首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubilities of corundum (Al2O3) and wollastonite (CaSiO3) were measured in H2O-NaCl solutions at 800 °C and 10 kbar and NaCl concentrations up to halite saturation by weight-loss methods. Additional data on quartz solubility at a single NaCl concentration were obtained as a supplement to previous work. Single crystals of synthetic corundum, natural wollastonite or natural quartz were equilibrated with H2O and NaCl at pressure (P) and temperature (T) in a piston-cylinder apparatus with NaCl pressure medium and graphite heater sleeves. The three minerals show fundamentally different dissolution behavior. Corundum solubility undergoes large enhancement with NaCl concentration, rising rapidly from Al2O3 molality (mAl2O3) of 0.0013(1) (1σ error) in pure H2O and then leveling off to a maximum of ∼0.015 at halite saturation (XNaCl ≈ 0.58, where X is mole fraction). Solubility enhancement relative to that in pure H2O, , passes through a maximum at XNaCl ≈ 0.15 and then declines towards halite saturation. Quenched fluids have neutral pH at 25 °C. Wollastonite has low solubility in pure H2O at this P and T(mCaSiO3=0.0167(6)). It undergoes great enhancement, with a maximum solubility relative to that in H2O at XNaCl ≈ 0.33, and solubility >0.5 molal at halite saturation. Solute silica is 2.5 times higher than at quartz saturation in the system H2O-NaCl-SiO2, and quenched fluids are very basic (pH 11). Quartz shows monotonically decreasing solubility from mSiO2=1.248 in pure H2O to 0.202 at halite saturation. Quenched fluids are pH neutral. A simple ideal-mixing model for quartz-saturated solutions that requires as input only the solubility and speciation of silica in pure H2O reproduces the data and indicates that hydrogen bonding of molecular H2O to dissolved silica species is thermodynamically negligible. The maxima in for corundum and wollastonite indicate that the solute products include hydrates and Na+ and/or Cl species produced by molar ratios of reactant H2O to NaCl of 6:1 and 2:1, respectively. Our results imply that quite simple mechanisms may exist in the dissolution of common rock-forming minerals in saline fluids at high P and T and allow assessment of the interaction of simple, congruently soluble rock-forming minerals with brines associated with deep-crustal metamorphism.  相似文献   

2.
Realistic simulations of fluid flow in geologic systems have severely been hampered by the lack of a consistent formulation for fluid properties for binary salt-water fluids over the temperature-pressure-composition ranges encountered in the Earth’s crust. As the first of two companion studies, a set of correlations describing the phase stability relations in the system H2O-NaCl is developed. Pure water is described by the IAPS-84 equation of state. New correlations comprise the vapor pressure of halite and molten NaCl, the NaCl melting curve, the composition of halite-saturated liquid and vapor, the pressure of vapor + liquid + halite coexistence, the temperature-pressure and temperature-composition relations for the critical curve, and the compositions of liquid and vapor on the vapor + liquid coexistence surface. The correlations yield accurate values for temperatures from 0 to 1000 °C, pressures from 0 to 5000 bar, and compositions from 0 to 1 XNaCl (mole fraction of NaCl). To facilitate their use in fluid flow simulations, the correlations are entirely formulated as functions of temperature, pressure and composition.  相似文献   

