首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 492 毫秒
1.
The suggested scaling concept for cavitation inception index takes into account boundary layer separation caused by tip vortices, as well as difference in dependencies of boundary layer thickness on Reynolds number for laminar and turbulent boundary layer. Provided asymptotic analysis gives two scaling laws with different values of power for high and low Reynolds numbers. Deduced values correspond well to known experimental data.  相似文献   

2.
《Coastal Engineering》2006,53(5-6):441-462
The structure of large-scale turbulence under a broken solitary wave on a 1 in 50 plane slope was studied. Three-component velocity measurements were taken at different heights above a smooth bed in the middle surf zone using an acoustic Doppler velocimeter. The measured data showed that turbulent velocity components were well correlated in the middle part of the water column. The velocity correlations could be produced by an oblique vortex similar to the obliquely descending eddy observed previously by other investigators. The vertical distributions of the relative values of the components of the Reynolds stress tensor showed that the structure of turbulence evolved continuously between the free surface and the bottom. The evolution was related to transition from two-dimensional to three-dimensional flow structures and the effect of the solid bottom on flow structures. Time histories of measured turbulent kinetic energy and turbulence stresses showed episodic turbulent events near the free surface but more sporadic turbulence in the lower layer. Large or intense turbulent events were found to have short duration and time lag relative to the wave crest point. These events also maintained good correlations between the turbulence velocity components close to the bottom.Instantaneous turbulent velocity fields were measured near the bottom at the same cross-shore location by using a stereoscopic particle image velocimetry system. These measurements showed that the near-bed flow field was characterized by large-scale, coherent flow structures that were the sources of most of the turbulent kinetic energy and turbulence stresses. The types of organized flow structures observed included vortices and downbursts of turbulence descending directly from above, lateral spreading of turbulent fluid along the bed, and formation of vortices in shear layers between fluid streams. A common feature of the organized flow structures near the bed was the large turbulence velocities in the longitudinal and transverse directions, which reflected the influence of a solid bottom on the breaking-wave-generated turbulence arriving at the bed.  相似文献   

3.
The role of the ‘tidal vortex’ in the mechanism of generation of tidal residual circulation is investigated for a bay with a narrow entrance channel. It is shown that the circulation of residual flow is produced not by the vorticity of the inflowing sidewall-boundary layer, but by a tidal vortex formed by rolling up of the discontinuity surface released from the flow separation point at the entrance. This tidal vortex is affected by the circulation of the inflowing water, that is the inflowing tidal vortex. A returning tidal vortex formed in the bay diminishes the circulation of the tidal vortex of the next generation, while the inflowing tidal vortex formed in the open sea increases it. These cases correspond to tidal vortex life-histories of type-II and type-III, respectively (Kashiwai, 1984a). Tidal vortices of each life-history type have different strength and produce residual circulation of different strength, corresponding to each type. The ratio of kinetic energy of residual flow to that of the tidal current through the bay entrance, that is to say the energy gain of the residual circulation, is proportional to the reciprocal of the Strouhal number, and its rate of increase depends on the life-history type of the tidal vortex. This explains the experimental observation reported by Oonishi (1977) and Yanagi (1978) that the energy ratio of residual flow to tidal flow increases with the Reynolds number not monotonously but goes through a maximum and a minimum at intermediate Reynolds number.  相似文献   

4.
The use of the Reynolds number as the only correlating factor for drag force measurements may be inadequate in circumstances involving highly turbulent flows. The results of previous investigations relating to the effects of turbulence scale and intensity are examined. Of special interest is the possibility of a drag minimum, even at low Reynolds number, for a free-stream turbulence intensity of about 5%. This appears to be the result of interaction between the free stream and the boundary layer. As intensity increases beyond 5%, the minimum may be succeeded by an increase in drag to values exceeding the laminar flow values. Further elucidation of the subject is required, particularly because of its importance in various problems related to geophysical flows.  相似文献   

