首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Let?eng-la-Terae kimberlite (Lesotho), famous for its large high-value diamonds, has five distinct phases that are mined in a Main and a Satellite pipe. These diatreme phases are heavily altered but parts of a directly adjacent kimberlite blow are exceptionally fresh. The blow groundmass consists of preserved primary olivine with Fo86?88, chromite, magnesio-ulvöspinel and magnetite, perovskite, monticellite, occasional Sr-rich carbonate, phlogopite, apatite, calcite and serpentine. The bulk composition of the groundmass, extracted by micro-drilling, yields 24–26 wt% SiO2, 20–21 wt% MgO, 16–19 wt% CaO and 1.9–2.1 wt% K2O, the latter being retained in phlogopite. Without a proper mineral host, groundmass Na2O is only 0.09–0.16 wt%. However, Na-rich K-richterite observed in orthopyroxene coronae allows to reconstruct a parent melt Na2O content of 3.5–5 wt%, an amount similar to that of highly undersaturated primitive ocean island basanites. The groundmass contains 10–12 wt% CO2, H2O is estimated to 4–5 wt%, but volatiles and alkalis were considerably reduced by degassing. Mg# of 77.9 and 530 ppm Ni are in equilibrium with olivine phenocrysts, characterize the parent melt and are not due to olivine fractionation. 87Sr/86Sr(i)?=?0.703602–0.703656, 143Nd/144Nd(i)?=?0.512660 and 176Hf/177Hf(i)?=?0.282677–0.282679 indicate that the Let?eng kimberlite originates from the convective upper mantle. U–Pb dating of groundmass perovskite reveals an emplacement age of 85.5?±?0.3 (2σ) Ma, which is significantly younger than previously proposed for the Let?eng kimberlite.  相似文献   

2.
About 12.3 km3 of basaltic magma were erupted from the Lakagigar fissure in Iceland in 1783, which may have been derived from the high-level reservoir of Grimsvotn central volcano, by lateral flow within the rifted crust. We have studied the petrology of quenched, glassy tephra from sections through pyroclastic cones along the fissure. The chemical composition of matrix glass of the 1783 tephra is heterogeneous and ranges from olivine tholeiite to Fe–Ti rich basalt, but the most common magma erupted is quartz tholeiite (Mg#43.6 to 37.2). The tephra are characterized by low crystal content (5 to 9 vol%). Glass inclusions trapped in plagioclase and Fo86 to Fo75 olivine phenocrysts show a large range of compositions, from primitive olivine tholeiite (Mg#64.3), quartz tholeiite (Mg#43–37), to Fe–Ti basalts (Mg#33.5) which represent the most differentiated liquids and are trapped as rare melt inclusions in clinopyroxene. Both matrix glass and melt inclusion data indicate a chemically heterogeneous magma reservoir, with quartz tholeiite dominant. LREE-depleted olivine-tholeiite melt-inclusions in Mg-rich olivine and anorthitic-plagioclase phenocrysts may represent primitive magma batches ascending into the reservoir at the time of the eruption. Vesicularity of matrix glasses correlates with differentiation, ranging from 10 to 60 vol.% in evolved quartz-tholeiite glasses, whereas olivine-tholeiite glasses contain less than 10 vol.% vesicles. FTIR analyses of olivine-tholeiite melt-inclusions indicate concentrations of 0.47 wt% H2O and 430 to 510 ppm for CO2. Chlorine in glass inclusions and matrix glasses increases from 50 ppm in primitive tholeiite to 230 ppm in Fe–Ti basalts, without clear evidence of degassing. Melt inclusion analyses show that sulfur varies from 915 ppm to 1970 ppm, as total FeO* increases from 9 to 13.5 wt%. Sulfur degassing correlates both with vesicularity and magma composition. Thus sulfur in matrix glasses decreases from 1490 ppm to 500 ppm, as Mg # decreases from 47 to 37 and vesicularity of the magma strongly increases. These results indicate loss of at least 75% of sulfur during the eruption. The correlation of low sulfur content in matrix glasses with high vesicularity is regarded as evidence of the control of a major exsolving volatile phase on the degassing efficiency of the magma. Our model is consistent a quasi-permanent CO2 flux through the shallow-level magmatic reservoir of Grimsvotn. Following magma withdrawal from the reservoir and during eruption from the Lakagigar fissure, sulfur degassing was controlled by inherent CO2-induced vesicularity of the magma.  相似文献   