3.
A model is developed for the calculation of coupled phase and aqueous species equilibrium in the H2O-CO2-NaCl-CaCO3 system from 0 to 250 °C, 1 to 1000 bar with NaCl concentrations up to saturation of halite. The vapor-liquid-solid (calcite, halite) equilibrium together with the chemical equilibrium of H+, Na+, Ca2+, , Ca(OH)+, OH, Cl, , , CO2(aq) and CaCO3(aq) in the aqueous liquid phase as a function of temperature, pressure, NaCl concentrations, CO2(aq) concentrations can be calculated, with accuracy close to those of experiments in the stated T-P-m range, hence calcite solubility, CO2 gas solubility, alkalinity and pH values can be accurately calculated. The merit and advantage of this model is its predictability, the model was generally not constructed by fitting experimental data.One of the focuses of this study is to predict calcite solubility, with accuracy consistent with the works in previous experimental studies. The resulted model reproduces the following: (1) as temperature increases, the calcite solubility decreases. For example, when temperature increases from 273 to 373 K, calcite solubility decreases by about 50%; (2) with the increase of pressure, calcite solubility increases. For example, at 373 K changing pressure from 10 to 500 bar may increase calcite solubility by as much as 30%; (3) dissolved CO2 can increase calcite solubility substantially; (4) increasing concentration of NaCl up to 2 m will increase calcite solubility, but further increasing NaCl solubility beyond 2 m will decrease its solubility.The functionality of pH value, alkalinity, CO2 gas solubility, and the concentrations of many aqueous species with temperature, pressure and NaCl(aq) concentrations can be found from the application of this model. Online calculation is made available on www.geochem-model.org/models/h2o_co2_nacl_caco3/calc.php.  相似文献   

4.
 In order to clarify Al2O3 content and phase stability of aluminous CaSiO3-perovskite, high-pressure and high-temperature transformations of Ca3Al2Si3O12 garnet (grossular) were studied using a MA8-type high-pressure apparatus combined with synchrotron radiation. Recovered samples were examined by analytical transmission electron microscopy. At pressures of 23–25 GPa and temperatures of 1000–1600 K, grossular garnet decomposed into a mixture of aluminum-bearing Ca-perovskite and corundum, although a metastable perovskite with grossular composition was formed when the heating duration was not long enough at 1000 K. On release of pressure, this aluminum-bearing CaSiO3-perovskite transformed to the “LiNbO3-type phase” and/or amorphous phase depending on its Al2O3 content. The structure of this LiNbO3-type phase is very similar to that of LiNbO3 but is not identical. CaSiO3-perovskite with 8 to 25 mol% Al2O3 was quenched to alternating lamellae of amorphous layer and LiNbO3-type phase. On the other hand, a quenched product from CaSiO3-perovskite with less than 6 mol% consisted only of amorphous phase. Most of the inconsistencies amongst previous studies could be explained by the formation of perovskite with grossular composition, amorphous phase, and the LiNbO3-type phase. Received: 11 April 2001 / Accepted: 5 July 2002  相似文献   

5.
The solubility of natural, near-end-member wollastonite-I (>99.5% CaSiO3) has been determined at temperatures from 400 to 800 °C and pressures between 0.8 and 5 GPa in piston-cylinder apparatus with the weight-loss method. Chemical analysis of quench products and optical monitoring in a hydrothermal diamond anvil cell demonstrates that no additional phases form during dissolution. Wollastonite-I, therefore, dissolves congruently in the pressure-temperature range investigated. The solubility of CaSiO3 varies between 0.175 and 13.485 wt% and increases systematically with both temperature and pressure up to 3.0 GPa. Above 3.0 GPa wollastonite-I reacts rapidly to the high-pressure modification wollastonite-II. No obvious trends are evident in the solubility of wollastonite-II, with values between 1.93 and 10.61 wt%. The systematics of wollastonite-I solubility can be described well by a composite polynomial expression that leads to isothermal linear correlation with the density of water. The molality of dissolved wollastonite-I in pure water is then
log(mwoll)=2.2288-3418.23×T-1+671386.84×T-2+logρH2O×(5.4578+2359.11×T-1).  相似文献   