5.
The generalized two-dimensional vortex equation is derived for an incompressible viscous fluid in a rotating system for a vertically averaged flow taking into account the variability of the boundary layer characteristics. The resulting equation contains parameters and their spatial derivatives determined by the second moments of functions describing the vertical profiles of the flow components. Numerical experiments demonstrate the influence of the boundary-layer horizontal inhomogeneity on the evolution of the vorticity field of a pair of atmospheric vortices.  相似文献   

6.
Direct numerical simulation was conducted to investigate the flow past a slotted cylinder at low Reynolds number (Re) of 100. The slotting of cylinder affects the boundary layer separation, vortex formation position, recirculation region length and wake width, which are determined by the type of slit. The streamwise slit (SS1), T-shaped slit (SS3) and Y-shaped slit (SS4) act as passive jets, while the transverse slit (SS2) achieves an alternate self-organized boundary layer suction and blowing. The flow rate in slits fluctuates over time due to the alternate vortex shedding and fluctuating pressure distribution around the cylinder surface. One fluctuation cycle of flow rate is caused by a pair of vortices shedding for SS2, SS3 and SS4, while it is created by each vortex shedding for SS1. The wall shear stress and flow impact on the slit wall partly contribute to the hydrodynamic forces acting on the slotted cylinder. Taking into account the internal wall of slit, the transverse slit plays the best role in suppressing the fluid forces with drag reduction of 1.7% and lift reduction of 17%.  相似文献   

7.
The instantaneous turbulent velocity field produced by a broken solitary wave propagating on a 1 in 50 plane slope was measured in the longitudinal transverse plane in the middle part of the water column and near the bottom using a stereoscopic particle image velocimetry system. These measurements showed that large-scale turbulence first arrived in the form of a downburst of turbulent fluid. In the middle of the water column, the downbursts arrived shortly after the wave crest had passed. Each downburst was accompanied by two counter-rotating vortices. The latter grew rapidly in size to become a prominent feature of the flow field. Each vortex had a typical length scale of 1/2 to 1 water depth, and carried most of the turbulent kinetic energy in the region between the vortices. Near the bottom, the counter-rotating vortices were not as well defined and covered only a small plane area compared to the entire flow structure. The turbulent fluid descending from above diverged at the bed and the resulting flow structure developed an elongated shape as the source of down-flow travelled onshore with the broken wave. It was found that the transverse spacing between adjacent downbursts ranged from 2 to 5 times the local still water depth. Since vortices cannot end in the interior of the fluid, the counter-rotating vortices must extend to the free surface in the form of a vortex loop. It was suggested that these vortex loops were produced by bending and stretching of primary vorticity generated in the wave breaking process, possibly as a result of three-dimensional water surface deformation. The vortex loops were then carried downward by the falling water from the broken wave.  相似文献   

8.
The results of direct numerical simulations of the boundary layer generated at the bottom of a solitary wave are described. The numerical results, which agree with the laboratory measurements of Sumer et al. (2010) show that the flow regime in the boundary layer can be laminar, laminar with coherent vortices and turbulent. The average velocity and bottom shear stress are computed and the results obtained show that the logarithmic law can approximate the velocity profile only in a restricted range of the parameters and at particular phases of the wave cycle. Moreover, the maximum value of the bottom shear stress is found to depend on the dimensionless wave height only, while the minimum (negative) value depends also on the dimensionless boundary layer thickness. Diagrams and simple formulae are proposed to evaluate the minimum and maximum bottom shear stresses and their phase shift with respect to the wave crest.  相似文献   