3.
Primitive chemical characteristics of high-Mg andesites (HMA) suggest equilibration with mantle wedge peridotite, and they may form through either shallow, wet partial melting of the mantle or re-equilibration of slab melts migrating through the wedge. We have re-examined a well-studied example of HMA from near Mt. Shasta, CA, because petrographic evidence for magma mixing has stimulated a recent debate over whether HMA magmas have a mantle origin. We examined naturally quenched, glassy, olivine-hosted (Fo87–94) melt inclusions from this locality and analyzed the samples by FTIR, LA-ICPMS, and electron probe. Compositions (uncorrected for post-entrapment modification) are highly variable and can be divided into high-CaO (>10 wt%) melts only found in Fo > 91 olivines and low-CaO (<10 wt%) melts in Fo 87–94 olivine hosts. There is evidence for extensive post-entrapment modification in many inclusions. High-CaO inclusions experienced 1.4–3.5 wt% FeOT loss through diffusive re-equilibration with the host olivine and 13–28 wt% post-entrapment olivine crystallization. Low-CaO inclusions experienced 1–16 wt% olivine crystallization with <2 wt% FeOT loss experienced by inclusions in Fo > 90 olivines. Restored low-CaO melt inclusions are HMAs (57–61 wt% SiO2; 4.9–10.9 wt% MgO), whereas high-CaO inclusions are primitive basaltic andesites (PBA) (51–56 wt% SiO2; 9.8–15.1 wt% MgO). HMA and PBA inclusions have distinct trace element characteristics. Importantly, both types of inclusions are volatile-rich, with maximum values in HMA and PBA melt inclusions of 3.5 and 5.6 wt% H2O, 830 and 2,900 ppm S, 1,590 and 2,580 ppm Cl, and 500 and 820 ppm CO2, respectively. PBA melts are comparable to experimental hydrous melts in equilibrium with harzburgite. Two-component mixing between PBA and dacitic magma (59:41) is able to produce a primitive HMA composition, but the predicted mixture shows some small but significant major and trace element discrepancies from published whole-rock analyses from the Shasta locality. An alternative model that involves incorporation of xenocrysts (high-Mg olivine from PBA and pyroxenes from dacite) into a primary (mantle-derived) HMA magma can explain the phenocryst and melt inclusion compositions but is difficult to evaluate quantitatively because of the complex crystal populations. Our results suggest that a spectrum of mantle-derived melts, including both PBA and HMA, may be produced beneath the Shasta region. Compositional similarities between Shasta parental melts and boninites imply similar magma generation processes related to the presence of refractory harzburgite in the shallow mantle.  相似文献   

4.
The origin and the relationships between the high potassic (HKS) and potassic (KS) suites of the Roman Comagmatic Province and the nature of their primary magmas have been intensively debated over the past 35 years. We have addressed these problems by a study of mineralogy (olivine Fo92-87, Cr-spinel and diopside) and melt inclusions in olivine phenocrysts from a scoria sample of Montefiascone (Vulsini area). This rock is considered as one of the most primitive (MgO=13.5 wt%, NiO=340 ppm; Cr=1275 ppm) in the northern part of the Roman Comagmatic Province. The compositions of both the olivine and their melt inclusions are controlled by two main processes. In the case of the olivine Fo<90.5, fractional crystallization (olivine + diopside + minor spinel) was the principal mechanism of the magma evolution. The olivine (Fo92-90.5) and the Cr-spinel (Cr#=100. Cr/(Cr+Al)=63-73) represent a near-primary liquidus assemblage and indicate the mantle origin of their parental magmas. The compositions of melt inclusions in these olivine phenocrysts correspond to those of poorly fractionated H2O-rich ( 1 wt%) primary melts (MgO=8.4-9.7 wt%,FeOtotal=6-7.5 wt%). They evidence a wide compositional range (in wt%: SiO2=46.5-50, K2O=5.3-2.8, P2O5=0.4-0.2, S=0.26-0.12; Cl=0.05-0.03, and CaO/Al2O3= 0.8-1.15), with negative correlations between SiO2 and K2O, Al2O3 and CaO, as well as positive correlations between K2O, and P2O5, S, Cl, with nearly constant ratios between these elements. These results are discussed in terms of segregation of various mantle-derived melts. The high and constant Mg# [100.Mg/(Mg+Fe2+)] 73-75 of studied melts and their variable Si, K, P, Ca, Al, S contents could be explained by the melting of a refractory lithospheric mantle source, heterogeneously enriched in phlogopite and clinopyroxene (veined mantle source).  相似文献   