6.
The solubilities of the assemblages albite + paragonite + quartz and jadeite + paragonite + quartz in H2O were determined at 500 and 600 °C, 1.0-2.25 GPa, using hydrothermal piston-cylinder methods. The three minerals are isobarically and isothermally invariant in the presence of H2O, so fluid composition is uniquely determined at each pressure and temperature. A phase-bracketing approach was used to achieve accurate solubility determinations. Albite + quartz and jadeite + quartz dissolve incongruently in H2O, yielding residual paragonite which could not be retrieved and weighed. Solution composition fixed by the three-mineral assemblage at a given pressure and temperature was therefore bracketed by adding NaSi3O6.5 glass in successive experiments, until no paragonite was observed in run products. Solubilities derived from experiments bounding the appearance of paragonite thus constrain the equilibrium fluid composition. Results indicate that, at a given pressure, Na, Al, and Si concentrations are higher at 600 °C than at 500 °C. At both 500 and 600 °C, solubilities of all three elements increase with pressure in the albite stability field, to a maximum at the jadeite-albite-quartz equilibrium. In the jadeite stability field, element concentrations decline with continued pressure increase. At the solubility maximum, Na, Al, and Si concentrations are, respectively, 0.16, 0.05, and 0.48 molal at 500 °C, and 0.45, 0.27, and 1.56 molal at 600 °C. Bulk solubilities are 3.3 and 10.3 wt% oxides, respectively. Observed element concentrations are everywhere greater than those predicted from extrapolated thermodynamic data for simple ions, monomers, ion pairs, and the silica dimer. The measurements therefore require the presence of additional, polymerized Na-Al-Si-bearing species in the solutions. The excess solubility is >50% at all conditions, indicating that polymeric structures are the predominant solutes in the P-T region studied. The solubility patterns likely arise from combination of the large solid volume change associated with the albite-jadeite-quartz equilibrium and the rise in Na-Al-Si polymerization with approach to the hydrothermal melting curves of albite + quartz and jadeite + quartz. Our results indicate that polymerization of Na-Al-Si solutes is a fundamental aspect of fluid-rock interaction at high pressure. In addition, the data suggest that high-pressure metamorphic isograds can impose unexpected controls on metasomatic mass transfer, that significant metasomatic mass transfer prior to melting should be considered in migmatitic terranes, and that polymeric complexes may be an important transport agent in subduction zones.  相似文献   

7.
The structure of H2O-saturated silicate melts and of silicate-saturated aqueous solutions, as well as that of supercritical silicate-rich aqueous liquids, has been characterized in-situ while the sample was at high temperature (to 800 °C) and pressure (up to 796 MPa). Structural information was obtained with confocal microRaman and with FTIR spectroscopy. Two Al-bearing glasses compositionally along the join Na2O•4SiO2-Na2O•4(NaAl)O2-H2O (5 and 10 mol% Al2O3, denoted NA5 and NA10) were used as starting materials. Fluids and melts were examined along pressure-temperature trajectories of isochores of H2O at nominal densities (from PVT properties of pure H2O) of 0.85 g/cm3 (NA10 experiments) and 0.86 g/cm3 (NA5 experiments) with the aluminosilicate + H2O sample contained in an externally-heated, Ir-gasketed hydrothermal diamond anvil cell.Molecular H2O (H2O°) and OH groups that form bonds with cations exist in all three phases. The OH/H2O° ratio is positively correlated with temperature and pressure (and, therefore, fugacity of H2O, fH2O) with (OH/H2O°)melt > (OH/H2O°)fluid at all pressures and temperatures. Structural units of Q3, Q2, Q1, and Q0 type occur together in fluids, in melts, and, when outside the two-phase melt + fluid boundary, in single-phase liquids. The abundance of Q0 and Q1 increases and Q2 and Q3 decrease with fH2O. Therefore, the NBO/T (nonbridging oxygen per tetrahedrally coordination cations), of melt is a positive function of fH2O. The NBO/T of silicate in coexisting aqueous fluid, although greater than in melt, is less sensitive to fH2O.The melt structural data are used to describe relationships between activity of H2O and melting phase relations of silicate systems at high pressure and temperature. The data were also combined with available partial molar configurational heat capacity of Qn-species in melts to illustrate how these quantities can be employed to estimate relationships between heat capacity of melts and their H2O content.  相似文献   

8.
A set of correlations for the volumetric properties and enthalpies of phases in the system H2O-NaCl as a function of temperature, pressure, and composition has been developed that yields accurate values from 0 to 1000 °C, 1 to 5000 bar, and 0 to 1 XNaCl. The volumetric properties of all fluid phases from low-density vapor to hydrous salt melts and single-phase binary fluids at high pressures and temperatures, can be described by a simple equation
  相似文献   

