首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  国内免费   1篇
地质学   13篇
天文学   1篇
自然地理   2篇
  2015年   1篇
  2013年   2篇
  2011年   1篇
  2007年   2篇
  2005年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1984年   2篇
  1968年   2篇
排序方式: 共有16条查询结果,搜索用时 62 毫秒
1.
Results of empirical research undertaken in New Zealand to determine public perceptions of natural character in the biophysical environment are presented and related to recent theoretical literature. The research comprised two distinct case studies using Q method and photographs, in which participants evaluated natural character in terms of their own landscape experiences by ranking the photographs in order of preference. The results confirm prevailing responses to nature recently specified in North American literature, and have some policy implications for environmental management in New Zealand.  相似文献   
2.
Abstract Fluid inclusion studies of rocks from the late Archaean amphibolite-facies to granulite-facies transition zone of southern India provide support for the hypothesis that CO2,-rich H2O-poor fluids were a major factor in the origin of the high-grade terrain. Charnockites, closely associated leucogranites and quartzo-feldspathic veins contain vast numbers of large CO2-rich inclusions in planar arrays in quartz and feldspar, whereas amphibole-bearing gray gneisses of essentially the same compositions as adjacent charnockites in mixed-facies quarries contain no large fluid inclusions. Inclusions in the northernmost incipient charnockites, as at Kabbal, Karnataka, occasionally contain about 25 mol. % of immiscible H2O lining cavity walls, whereas inclusions from the charnockite massif terrane farther south do not have visibile H2O Microthermometry of CO2 inclusions shows that miscible CH4 and N2 must be small, probably less than 10mol.%combined. Densities of CO2 increase steadily from north to south across the transitional terrane. Entrapment pressures calculated from the CO2 equation of state range from 5 kbar in the north to 7.5 kbar in the south at the mineralogically inferred average metamorphic temperature of 750°C, in quantitative agreement with mineralogic geobarometry. This agreement leads to the inference that the fluid inclusions were trapped at or near peak metamorphic conditions. Calculations on the stability of the charnockite assemblage biotite-orthopyroxene-K-feldspar-quartz show that an associated fluid phase must have less than 0.35 H2O activity at the inferred P and T conditions, which agrees with the petrographic observations. High TiO2 content of biotite stabilizes it to lower H2O activities, and the steady increase of biotite TiO2 southward in the area suggests progressive decrease of aH2O with increasing grade. Oxygen fugacities calculated from orthopyroxene-magnetite-quartz are considerably higher than the graphite CO2-O2 buffer, which explains the absence of graphite in the charnockites. The present study quantifies the nature of the vapours in the southern India granulite metamorphism. It remains to be determined whether CO2-flushing of the crust can, by itself, create large terranes of largeion lithophile-depleted granulites, or whether removal of H2O-bearing anatectic melts is essential.  相似文献   
3.
Lawson, I. T., Gathorne‐Hardy, F. J., Church, M. J., Newton, A. J., Edwards, K. J., Dugmore, A. J. & Einarsson, Á. 2007 (January): Environmental impacts of the Norse settlement: palaeoenvironmental data from Mývatnssveit, northern Iceland. Boreas, Vol. 36, pp. 1–19. Oslo. ISSN 0300–9483. The first stratigraphically continuous pollen profile spanning the Norse and Medieval periods from the archaeologically‐rich Mvatnssveit region of northern Iceland is presented. Detailed analyses were made of the tephra, sediment characteristics, pollen and chironomids of a 3 kyr sediment sequence from Helluvastjörn, a small, shallow lake. The pollen data show a steady decline in the percentage abundance of tree birch (Betula pubescens) pollen between the Norse settlement (landnám, c. AD 870) and c. AD 1300, a pattern that contrasts with the abrupt fall in birch pollen percentages immediately following the Norse colonization at almost all previously studied sites in Iceland. Some lines of evidence suggest that the gradual birch decline could be a result of reworking of soil pollen, but independent evidence suggests that this may not necessarily be the case. The pollen record indicates that birch woodland was replaced by acidophilic taxa (notably Empetrum nigrum and Sphagnum), again contrasting with the more usual pattern of Poaceae expansion seen in post‐landnám pollen diagrams from mires close to farm sites. Chironomid and Pediastrum accumulation data show that the limnic environment became more productive immediately after landnám, probably because of anthropogenic disturbance. An increase in sedimentation rate after landnám appears initially to have been caused by increased lake productivity, while reworked inorganic soil materials became a significant contributor to the sediments after c. AD 1200. The data suggest that the impact of settlement on terrestrial vegetation may have been more variable than previously thought, while freshwater ecosystems experienced significant and rapid change.  相似文献   
4.