5.
Based on modal and chemical composition, the rocks of the Prairie Creek diatreme situated 4 km SSE of Murfreesboro, Pike County, Arkansas, are classified as micaceous kimberlite. The K-Ar isotopic analysis of phlogopite from this diatreme yielded an age of 106 ± 3 m.y. (Albian) which is in agreement with stratigraphic relations. Electron beam probe data on minerals from kimberlite breccia, one of the three textural types, are presented. The breccia is considered as the potential source of the diamonds that have been mined at the diatreme. It contains phenocrysts of olivine (Fo90–92) and serpentine pseudomorphs after olivine embedded in a groundmass of serpentine, minor calcite, chrome-diopside, phlogopite (Mg/Mg+Fe = 84.15%), perovskite, spinels, and pentlandite. Xenoliths of shales, sandstones, and mantle-derived ultramafic material are also present. Spinels are rich in Cr, Ti, and Fe and generally low in Al. Zoned spinels show enrichments in Ti and Fe towards their rims. A positive correlation between 100(Fe3++Ti)/(Cr+Al+Fe3++Ti) and 100 Mg/(Mg+Fe2+) ratios exists in these spinels and probably reflects an oxygen fugacity increase during magma crystallization. Occluded gases in diamonds and kimberlites corroborate the hypothesis that the parent magma of the Prairie Creek kimberlite was derived by partial melting of upper-mantle garnet lherzolite under volatile-rich conditions, primarily enriched in H2O and CO2.  相似文献   

6.
The results of a complex study of melt inclusions in olivine phenocrysts contained in unaltered kimberlites from the Udachnaya-East pipe indicate that the inclusions were captured late during the magmatic stage, perhaps, under a pressure of <1 kbar and a temperature of ≤800°C. The inclusions consist of fine crystalline aggregates (carbonates + sulfates + chlorides) + gas ± crystalline phases. Minerals identified among the transparent daughter phases of the inclusions are silicates (tetraferriphlogopite, olivine, humite or clinohumite, diopside, and monticellite), carbonates (calcite, dolomite, siderite, northupite, and Na-Ca carbonates), Na and K chlorides, and alkali sulfates. The ore phases are magnetite, djerfisherite, and monosulfide solid solution. The inclusions are derivatives of the kimberlite melt. The complex silicate-carbonate-salt composition of the secondary melt inclusions in olivine from the kimberlite suggests that the composition of the kimberlite melt near the surface differed from that of the initial melt composition in having higher contents of CaO, FeO, alkalis, and volatiles (CO2, H2O, F, Cl, and S) at lower concentrations of SiO2, MgO, Al2O3, Cr2O3, and TiO2. Hence, when crystallizing, the kimberlite melt evolved toward carbonatite compositions. The last derivatives of the kimberlite melt had an alkaline carbonatite composition.  相似文献   

7.
We report the first estimates of primary kimberlite melt compositionfrom the Slave craton, based on samples of aphanitic kimberlitefrom the Jericho kimberlite pipe, N.W.T., Canada. Three samplesderive from the margins of dykes where kimberlite chilled againstwall rock (JD51, JD69 and JD82) and are shown to be texturallyconsistent with crystallization from a melt. Samples JD69 andJD82 have geochemical characteristics of primitive melts: theyhave high MgO (20–25 wt %), high mg-numbers (86–88),and high Cr (1300–1900 ppm) and Ni (800–1400 ppm)contents. They also have high contents of CO2 (10–17 wt%). Relative to bulk macrocrystal kimberlite, they have lowermg-numbers and lower MgO but are enriched in incompatible elements(e.g. Zr, Nb and Y), because the bulk kimberlite compositionsare strongly controlled by accumulation of mantle olivine andother macrocrysts. The compositions of aphanitic kimberlitefrom Jericho are similar to melts produced experimentally bypartial melting of a carbonate-bearing garnet lherzolite. Onthe basis of these experimental data, we show that the primarymagmas from the Jericho kimberlite could represent 0·7–0·9%melting of a carbonated lherzolitic mantle source at pressuresand temperatures found in the uppermost asthenosphere to theSlave craton. The measured CO2 contents for samples JD69 andJD82 are only slightly lower than the CO2 contents of the correspondingexperimental melts; this suggests that the earliest hypabyssalphase of the Jericho kimberlite retained most of its originalvolatile content. As such these samples provide a minimum CO2content for the primary kimberlite magmas from the Slave craton. KEY WORDS: kimberlite; melt; primitive; primary magma; Slave craton  相似文献   