9.
The solubility of molybdenum (Mo) was determined at temperatures from 500 °C to 800 °C and 150 to 300 MPa in KCl-H2O and pure H2O solutions in cold-seal experiments. The solutions were trapped as synthetic fluid inclusions in quartz at experimental conditions, and analyzed by laser ablation inductively coupled plasma mass spectrometry (LA ICPMS).Mo solubilities of 1.6 wt% in the case of KCl-bearing aqueous solutions and up to 0.8 wt% in pure H2O were found. Mo solubility is temperature dependent, but not pressure dependent over the investigated range, and correlates positively with salinity (KCl concentration). Molar ratios of ∼1 for Mo/Cl and Mo/K are derived based on our data. In combination with results of synchrotron X-ray absorption spectroscopy of individual fluid inclusions, it is suggested that Mo-oxo-chloride complexes are present at high salinity (>20 wt% KCl) and ion pairs at moderate to low salinity (<11 wt% KCl) in KCl-H2O aqueous solutions. Similarly, in the pure H2O experiments molybdic acid is the dominant species in aqueous solution. The results of these hydrothermal Mo experiments fit with earlier studies conducted at lower temperatures and indicate that high Mo concentrations can be transported in aqueous solutions. Therefore, the Mo concentration in aqueous fluids seems not to be the limiting factor for ore formation, whereas precipitation processes and the availability of sulfur appear to be the main controlling factors in the formation of molybdenite (MoS2).  相似文献   

10.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   

11.
An understanding of the activity-composition (a-X) relations and phase equilibria of halite-bearing, mixed-species supercritical fluids is critically important in many geological and industrial applications. We have performed experiments on H2O-CO2-NaCl fluids at 500°C, 500 bar, to obtain accurate and precise data on their a-X relations and phase equilibria. Two kinds of experiments were performed. First, H2O-CO2-NaCl samples were reacted at fixed activities of H2O = 0.078, 0.350, 0.425, 0.448, 0.553, 0.560, 0.606, 0.678, 0.798, 0.841, and 0.935 to define the tie lines of known H2O activity in the halite-vapor and vapor-brine fields. Results indicate that fluids with all but the last of these H2O activities lie in the vapor-halite two-phase region and that a fluid with aH2O = 0.841 has a composition close to the three-phase (vapor + brine + halite) field. A second set of experiments was performed to determine the solubility of NaCl in parts of the system in equilibrium with halite. Data from these experiments suggest that the vapor corner of the three-phase field lies at H2O contents above XH2O = 0.58 and XNaCl = 0.06, and below XH2O = 0.75 and XNaCl = 0.06, which is a significantly more H2O-rich composition than indicated by existing thermodynamic models.  相似文献   

12.
Solubility and solution mechanisms of H2O in depolymerized melts in the system Na2O-Al2O3-SiO2 were deduced from spectroscopic data of glasses quenched from melts at 1100 °C at 0.8-2.0 GPa. Data were obtained along a join with fixed nominal NBO/T = 0.5 of the anhydrous materials [Na2Si4O9-Na2(NaAl)4O9] with Al/(Al+Si) = 0.00-0.25. The H2O solubility was fitted to the expression, XH2O=0.20+0.0020fH2O-0.7XAl+0.9(XAl)2, where XH2O is the mole fraction of H2O (calculated with O = 1), fH2O the fugacity of H2O, and XAl = Al/(Al+Si). Partial molar volume of H2O in the melts, , calculated from the H2O-solulbility data assuming ideal mixing of melt-H2O solutions, is 12.5 cm3/mol for Al-free melts and decreases linearly to 8.9 cm3/mol for melts with Al/(Al+Si) ∼ 0.25. However, if recent suggestion that is composition-independent is applied to constrain activity-composition relations of the hydrous melts, the activity coefficient of H2O, , increases with Al/(Al+Si).Solution mechanisms of H2O were obtained by combining Raman and 29Si NMR spectroscopic data. Degree of melt depolymerization, NBO/T, increases with H2O content. The rate of NBO/T-change with H2O is negatively correlated with H2O and positively correlated with Al/(Al+Si). The main depolymerization reaction involves breakage of oxygen bridges in Q4-species to form Q2 species. Steric hindrance appears to restrict bonding of H+ with nonbridging oxygen in Q3 species. The presence of Al3+ does not affect the water solution mechanisms significantly.  相似文献   