Anhydrite solubility in H2O–NaCl solutions was measuredat 6–14 kbar, 600–800°C and NaCl mole fractions(XNaCl) of 0–0·3 in piston–cylinder apparatus.Solubilities were determined by weight changes of natural anhydritein perforated Pt envelopes confined with fluid in larger Ptcapsules. In initially pure H2O at 10 kbar and 800°C, CaSO4concentration is low (0·03 molal), though much largerthan at the same temperature and 1 kbar. Hematite-buffered experimentsshowed slightly lower solubilities than unbuffered runs. CaSO4solubility increases enormously with NaCl activity: at 800°Cand 10 kbar and XNaCl of 0·3, CaSO4 molality is 200 timeshigher than with pure H2O. Whereas CaSO4 solubility in pureH2O decreases with rising T at low T and P, the high-P resultsshow that anhydrite solubility increases with T at constantP at all XNaCl investigated. The effects of salinity and temperatureare so great at 10 kbar that critical mixing between sulfate-richhydrosaline melts and aqueous salt solutions is probable at900°C at XNaCl 0·3. Recent experimental evidencethat volatile-laden magmas crystallizing in the deep crust mayevolve concentrated salt solutions could, in light of the presentwork, have important implications regarding such diverse processesas Mount Pinatubo-type S-rich volcanism, high-f O2 regionalmetamorphism, and emplacement of porphyry Cu–Mo ore bodies,where anhydrite–hematite alteration and fluid inclusionsreveal the action of very oxidized saline solutions rich insulfur. KEY WORDS: anhydrite; sulfur; solubility; metamorphic brines; granulites  相似文献   
5.
Abstract— Oxygen‐isotopic compositions were determined for a suite of enstatite chondrites and aubrites. In agreement with previous work (Clayton et al., 1984), most samples have O‐isotopic compositions close to the terrestrial fractionation line (TFL), and there appear to be no significant differences in O‐isotopic compositions between individual EH and EL chondrites and aubrites. Five enstatite meteorites have O‐isotopic compositions that are significantly different from the other samples and >0.2% away from the TFL. Two of these have petrographic evidence of brecciation and interaction between other meteorite types; for the other three, similar scenarios are suggested. There appears to be a systematic increase in δ18O from enstatite chondrites (both EH and EL) of petrologic type 3 to those of type 6. There is also good evidence that the EH meteorites do not fall along a mass fractionation line but along a line slope 0.66. At the present time, detailed understanding of the origin of these O‐isotopic systematics remain elusive but clearly point to a complex accretion history, parent‐body evolution, or both.  相似文献   
6.
Fe (III) reduction is a key component of the global iron cycle, and an important control on carbon mineralization. However, little is known about the relative roles and rates of microbial (biotic) iron reduction, which utilizes organic matter, versus abiotic iron reduction, which occurs without carbon mineralization. This paper reports on the capacity for salt marsh sediments, which typically are rich in iron, to support abiotic reduction of mineral Fe (III) driven by oxidation of sulphide. Sediment was reacted with amorphous FeS under strictly anaerobic conditions at a range of temperatures in biotic and abiotic microcosm experiments. Fe (III) reduction driven by sulphide oxidation occurs abiotically at all temperatures, leading to Fe (II) and elemental sulphur production in all abiotic experiments. In biotic experiments elemental sulphur is also the oxidized sulphur product but higher bicarbonate production leads to FeCO3 precipitation. Abiotic reduction of Fe (III) occurs at rates that are significant compared with microbial Fe (III) reduction in salt marsh sediments. The solid phases produced by coupled abiotic and biotic reactions, namely elemental sulphur and FeCO3, are comparable to those seen in nature at Warham, Norfolk, UK. Furthermore, the rates of these processes measured in the microcosm experiments are sufficient to generate siderite concretions on the rapid time scales observed in the field. This work highlights the importance of abiotic Fe (III) reduction alongside heterotrophic reduction, which has implications for iron cycling and carbon mineralization in modern and ancient sediments.  相似文献   
7.
8.