8.
Larkman Nunatak (LAR) 06319 is an olivine-phyric shergottite whose olivine crystals contain abundant crystallized melt inclusions. In this study, three types of melt inclusion were distinguished, based on their occurrence and the composition of their olivine host: Type-I inclusions occur in phenocryst cores (Fo77-73); Type-II inclusions occur in phenocryst mantles (Fo71-66); Type-III inclusions occur in phenocryst rims (Fo61-51) and within groundmass olivine. The sizes of the melt inclusions decrease significantly from Type-I (∼150-250 μm diameter) to Type-II (∼100 μm diameter) to Type-III (∼25-75 μm diameter). Present bulk compositions (PBC) of the crystallized melt inclusions were calculated for each of the three melt inclusion types based on average modal abundances and analyzed compositions of constituent phases. Primary trapped liquid compositions were then reconstructed by addition of olivine and adjustment of the Fe/Mg ratio to equilibrium with the host olivine (to account for crystallization of wall olivine and the effects of Fe/Mg re-equilibration). The present bulk composition of Type-I inclusions (PBC1) plots on a tie-line that passes through olivine and the LAR 06319 whole-rock composition. The parent magma composition can be reconstructed by addition of 29 mol% olivine to PBC1, and adjustment of Fe/Mg for equilibrium with olivine of Fo77 composition. The resulting parent magma composition has a predicted crystallization sequence that is consistent with that determined from petrographic observations, and differs significantly from the whole-rock only in an accumulated olivine component (∼10 wt%). This is consistent with a calculation indicating that ∼10 wt% magnesian (Fo77-73) olivine must be subtracted from the whole-rock to yield a melt in equilibrium with Fo77. Thus, two independent estimates indicate that LAR 06319 contains ∼10 wt% cumulate olivine.The rare earth element (REE) patterns of Type-I melt inclusions are similar to that of the LAR 06319 whole-rock. The REE patterns of Type-II and Type-III melt inclusions are also broadly parallel to that of the whole-rock, but at higher absolute abundances. These results are consistent with an LAR 06319 parent magma that crystallized as a closed-system, with its incompatible-element enrichment being inherited from its mantle source region. However, fractional crystallization of the reconstructed LAR 06319 parent magma cannot reproduce the major and trace element characteristics of all enriched basaltic shergottites, indicating local-to-large scale major- and trace-element variations in the mantle source of enriched shergottites. Therefore, LAR 06319 cannot be parental to the enriched basaltic shergottites.  相似文献   

9.
Fourier transform infrared spectrometry (FTIR) analyses of olivines from peridotite xenoliths found in southern African kimberlites indicate 0 to 80 ppm H2O concentrations. OH absorbance profiles across olivine grains show homogeneous H contents from core to edge for most samples. In one sample the olivines are H-free, while another has olivines characterized by lower H contents at the grain edges compared to the cores, indicating H loss during transport of the xenolith to the surface. Flat or near-flat H profiles place severe constraints on the duration of H loss from olivine grains, with implications for kimberlite magma ascent rates. Diffusion equations were used to estimate times of H loss of about 4 h for the sample with heterogeneous olivine H contents. Resulting kimberlite ascent rates are calculated to be 5-37 m s−1 minimum, although these estimates are highly dependent on volatile contents and degassing behavior of the host kimberlite magma. Xenolithic olivines from alkali basalts generally have lower H contents and more pronounced H diffusion profiles than do those from kimberlites. This difference is likely caused by higher magma temperatures and lower ascent rates of alkali basalts compared to kimberlites.  相似文献   