9.
Tidal residual circulation produced by a tidal vortex   总被引:1,自引:0,他引:1  
“TIDAL VORTEX” is a term for a kind of starting vortex formed as a pair of vortices at the head of a tidal jet emanating from a narrow entrance into a bay. In this study, its formation and movement have been investigated by means of a hydraulic experiment and an analytical model. A tidal vortex is formed as a result of flow separation at the abrupt widening of a channel entrance followed by rolling up of the discontinuity surface around its free end. The vortex shows three types of life-history (type I, II and III), which are characterized by the Strouhal number and the aspect ratio of the horizontal shape of the entrance channel. In the case of type-I, the tidal vortex proceeds toward the inner region of the bay and there amalgamates with successive vortex cores into a core of tidal residual circulation. In the case of type-II, the tidal vortex core flows out into the entrance channel on the ebb but returns back into the bay on the subsequent flood. And, in the case of type-III, the tidal vortex core which was formed on the bay-side opening of the entrance channel flows out to the open sea and never comes back, whereas the core which was formed on the open-sea side of the entrance flows into the bay and never flows out. The circulation of a tidal vortex core is proportional to the reciprocal of the Strouhal number. The movement of the core near the bay entrance is determined by interaction between the cores and transportation due to the irrotational component of the tidal current. There are three types of tidal residual circulation, corresponding to three life-history types of tidal vortices. In the case of type-I, a strong tidal residual circulation is formed, but in type-II a small and weak circulation is formed. While, in type-III, the circulation having an inverse sense of rotation to that of type-I is formed.  相似文献   

10.
《Coastal Engineering》1999,36(2):111-146
A numerical model based upon a low Reynolds number turbulence closure is proposed to study Reynolds number variation in reciprocating oscillatory boundary layers. The model is used to compute the boundary layer for flow regimes ranging from smooth laminar to rough turbulent. Criteria for fully developed turbulence are derived for walls of the smooth and rough types. In particular, a new criterion to identify the rough turbulent regime is determined based on the time-averaged turbulence intensity. The reliability of the present model is assessed through comparisons with detailed experimental data collected by other investigators. The model globally improves upon standard high Reynolds number closures. Variation through the wave cycle of the main flow variables (ensemble-averaged velocity, shear stress, turbulent kinetic energy) is remarkably well-predicted for smooth walls. Predictions are satisfactory for rough walls as well. Yet, the turbulence level in the rough turbulent regime is overpredicted in the vicinity of the bed.  相似文献   

11.
The first results of a laboratory simulation of the Kolmogorov flow on a spherical surface are described. The primary laminar regime was found to be a system of zonal laminar jets of alternating directions. When the first critical value is passed, the primary regime loses its stability, and on its background a secondary vortex quasi-periodic regime with low frequency is formed. With a further increase in the Reynolds number and when the second critical value is passed, this vortex regime becomes unstable and self-excited oscillations emerge in the flow. Specifically, it was found that, if the spherical layer radius is chosen as a length scale, the wavelengths of perturbations in the vortex regime fall in the range of maximum intensity in the spectrum of the horizontal component of wind speed at the tropopause level. We explain the maximum peak shift in the wind spectrum on synoptic time scales when the observational height increases from 3000 km in the surface layer up to 8000?C10000 km in the upper troposphere and lower stratosphere.  相似文献   

12.
High Reynolds number flows around a circular cylinder close to a flat seabed have been computed using a two-dimensional standard high Reynolds number kε turbulence model. The effects of gap to diameter ratio, Reynolds number and flat seabed roughness for a given boundary layer thickness of the inlet flow upstream of the cylinder have been investigated. Hydrodynamic quantities and the resulting bedload transport have been predicted, and the vortex shedding mechanisms have been investigated. Predictions of hydrodynamic quantities around a cylinder located far away from the bed (so that the effect of the bed is negligible) are in satisfactory agreement with published experimental data and numerical results obtained for the flow around an isolated cylinder. Results for lower Reynolds number flows have also been computed for comparison with the high Reynolds number flow results. Overall it appears that the present approach is suitable for design purposes at high Reynolds numbers which are present near the seabed in the real ocean.  相似文献   

13.
Both wind turning with height and ageostrophic flow in a stably stratified atmospheric boundary layer are analyzed using a three-parameter turbulence model. For a quasi-steady state of the boundary layer, the cross-isobaric flow is determined only by turbulent stress at the surface in the direction of geostrophic wind. The “operative” prediction models, in which the first-order turbulence closure schemes are used, tend to overestimate the boundary-layer depth and underestimate the angle between the surface and geostrophic winds when compared to “research” models (schemes of high-level turbulence closure). The true value of the angle between the surface and geostrophic winds is significant for the presentation of a large-scale flow. A nocturnal low-level jet is a mesoscale phenomenon reflected in data obtained from measurements in a stably stratified atmospheric boundary layer. It is found that such jets are of great importance in transporting humidity, momentum, and air pollution. In this study, the difference between jet flows over a homogeneous underlying surface and over a spatially localized large-scale aerodynamic roughness is shown.  相似文献   