The equilibrium conditions for the oxidation reaction of chloritoidto staurolite, magnetite, quartz, and vapor have been determinedexperimentally in the pressure range 10-25 kb using the hematite-magnetitebuffer. At 10 kb total pressure the reaction is in equilibriumat 575 C. At 5 kb a value of 544 C was obtained by extrapolationof the high pressure results with an adjustment for the changingthermodynamic properties of water in the low pressure range. At oxygen fugacities along the nickel-nickel oxide buffer, thethermal stability of chloritoid is promoted by 50-60 C abovethe hematite-magnetite values. Here the breakdown products staurolite,almandine, and magnetite are probably more stable. The recently produced petrographic evidence for the oxidationbreakdown of chloritoid and the relative lack of sensitivityof the reaction to moderate changes in total pressure and oxygenfugacity indicate that it may have potential as an importantindicator on the temperature scale of progressive metamorphism.Several independent temperature estimates of the chloritoidbreakdown event by workers in the field agree very well withthe present value of about 550 C for the oxidation reactionof chloritoid to staurolite, magnetite, quartz, and vapor atthe hematite-magnetite buffer in the pressure range 5-10 kb.  相似文献   
9.
Charnockitic alteration (arrested orthopyroxene formation in biotite- and amphibole-bearing rocks) occurs in high-grade terranes of all ages. Three criteria are used to show that this alteration was produced in many locations by a migrating fluid phase: (i) diffuseness of the alteration—the alteration zones are often quite unlike discrete migmatitic veins; (ii) relation to deformation—most occurrences show alteration closely associated with warping of foliation or dilation cracks; (iii) open-system alteration—whilst some occurrences represent nearly isochemical alteration, slight changes in bulk composition, often loss of mafic constituents and gain of Na and Si, are evident in detailed mass-balance analysis. Y and sometimes Rb are characteristically depleted. Partial melting sometimes accompanied volatile infiltration, as evidenced by more discrete veins and euhedral orthopyroxene. It is quite unlikely, however, that open-system alteration was produced by escape of viscous quartzo-feldspathic melts. Pervasive migration of low-T lamprophyric (mafic–alkaline, CO2-charged) interstitial liquids is a possibility by virtue of their extreme fluidity, but CO2 infiltration was needed to generate these liquids. Vapour-deficient dehydration melting is another feasible mechanism of orthopyroxene formation which may have operated in conjunction with CO2 infiltration. Characteristic development of charnockitic alteration in some prograde amphibolite to granulite facies transitions, as in the Dharwar Craton of South India, suggests that the alteration is a fundamental feature of the granulite facies metamorphism, implying active and causal participation of migrating fluids. In other high-grade terranes like the Adirondack Mountains of New York, this kind of alteration is rare, and fluid action does not seem to have been important in the metamorphism. A vapour phase participating in charnockitic metamorphism was necessarily one of relatively low H2O, therefore presumably rich in CO2. Consideration of possible large CO2 sources leads to the conclusion that emanations from volatile-rich basalts emplaced in the lower crust are the most probable source of charnockitizing fluids. The ultimate source would therefore be enriched subcontinental lithosphere or asthenosphere. The Rb-depleted pyroxene gneiss (charnockitic) terranes may be characteristic of zones of large-scale transcurrent or oblique-motion faults which tap such great depths.  相似文献   
10.
Abstract The enthalpy of reaction of plagioclase and pyroxene to produce garnet and quartz has been a major source of error in granulite geobarometry because of relatively uncertain enthalpy values available from high-temperature solution calorimetry and compiled indirectly from experimental phase equilibria. Recent, improved calorimetric measurements of ΔHR are shown to yield palaeopressures which are internally consistent between orthopyroxene and clinopyroxene calibrations for many South Indian granulites from the Archaean high-grade terranes of southern Karnataka and northern Tamil Nadu. This represents a considerable improvement over previous calibrations, which gave disparate results for the two independent barometers involving orthopyroxene and clinopyroxene, requiring a 2-kbar ‘empirical adjustment’to force agreement. Palaeopressures thus calculated for 30 well-documented two-pyroxene garnet granulites from South India give internally consistent pressures with a mean of 8.1°1.1 kbar at 750°C, consistent with the presence of both kyanite and sillimanite in many areas. Those samples for which garnet–pyroxene exchange thermometers give plausible granulite-range temperatures and whose minerals are minimally zoned give the best agreement of the two barometers. Samples which yield low palaeotemperatures and different rim and core compositions of minerals yield pressures for the orthopyroxene assemblage as much as 2 kbar lower than for the assemblage with clinopyroxene. This disparity probably represents post-metamorphic-peak re-equilibration. We conclude that considerable confidence may be placed in geobarometry of two-pyroxene granulites where apparent palaeotemperatures are in the granulite facies range (>700°C) and where mineral zonation is minimal. Of the several possible sets of activity–composition relations in use, those constructed from analysis of phase equilibria give slightly higher palaeopressures and appear more consistent with analytical data from the Nilgiri Hills uplift, where kyanite is the only aluminium silicate reported to be stable in peak-metamorphic assemblages. The present results support a palaeopressure gradient, increasing generally from south to north, across the Nilgiri Hills as inferred by previous geobarometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号