10.
Geochemical data from melt inclusions in olivine phenocrysts in a picritic basalt from the Siqueiros Transform Fault on the northern East Pacific Rise provide insights into the petrogenesis of mid-ocean ridge basalts (MORB). The fresh lava contains ~10% of olivine phenocrysts (Fo89.3-91.2) and rare, small (<1 mm) plagioclase phenocrysts with subhedral to irregular shapes with a range of compositions (An80-90, An57-63). Melt inclusions in olivine phenocrysts are glassy, generally rounded in shape and vary in size from a few to ~200 µm. Although most of the inclusions have compositions that are generally consistent with being representative of parental melts for the pillow-rim glasses, several inclusions are clearly different. One inclusion, which contains a euhedral grain of high-Al, low-Ti spinel, has a composition unlike any melt inclusions previously described from primitive phenocrysts in MORB. It has a very high Al2O3 (~20 wt%), very low TiO2 (~0.04 wt%) and Na2O (~1 wt%) contents, and a very high CaO/Na2O value (~14). The glass inclusion is strongly depleted in all incompatible elements (La =0.052 ppm; Yb =0.34; La/Sm(n) ~0.27), but it has large positive Sr and Eu anomalies (Sr/Sr* ~30; Eu/Eu* ~3) and a negative Zr anomaly. It also has low S (0.015 wt%) and relatively high Cl (180 ppm). We suggest that this unusual composition is a consequence of olivine trapping plagioclase in a hot, strongly plagioclase-undersaturated magma and subsequent reaction between plagioclase and the host olivine producing melt and residual spinel. Two other melt inclusions in a different olivine phenocryst have compositions that are generally intermediate between 'normal' inclusions and the aluminous inclusion, but have even higher CaO and Sr contents. They are also depleted in incompatible elements, but to a lesser degree than the aluminous inclusion, and have smaller Sr and Eu anomalies. Similar inclusions have also been described in high-Fo olivine phenocrysts from Iceland and northern Mid-Atlantic Ridge. We suggest that the compositions of these inclusions represent assimilation of gabbroic material into the hot primitive magma. The localised nature of this assimilation is consistent with it occurring within a crystal mush zone where the porosity is high as primitive magmas pass through earlier formed gabbroic 'cumulates'. In such an environment the contaminants are expected to have quite diverse compositions. Although the interaction of primitive melts with gabbroic material may not affect the compositions of erupted MORB melts on a large scale, this process may be important in some MORB suites and should be accounted for in petrogenetic models. Another important implication is that the observed variability in melt inclusion compositions in primitive MORB phenocrysts need not always to reflect processes occurring in the mantle. In particular, inferences on fractional melting processes based on geochemistry of ultra-depleted melt inclusions may not always be valid.  相似文献   

11.
 Picritic units of the Miocene shield volcanics on Gran Canaria, Canary Islands, contain olivine and clinopyroxene phenocrysts with abundant primary melt, crystal and fluid inclusions. Composition and crystallization conditions of primary magmas in equilibrium with olivine Fo90-92 were inferred from high-temperature microthermometric quench experiments, low-temperature microthermometry of fluid inclusions and simulation of the reverse path of olivine fractional crystallization based on major element composition of melt inclusions. Primary magmas parental for the Miocene shield basalts range from transitional to alkaline picrites (14.7–19.3 wt% MgO, 43.2–45.7 wt% SiO2). Crystallization of these primary magmas is believed to have occurred over the temperature range 1490–1150° C at pressures ≈5 kbar producing olivine of Fo80.6-90.2, high-Ti chrome spinel [Mg/ (Mg+Fe2+)=0.32–0.56, Cr/(Cr+Al)=0.50–0.78, 2.52–8.58 wt% TiO2], and clinopyroxene [Mg/(Mg+Fe)=0.79–0.88, Wo44.1-45.3, En43.9-48.0, Fs6.8-11.0] which appeared on the liquidus together with olivine≈Fo86. Redox conditions evolved from intermediate between the QFM and WM buffers to late-stage conditions of NNO+1 to NNO+2. The primary magmas crystallized in the presence of an essentially pure CO2 fluid. The primary magmas originated at pressures >30 kbar and temperatures of 1500–1600° C, assuming equilibrium with mantle peridotite. This implies melting of the mantle source at a depth of ≈100 km within the garnet stability field followed by migration of melts into magma reservoirs located at the boundary between the upper mantle and lower crust. The temperatures and pressures of primary magma generation suggest that the Canarian plume originated in the lower mantle at depth ≈900 km that supports the plume concept of origin of the Canary Islands. Received: 23 October 1995/Accepted: 21 February 1996  相似文献   