13.
Corundum (α-Al2O3) solubility was measured in 0.1-molal CaCl2 solutions from 400 to 600°C between 0.6 and 2.0 kbar. The Al molality at 2 kbar increases from 3.1 × 10−4 at 400°C to 12.7 × 10−4 at 600°C. At 1 kbar, the solubility increases from 1.5 × 10−4m at 400°C to 3.4 × 10−4m at 600°C. These molalities are somewhat less than corundum solubility in pure H2O (Walther, 1997) at 400°C but somewhat greater at 600°C. The distribution of species was computed considering the Al species Al(OH)30 and Al(OH)4, consistent with the solubility of corundum in pure H2O of Walther (1997) and association constants reported in the literature. The calculated solubility was greater than that measured except at 600°C and 2.0 kbar, indicating that neutral-charged species interactions are probably important.A Setchénow model for neutral species resulted in poor fitting of the measured values at 1.0 kbar. This suggests that Al(OH)30 has a greater stability relative to Al(OH)4 than given by the models of Pokrovskii and Helgeson (1995) or Diakonov et al. (1996). The significantly lower Al molalities in CaCl2 relative to those in NaCl solutions at the same concentration confirm the suggestions of Walther (2001) and others that NaAl(OH)40 rather than an Al-Cl complex must be significant in supercritical NaCl solutions to give the observed increase in corundum solubility with increasing NaCl concentrations.  相似文献   

14.
Water is an important volatile component in andesitic eruptions and deep-seated andesitic magma chambers. We report an investigation of H2O speciation and diffusion by dehydrating haploandesitic melts containing ?2.5 wt.% water at 743-873 K and 100 MPa in cold-seal pressure vessels. FTIR microspectroscopy was utilized to measure species [molecular H2O (H2Om) and hydroxyl group (OH)] and total H2O (H2Ot) concentration profiles on the quenched glasses from the dehydration experiments. The equilibrium constant of the H2O speciation reaction H2Om+O?2OH, K = (XOH)2/(XH2OmXO) where X means mole fraction on a single oxygen basis, in this Fe-free andesite varies with temperature as ln K = 1.547-2453/T where T is in K. Comparison with previous speciation data on rhyolitic and dacitic melts indicates that, for a given water concentration, Fe-free andesitic melt contains more hydroxyl groups. Water diffusivity at the experimental conditions increases rapidly with H2O concentration, contrary to previous H2O diffusion data in an andesitic melt at 1608-1848 K. The diffusion profiles are consistent with the model that molecular H2O is the diffusion species. Based on the above speciation model, H2Om and H2Ot diffusivity (in m2/s) in haploandesite at 743-873 K, 100 MPa, and H2Ot ? 2.5 wt.% can be formulated as
  相似文献   

15.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   

16.
The enthalpies of solution of several synthetic garnets on the join Mg3Al2Si3O12-Ca3Al2Si3O12 (pyrope-grossular) and of several synthetic clinopyroxenes on the join CaMgSi2O6-CaAl2SiO6 (diopside-Ca-Tschermak's molecule) were measured in a melt of composition 2PbO · B2O3 at 970 K. The determinations were made with sufficient precision so that thermochemical characterizations of the solid solutions could be achieved.The pyrope-grossular solutions show positive enthalpies of mixing. The non-ideality in the range 0–30 mole % grossular is relatively the largest and is in good agreement with the predictions of Ganguly and Kennedy (1974) based largely on cation partitioning of natural high grade metamorphic garnets with biotite, and with the deductions of Hensenet al. (1975) based on measurement of the compositions of synthetic pyrope-rich garnets equilibrated with anorthite, Al2SiO5 and quartz. However, the garnets show smaller excess enthalpies at higher grossular contents. This would lead to an asymmetric solvus with a critical temperature lower than predicted by the symmetrical regular solution model of Ganguly and Kennedy (1974). The composition-dependent non-ideality can be understood by simple ionic size considerations in solid substitution and is analogous to the situations for the calcite-dolomite and enstatite-diopside solvi.The heats of solution of pyropes crystallized in the range 1000–1500°C were all the same, within the precision of measurement, and thus we have found no evidence for temperature-dependent cation disordering as a possible explanation of the high entropy of pyrope, as suggested by Charluet al. (1975). Positional disorder of dodecahedral Mg is a more probable reason.The diopside-CaTs join is also non-ideal, with the larger positive enthalpy deviations near the diopside end. The calorimetric data in the magnesian range are consistemt with the model for completely disordered tetrahedral Si and Al which results from the free energy derivations of wood (1975) based on syntheses of diopside-rich aluminous pyroxenes in the presence of anorthite and quartz. At higher Al concentrations the calorimetric data seem more consistent with the ‘local charge-balance’ model of Wood (1975).No evidence for temperature-dependent disorder was found for either the diopside or CaTs end-members.  相似文献   

