional wisdom assumes that fluids prefer to flow along fractures oriented parallel or nearly parallel to modern-day maximum horizontal compressive stress, or SHmax. The reasoning is that these fractures have the lowest normal stresses across them and therefore provide the least resistance to flow. For example, this view governs how geophysicists design and interpret seismic experiments to probe fracture fluid pathways in the deep subsurface. Contrary to these widely held views, here we use core, stress measurement, and fluid flow data to show that SHmax does not necessarily coincide with the direction of open natural fractures in the subsurface (>3 km depth). Consequently, in situ stress direction cannot be considered to predict or control the direction of maximum permeability in rock. Where effective stress is compressive and fractures are expected to be closed, chemical alteration dictates location of open conduits, either preserving or destroying fracture flow pathways no matter their orientation.  相似文献   

19.
裂缝储层岩石物理参数的准确获得对地下裂缝预测具有重要意义,而叠前地震反演是获得裂缝岩石物理参数的有效手段.本文从裂缝岩石物理等效模型的构建出发,从测井数据上估测了裂缝岩石物理参数,通过推导含裂缝岩石物理参数的方位各向异性弹性阻抗公式,探讨了基于方位各向异性弹性阻抗的裂缝岩石物理参数地震反演方法.实际工区地震数据应用表明,基于方位各向异性弹性阻抗的裂缝岩石物理参数反演方法合理、可靠,可以降低裂缝岩石物理参数估测的不确定性,为地下裂缝预测提供有力的依据.  相似文献   

20.
文中以甘肃北山花岗岩中发育的构造裂隙(主要指节理)为研究对象,通过野外裂隙调查,应用传统的概率统计方法与分形几何学理论,利用Mapinfo,ArcGIS平台进行裂隙几何学参数(方位、长度、密度等)的统计、计算和裂隙网络的空间结构分析,研究花岗岩岩体中裂隙的几何学特征。并以此为基础,对甘肃北山花岗岩岩体质量优劣进行初步评价。结果表明:在10~200cm范围内,裂隙网络是分形的;5个测点裂隙网络的分维值分别是1.636,1.548,1.596,1.724,1.604。分维数D不仅能刻画岩体中结构面发育的数量,而且能反映结构面在岩体中分布的均匀程度和交切方式。因此,可以表征岩体的质量优劣,对岩体质量进行分级。按照分维所划分的岩体质量分级,北山花岗岩属于裂隙较发育、岩体质量等级一般的岩体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号