12.
The petrochemistry of kimberlites from Yakutia and Lesotho has been studied using a silicate melt model with the SiO2, CO2 and H2O derivatives as the main anions.A model has been developed, according to which the dissolution of H2O in an ultramafic melt results in orthosilicates (H2SiC 4 -2 , H3SiO 4 , H4SiO4 etc.) rather than metasilicates, while the dissolution of CO2 produces additional hydrocarbonate complexes. It suggests that at high PCO 2 1 , and where the orthosilicic calcium salt clusters are likely to be present in the magma, the kimberlite melt can break down into carbonate and silicate liquids. Therefore, the composition of kimberlite magma will be determined by the H2O/CO2 ratio under the relatively constant fluid pressure. This can be seen from the distinct fluidrs trend in the H2O-CO2-SiO2 diagram for the Yakutia and Lesotho diamond-bearing kimberlites. The H2O/CO2 ratio changes with the liquidus temperature along this trend (Perchuk and Vaganov 1977) which suggests that liquid immiscibility predominates over the simple CO2 solubility in the melts of kimberlite composition. The well-known Boyd's diagrams for the equilibrium PT-conditions in peridotites have been applied along with new experimental data to natural Cpx and Opx, and the PT-parameters were correlated for peridotite inclusions in kimberlite pipes in Yakutia and Lesotho. The liquidus temperatures for the extrapolated area of these correlations gave depths (pressures) at which kimberlite magmas are formed (200–250 km).The hypothesis on SiO2 partitioning between the melt and the fluid was used to calculate the composition of dry initial kimberlite which characterised the average mantle composition: SiO2 — 45.12; TiO2 — 2.49; Al2O3 — 3.58; Cr2O3 — 0.12; FeO — 9.32; MnO — 0.16; CoO — 0.11; MgO — 23.47; CaO — 13.44; Na2O — 0.20; K2O — 1.12; P2O5 — 0.69; S — 0.18; sum — 100 wt.%. This kimberlite is close to wehrlite in composition.  相似文献   

13.
We have measured the δ18O values of the major phenocrysts (olivine, clinopyroxene and plagioclase) present in lavas from Tristan da Cunha and Gough Island. These islands, which result from the same mantle plume, have enriched radiogenic isotope ratios and are, therefore, prime candidates for an oxygen isotope signature that is distinct from that of MORB. Consistent differences between the δ18O values of olivine, pyroxene and feldspar in the Gough lavas show that the phenocrysts in the mafic Gough Island lavas are in oxygen isotope equilibrium. The olivines in lavas with SiO2 <50 wt% have a mean δ18O value of 5.19‰, consistent with crystallization from a magma having the same oxygen isotope composition as MORB. Phenocrysts in all the Gough lavas show a systematic increase in δ18O value as silica content increases, which is consistent with closed-system fractional crystallization. The lack of enrichment in δ18O of the Gough magmas suggests that the mantle source contained <2% recycled sediment. In contrast, the Tristan lavas with SiO2 >48 wt% contain phenocrysts which have δ18O values that are systematically ∼0.3‰ lower than their counterparts from Gough. We suggest that the parental mafic Tristan magmas were contaminated by material from the volcanic edifice that acquired low δ18O values by interaction with water at high temperatures. The highly porphyritic SiO2-poor lavas show a negative correlation between olivine δ18O value and whole-rock silica content rather than the expected positive correlation. The minimum δ18O value occurs at an SiO2 content of about 45 wt%. Below 45 wt% SiO2, magmas evolved via a combination of assimilation, fractionational crystallization and crystal accumulation; above 45 wt% SiO2, magmas appeared to have evolved via closed-system fractional crystallization. Received: 23 November 1998 / Accepted: 27 September 1999  相似文献   