17.
Recent isopiestic studies of the Fe2(SO4)3-H2SO4-H2O system at 298.15 K are represented with an extended version of Pitzer’s ion interaction model. The model represents osmotic coefficients for aqueous {(1 − y)Fe2(SO4)3 + yH2SO4} mixtures from 0.45 to 3.0 m at 298.15 K and 0.0435 ? y ? 0.9370. In addition, a slightly less accurate representation of a more extended molality range to 5.47 m extends over the same y values, translating to a maximum ionic strength of 45 m. Recent isopiestic data for the system at 323.15 K are represented with the extended Pitzer model over a limited range in molality and solute fraction. These datasets are also represented with the usual “3-parameter” version of Pitzer’s model so that it may be incorporated in geochemical modeling software, but is a slightly less accurate representation of thermodynamic properties for this system. Comparisons made between our ion interaction model and available solubility data display partial agreement for rhomboclase and significant discrepancy for ferricopiapite. The comparisons highlight uncertainty remaining for solubility predictions in this system as well as the need for additional solubility measurements for Fe3+-bearing sulfate minerals. The resulting Pitzer ion interaction models provide an important step toward an accurate and comprehensive representation of thermodynamic properties in this geochemically important system.  相似文献   

18.
The sodium solubility in silicate melts in the CaO-MgO-SiO2 (CMS) system at 1400 °C has been measured by using a closed thermochemical reactor designed to control alkali metal activity. In this reactor, Na(g) evaporation from a Na2O-xSiO2 melt imposes an alkali metal vapor pressure in equilibrium with the molten silicate samples. Because of equilibrium conditions in the reactor, the activity of sodium-metal oxide in the molten samples is the same as that of the source, i.e., aNa2O(sample) = aNa2O(source). This design also allows to determine the sodium oxide activity coefficient in the samples. Thirty-three different CMS compositions were studied. The results show that the amount of sodium entering from the gas phase (i.e., Na2O solubility) is strongly sensitive to silica content of the melt and, to a lesser extent, the relative amounts of CaO and MgO. Despite the large range of tested melt compositions (0 < CaO and MgO < 40; 40 < SiO2 < 100; in wt%), we found that Na2O solubility is conveniently modeled as a linear function of the optical basicity (Λ) calculated on a Na-free basis melt composition. In our experiments, γNa2O(sample) ranges from 7 × 10−7 to 5 × 10−6, indicating a strongly non-ideal behavior of Na2O solubility in the studied CMS melts (γNa2O(sample) ? 1). In addition to showing the effect of sodium on phase relationships in the CMS system, this Na2O solubility study brings valuable new constraints on how melt structure controls the solubility of Na in the CMS silicate melts. Our results suggest that Na2O addition causes depolymerization of the melt by preferential breaking of Si-O-Si bonds of the most polymerized tetrahedral sites, mainly Q4.  相似文献   