14.
海洋上混合层中的次级环流可通过物质和能量的垂直输运和混合过程把海洋表层的热量、动量与物质携带到次表层,对海洋上层次级环流生成机制的研究可以丰富对上层海洋的理解和认识。文中利用线性稳定性理论讨论了经典海表Ekman流的不稳定性,提出Ekman流的不稳定性可生成一种新型的次级环流。这种次级环流的空间尺度与雷诺数、Ekman流的垂向衰减速率、水平湍黏性系数与垂向湍黏性系数比值等密切相关,尺度范围从数十米到数千米。数十米量级的次级环流其垂向结构以及次级环流流轴与主流场偏角都与Langmuir环流的特征极为相似,是Langmuir环流形成机制的一种新解释。千米量级的次级环流能够解释黄海浒苔的条带分布。此外,所得次级环流的流轴与主流之间的偏角与科氏力有显著关系,北半球次级环流流轴偏向主流左侧,南半球反之。  相似文献   

15.
A recently developed fully explicit algebraic model of Reynolds stress and turbulent heat flux in a thermally stratified planetary atmospheric boundary layer without stratification has been used for a numerical study of the Ekman turbulent boundary layer over a homogeneous rough surface for different dimensionless surface Rossby numbers. A comparative analysis has been conducted for a closure model of the transport term in the prognostic equation of turbulent kinetic energy dissipation including third-order moments. Dependences of the total wind rotation angle on the Rossby number have been obtained. The calculated vertical profiles of mean velocity, turbulent stress, turbulent kinetic energy, surface-friction velocity, and boundary-layer height agree satisfactorily with observational and earlier obtained LES data.  相似文献   

16.
A three-dimensional numerical model for large-eddy simulation (LES) of oceanic turbulent processes is described. The numerical formulation comprises a spectral discretization in the horizontal directions and a high-order compact finite-difference discretization in the vertical direction. Time-stepping is accomplished via a second-order accurate fractional-step scheme. LES subgrid-scale (SGS) closure is given by a traditional Smagorinsky eddy-viscosity parametrization for which the model coefficient is derived following similarity theory in the near-surface region. Alternatively, LES closure is given by the dynamic Smagorinsky parametrization for which the model coefficient is computed dynamically as a function of the flow. Validation studies are presented demonstrating the temporal and spatial accuracy of the formulation for laminar flows with analytical solutions. Further validation studies are described involving direct numerical simulation (DNS) and LES of turbulent channel flow and LES of decaying isotropic turbulence. Sample flow problems include surface Ekman layers and wind-driven shallow water flows both with and without Langmuir circulation (LC), generated by wave effects parameterized via the well-known Craik–Leibovich (C–L) vortex force. In the case of the surface Ekman layers, the inner layer (where viscous effects are important) is not resolved and instead is parameterized with the Smagorinsky models previously described. The validity of the dynamic Smagorinsky model (DSM) for parameterizing the surface inner layer is assessed and a modification to the surface stress boundary condition based on log-layer behavior is introduced improving the performance of the DSM. Furthermore, in Ekman layers with wave effects, the implicit LES grid filter leads to LC subgrid-scales requiring ad hoc modeling via an explicit spatial filtering of the C–L force in place of a suitable SGS parameterization.  相似文献   