14.
The origin of compositional heterogeneities among the magmas parental to mid-ocean ridge basalts (MORB) was investigated using a single rock piece of the olivine-phyric basalt from 43°N, Mid-Atlantic Ridge (AII D11-177). The exceptional feature of this sample is presence of very primitive olivine crystals (90–91 mol% Fo) that are significantly variable in terms of CaO (0.15–0.35 wt%). A population of low-Ca olivine (0.15–0.25 wt% CaO) is also notably distinct from high-Ca olivine population in AII D11-177, and primitive MORB olivine in general, in having unusual assemblage of trapped mineral and glass inclusions. Mineral inclusions are represented by high-magnesian (Mg# 90.7–91.1 mol%) orthopyroxene and Cr-spinel, distinctly enriched in TiO2 (up to 5 wt%, c.f. <1 wt% in common MORB spinel). Glass inclusions associated with orthopyroxene and high-Ti Cr-spinel have andesitic compositions (53–58 wt% SiO2). Compared to the pillow-rim glass and “normal” MORB inclusions, the Si-rich glass inclusions in low-Ca olivine have strongly reduced Ca and elevated concentrations of Ti, Na, K, P, Cl, and highly incompatible trace elements. Strong variability is recorded among glass inclusions within a single olivine phenocrysts. We argue that the observed compositional anomalies are mineralogically controlled, and thus may arise from the interaction between hot MORB magmas and crystal cumulates in the oceanic crust or magma chamber.  相似文献   

15.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

16.
Melt inclusions are small portions of liquid trapped by growingcrystals during magma evolution. Recent studies of melt inclusionshave revealed a large range of unusual major and trace elementcompositions in phenocrysts from primitive mantle-derived magmaticrocks [e.g. in high-Fo olivine (Fo > 85 mol %), spinel, high-Anplagioclase]. Inclusions in phenocrysts crystallized from moreevolved magmas (e.g. olivine Fo < 85 mol %), are usuallycompositionally similar to the host lavas. This paper reviewsthe chemistry of melt inclusions in high-Fo olivine phenocrystsfocusing on those with anomalous major and trace element contentsfrom mid-ocean ridge and subduction-related basalts. We suggestthat a significant portion of the anomalous inclusion compositionsreflects localized, grain-scale dissolution–reaction–mixing(DRM) processes within the magmatic plumbing system. The DRMprocesses occur at the margins of primitive magma bodies, wheremagma is in contact with cooler wall rocks and/or pre-existingsemi-solidified crystal mush zones (depending on the specificenvironment). Injection of hotter, more primitive magma causespartial dissolution (incongruent melting) of the mush-zone phases,which are not in equilibrium with the primitive melt, and mixingof the reaction products with the primitive magma. Localizedrapid crystallization of high-Fo olivines from the primitivemagma may lead to entrapment of numerous large melt inclusions,which record the DRM processes in progress. In some magmaticsuites melt inclusions in primitive phenocrysts may be naturallybiased towards the anomalous compositions. The occurrence ofmelt inclusions with unusual compositions does not necessarilyimply the existence of new geologically significant magma typesand/or melt-generation processes, and caution should be exercisedin their interpretation. KEY WORDS: melt inclusions; olivine; geochemistry; mush zones; MORB; subduction-related magmas  相似文献   

17.
The formation of phosphoran olivine by crystallization from a melt was investigated experimentally using a one atmosphere furnace, using San Carlos olivine [(Mg,Fe)2SiO4] mixed with either iron phosphide (FeP) or magnesium pyrophosphate (Mg2P2O7). Both dynamic crystallization and isothermal experiments produced phosphoran olivine as zoned single crystals and as overgrowths surrounding normal, phosphorus-free olivine grains. The crystallization pathways that form phosphoran olivine were traced and confirm that it is a metastable phase that can crystallize from a phosphorus-rich melt over timescales of hours to days. Removal of the P and equilibration of the olivine however requires weeks to months in the presence of silicate melt. Phosphoran olivine with up to 27 wt% P2O5 was generated and up to 69% of the Si tetrahedral sites were replaced by P. The substitution of Si by P into olivine was confirmed as 4VIM+2 + 2IVSi+4 ↔ 3VIM+2 + 2IVP+5 + VI[]. Phosphoran olivine compositions that vary from (Mg,Fe)2SiO4 to (Mg,Fe)1.65[]0.35Si0.3P0.7O4 have been produced in these experiments.Phosphoran pyroxene was also generated in a few experiments and forms when phosphoran olivine reacts with either tridymite or melt. It has compositions compatible with protopyroxene, orthopyroxene, pigeonite and sub-calcic augite, and can contain up to 31.5 wt% P2O5. Like phosphoran olivine, it is also a metastable phase. Phosphorus replaces Si in pyroxene by the following substitution methods: 8IVSi+4 ↔ 3IVSi+4 + 4IVP+5 + IV[] with Al entering the structure by the exchange 2IVSi+4 ↔ IVAl+3 + IVP+5. Phosphoran pyroxene compositions vary from (Mg,Fe)8Si8O24 to (Mg,Fe)8Si3P4[]O24.  相似文献   