19.
The rate of spinel (MgAl2O4) growth at the interface between MgO and Al2O3 was investigated systematically at temperatures of 1200° to ∼2000°C and pressures between 1.0 and 4.0 GPa with a solid-media, piston-cylinder apparatus. As reported in previous 1-atm studies, the thickness (ΔX) of the spinel layer increases linearly with the square root of time for experiments differing only in duration, irrespective of pressure-temperature (P-T) conditions. The reaction rate constant (k = ΔX2/2t) is log-linear in 1/T and also in pressure. The apparent activation energy of 410 kJ/mol is independent of pressure; the apparent activation volume increases systematically with increasing temperature. Electron microprobe traverses across the spinel layer reveal a significant Al excess and charge-compensating Mg deficit near the spinel/corundum interface. This nonstoichiometry is promoted by high temperatures (>1500°C), suppressed by high pressures and varies linearly across the spinel to a near-stoichiometric composition at the interface with periclase. The Al and Mg composition gradients can be used to extract interdiffusion coefficients for Al ↔ Mg exchange through the spinel, which are described by D?=2.5×10−6 exp(−28200/T) m2sThese diffusivities differ substantially from the reaction rate constant k, reflecting the fact that k is a combination of the diffusivity and the reaction potential as indicated by the difference in spinel composition across the spinel layer (i.e., coexisting with corundum vs. coexisting with periclase). A simple model can be used to separate the two effects and show that the reaction potential (i.e., the MgO-Al2O3 phase diagram) is sensitive to changes in both temperature and pressure, whereas the governing diffusivity depends only on temperature.  相似文献   

20.
Activity coefficients of oxide components in the system CaO-MgO-Al2O3-SiO2 (CMAS) were calculated with the model of Berman (Berman R. G., “A thermodynamic model for multicomponent melts with application to the system CaO-MgO-Al2O3-SiO2,” Ph.D. dissertation, University of British Columbia, 1983) and used to explore large-scale relationships among these variables and between them and the liquid composition. On the basis of Berman’s model, the natural logarithm of the activity coefficient of MgO, ln(γMgOLiq), and ln(γMgOLiqSiO2Liq) are nearly linear functions of ln(γCaOLiq). All three of these variables are simple functions of the optical basicity Λ with which they display minima near Λ ∼ 0.54 that are generated by liquids with low ratios of nonbridging to tetrahedral oxygens (NBO/T) (<0.3) and a mole fraction ratio, XSiO2Liq/XAl2O3Liq, in the range 4 to 20. Variations in ln(γCaOLiq) at constant Λ near the minimum are due mostly to liquids with (XCaOLiq + XMgOLiq)/XAl2O3Liq < 1. The correlations with optical basicity imply that the electron donor power is an important factor in determining the thermodynamic properties of aluminosilicate liquids.For a constant NBO/T, ln(γCaOLiqAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) form curves in terms of XSiO2Liq/XAl2O3Liq. The same liquids that generate minima in the Λ plots are also associated with minima in ln(γCaOLiqγAl2O3Liq) and ln(γMgOLiqγAl2O3Liq) as a function of XSiO2Liq/XAl2O3Liq. In addition, there are maxima or sharp changes in slope for NBO/T > 0.3, which occur for XSiO2Liq/XAl2O3Liq ranging from ∼0 to ∼6 and increase with increasing NBO/T. The systematic variations in activity coefficients as a function of composition and optical basicity reflect underlying shifts in speciation as the composition of the liquid is changed. On the basis of correlations among the activity coefficients, it is likely that the use of CaO, an exchange component such as SiMg−1 and two of MgO, CaAl2O4, or MgAl2O4 would yield significant savings in the number of parameters required to model the excess free energy surface of liquids over large portions of CMAS relative to the use of oxide end members.Systematic behavior of thermodynamic properties extends to small amounts of other elements dissolved in otherwise CMAS liquids. For example, ln(XFe2+Liq/XFe3+Liq) at constant oxygen fugacity is linearly correlated with ln(γCaOLiq). Similarly, ln(CS), where CS is the sulfide capacity is linearly correlated at constant temperature with each of the optical basicity, ln(aCaOLiq) and ln(γCaOLiq), although the correlation for the latter breaks down for low values of Λ. The well-known systematic behavior of sulfide capacity as a function of optical basicity for systems inside as well as outside CMAS suggests that ln(γCaSLiq) is also a simple function of optical basicity and that the relationships observed among the activity coefficients in CMAS may hold for more complex systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号