17.
柱体绕流问题是流体力学领域一个非常经典的问题。当流体流经柱体时,由于黏性的存在,会发生许多复杂的流动现象,如流动分离、涡旋周期性生成与脱落等,经常被作为标准验证算例。同时,柱体绕流广泛存在于实际工程中,并在一定工况下可能对工程产生巨大危害,因此对柱体绕流进行深入研究具有重要意义。研究中,拟将一种无网格类方法——半隐式移动粒子方法(moving particle semi-implicit method,简称MPS)引入到柱体绕流问题的数值研究中,并对不同雷诺数下二维方柱绕流问题进行数值模拟。首先,使用基于MPS方法自主开发的MLParticle-SJTU求解器,结合入口边界条件和出口边界条件,模拟了雷诺数Re分别为40、200和1 000时均匀来流条件下的方柱绕流。随后,将模拟的绕流结果与文献中试验和数值计算结果进行了对比,结果吻合较好,并且在雷诺数为200和1 000时,可以清晰地捕捉到方柱尾流中的卡门涡街现象,验证了MPS方法在柱体绕流问题模拟上的有效性和适用性。  相似文献   

18.
The strong tidal current (tidal jet) in straits generates tidal vortices with a scale of several kilometers. The role of the vortices in material transport was investigated in the Neko Seto Sea, located in the western part of the Seto Inland Sea of Japan. A clockwise vortex with a diameter of about 0.8 km was observed in Nigata Bay (lying between two straits, the Neko Seto Strait and the Meneko Seto Strait). It was concluded that the clockwise vortex was the tidal vortex which was generated by the tidal jet in the Meneko Seto Strait. The vortex moved into the bay with the tide, but tended to stay on the sand bank in the bay. It was confirmed by current measurement with an ADCP and turbidity measurement that the secondary convergent flow was generated in the bottom layer of the vortex. This secondary flow seemed to contribute to the formation of the sand bank. It was suggested that tidal vortices may play an important role in the sediment transport and formation of topography in and around straits.  相似文献   

19.
Yi Rui 《Marine Geodesy》2019,42(1):85-102
Submarine mudflow is one of the most serious geohazards. A new Mini-drum Centrifuge apparatus was developed for use. A series of experiments were performed to investigate the flow behaviour of submarine mud, based on the following aspects: (i) side view; (ii) change in basal pore pressure; (iii) change in water content and (iv) change in the Reynolds number. In this series of centrifuge tests in the subaqueous environment, the submarine mudflow transformed from a highly concentrated mudflow to a turbulent current at a water content of 113% to 121%. Accordingly, the Reynolds number Re, as the threshold of turbulent flow was about 1,150–2,250. Based on the water content measured before and after each test, the water entrainment during the flowing process was minimal for laminar flows, but large for turbulent flows. In addition, the evolution of basal pore pressure was found to be closely related to the regime of submarine mudflow: laminar or turbulent.  相似文献   

20.
A high-quality experimental study including a large number of tests which correspond to full-scale coastal boundary layer flows is conducted using an oscillating water tunnel for flow generations and a Particle Image Velocimetry system for velocity measurements. Tests are performed for sinusoidal, Stokes and forward-leaning waves over three fixed bottom roughness configurations, i.e. smooth, “sandpaper” and ceramic-marble bottoms. The experimental results suggest that the logarithmic profile can accurately represent the boundary layer flows in the very near-bottom region, so the log-profile fitting analysis can give highly accurate determinations of the theoretical bottom location and the bottom roughness. The first-harmonic velocities of both sinusoidal and nonlinear waves, as well as the second-harmonic velocities of nonlinear waves, exhibit similar patterns of vertical variation. Two dimensionless characteristic boundary layer thicknesses, the elevation of 1% velocity deficit and the elevation of maximum amplitude, are found to have power-law dependencies on the relative roughness for rough bottom tests. A weak boundary layer streaming embedded in nonlinear waves and a small but meaningful third-harmonic velocity embedded in sinusoidal waves are observed. They can be only explained by the effect of a time-varying turbulent eddy viscosity. The measured period-averaged vertical velocities suggest the presence of Prandtl's secondary flows of the second kind in the test channel. Among the three methods to infer bottom shear stress from velocity measurements, the Reynolds stress method underestimates shear stress due to missed turbulent eddies, and the momentum integral method also significantly underestimates bottom shear stress for rough bottom tests due to secondary flows, so only the log-profile fitting method is considered to yield the correct estimate. The obtained bottom shear stresses are analyzed to give the maximum and the first three harmonics, and the results are used to validate some existing theoretical models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号