18.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

19.
The chemical compositions of melt inclusions in a primitive and an evolved basalt recovered from the mid-Atlantic ridge south of the Kane Fracture Zone (23°–24°N) are determined. The melt inclusions are primitive in composition (0.633–0.747 molar Mg/(Mg+Fe2+), 1.01–0.68 wt% TiO2) and are comparable to other proposed parental magmas except in having higher Al2O3 and lower CaO. The primitive melt inclusion compositions indicate that the most primitive magmas erupted in this region are not near primary magma compositions. Olivine and plagioclase microphenocrysts are close to exchange equilibrium with their respective basalt glasses, whose compositions are displaced toward olivine from 1 atm three phase saturation. The most primitive melt inclusion compositions are close to exchange equilibrium with the anorthitic cores of zoned plagioclases (An78.3-An83.1; the hosts for the melt inclusions in plagioclase) and with olivines more forsteritic (Fo89-Fo91) than the olivine microphenocrysts (the hosts for the melt inclusions in olivine). Xenocrystic olivine analyzed is Fo89 but contains no melt inclusions. These observations indicate that olivines have exchanged components with the melt after melt inclusion entrapment, whereas plagioclase compositions have remained the same since melt inclusion entrapment. Common denominator element ratio diagrams and oxide versus oxide variation diagrams show that the melt inclusion compositions, which represent liquids higher along the liquid line of descent, are related to the glass compositions by the fractionation of olivine, plagioclase and clinopyroxene (absent from the mincral assemblage), probably occurring at elevated pressures. A model is proposed whereby clinopyroxene segregates from the melt at elevated pressures (to account for its absence in the erupted lavas that have the chemical imprint of clinopyroxene fractionation). Zoned plagioclases in the erupted lavas are thought to be survivors of decompressional melting during magma ascent. Since similar primitive melt inclusions occur in olivine microphenocrysts and in the cores of zoned plagioclases, any model must account for all phases present.  相似文献   

20.
Quaternary basalts, andesites and dacites from the Abu monogenetic volcano group, SW Japan, (composed of more than 40 monogenetic volcanoes) show two distinct chemical trends especially on the FeO*/MgO vs SiO2 diagram. One trend is characterized by FeO*/MgO-enrichment with a slight increase in SiO2 content (Fe-type trend), whereas the other shows a marked SiO2-enrichment with relatively constant FeO*/MgO ratios (Si-type trend). The Fe-type trend is explained by fractional crystallization with subtraction of olivine and augite from a primitive alkali basalt magma. Rocks of the Si-type trend are characterized by partially melted or resorbed quartz and sodic plagioclase phenocrysts and/or fine-grained basaltic inclusions. They are most likely products of mixing of a primitive alkali basalt magma containing olivine phenocrysts with a dacite magma containing quartz, sodic plagioclase and hornblende phenocrysts. Petrographic variation as well as chemical variation from basalt to dacite of the Si-type trend is accounted for by various mixing ratios of basalt and dacite magmas. Pargasitic hornblende and clinopyroxene phenocrysts in andesite and dacite may have crystallized from basaltic magma during magma mixing. Olivine and spinel, and quartz, sodic plagioclase and common hornblende had crystallized in basaltic and dacitic magmas, respectively, before the mixing. Within a lava flow, the abundance of basaltic inclusions decreases from the area near the eruptive vent towards the perimeter of the flow, and the number of resorbed phenocrysts varies inversely, suggesting zonation in the magma chamber.The mode of mixing changes depending on the mixing ratio. In the mafic mixture, basalt and dacite magmas can mix in the liquid state (liquid-liquid mixing). In the silicic mixture, on the other hand, the basalt magma was quenched and formed inclusions (liquid-solid mixing). During mixing, the disaggregated basalt magma and the host dacite magma soon reached thermal equilibrium. Compositional homogenization of the mixed magma can occur only when the equilibrium temperature is sufficiently above the solidus of the basalt magma. The Si-type trend is chemically and petrographically similar to the calc-alkalic trend. Therefore, a calc-alkalic trend which is distinguished from a fractional crystallization trend (e.g. Fe-type trend) may be a product of magma mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号