首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
The energy of precipitating particles that cause auroras can be characterized by the ratio of different atom and molecule emissions in the upper atmospheric layers. It is known that the spectrum of precipitating electrons becomes harder when substorms develop. The ratio of the I 6300 red line to the I 5577 green line was used to determine the precipitating-electron spectrum hardness. The I 6300/I 5577 parameter was used to roughly estimate the electron energy in auroral arcs observed in different zones of the auroral bulge at the bulge poleward edge and within this bulge. The variations in the emission red and green lines in auroral arcs during substorms that occurred in the winter season 2007–2008 and in January 2006 were analyzed based on the zenith photometer and all-sky camera data at the Barentsburg and Longyearbyen (LYR) high-latitude observatories. It has been indicated that the average value of the I 6300/I 5577 emission ratio for arcs within the auroral bulge is larger than this value at the bulge poleward edge. This means that the highest-energy electron precipitation is observed in arcs at the poleward edge of the substorm auroral bulge.  相似文献   

2.
This report proposes a plate tectonic model that can explain the Early/Middle Ordovician erosional unconformity observed along much of the western margin of the Appalachian orogen. In order for the model to apply, the Taconic allochthons must represent an outer arc (accretionary wedge) and the related subduction zone and Benioff zone must have dipped east (this report reviews the evidence for these assumptions). If these suppositions are correct, then the observed unconformity may have resulted from upwarp along a peripheral bulge (which occurs seaward of present-day oceanic trenches) as the Ordovician continental margin drifted east into the trench. Theoretical calculations show that the amount of uplift experienced by a continental plate over a peripheral bulge is on the order of the amount of uplift observed on the unconformity in Newfoundland. Furthermore, the sequence of events in Taconic times along the western margin of the Appalachian orogen supports the hypothesis that the paleocontinental margin drifted east over a peripheral bulge and on into the trench. The Ordovician shallow-water carbonate bank on the continental margin of the North American plate was uplifted (peripheral bulge) and then rapidly down-dropped to abyssal depths (continental margin entering trench) where it was first covered by flysch and then structurally overlain by the Taconic allochthons (continental margin underthrusting the outer arc). The present western boundary of the maximum relief on the unconformity would delineate the trend and approximate position of the bulge when the craton jammed the subduction zone and ceased convergence with the island arc (in Caradocian times).  相似文献   

3.
4.
Summary Results of computing the anomalies of the variable magnetic field, generated by a harmonically variable field of the H1,0-type in the model of a spherical Earth with an expressive bulge in the well-conducting part of the mantle, are presented. It was found that not only the radial, but also the tangential component of the magnetic field is disturbed above the bulge. The largest amplitudes of these changes can be observed over the area of the largest slope of the conductivity boundary if the exciting magnetic field is perpendicular to the surface of the interface.  相似文献   

5.
Roble  R. G.  Hays  P. B. 《Pure and Applied Geophysics》1973,106(1):1281-1289
The intensity of stars at wavelengths in the Hartley continuum region of ozone has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the earth's atmosphere. These occultation data have been used to determine the ozone number density profile at the occultation tangent point. The nighttime ozone number density profile has a bulge in its vertical profile with a peak of 1 to 3×108 cm–3 at approximately 83 km and a minimum near 75 km. The ozone number density at high altitudes varies by as much as a factor of 4, but does not show any clear seasonal variation or nighttime variation. The retrieved ozone number density profiles define a data envelope that is compared with other nighttime observations of the ozone number density profile and also the results of theoretical models.Calculations are also presented that illustrate the difference in retrieving the bulge in the ozone number density profile from stellar and solar occultation data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

7.
In order to explain the presence of voluminous volcanic debris avalanche deposits around a stratovolcano, reactivation of vertical faults beneath a volcanic cone has been tested using analogue models. Reactivation of a single vertical fault beneath a cone generates a normal fault and an upturning of the layers creating a bulge on the flank. The upturning induces a flank collapse characterized by a typical horseshoe-shaped scar called an avalanche caldera. Reactivation of two vertical faults beneath a cone also generates a normal fault and a summit bulge. This bulge may result from the movement along a reverse fault. A large collapse is generated within the angle created by the two vertical faults. The angle of the collapse can be up to 140° whereas this angle is typically 120° for a dome intrusion. Collapse is instantaneous and is favoured by the presence of ductile layers (ash-and-pumice formations in the example considered) in a stratovolcano complex. The model may be applicable to volcanoes in a state of dormancy (or extinction) in regions with active regional tectonism. We suggest this mechanism of collapse in the case of the Cantal stratovolcano (Massif Central, France) to explain the presence of voluminous volcanic debris avalanche deposits around this volcano.  相似文献   

8.
The results of three-dimensional calculations of a plasma flow caused by a cosmic nuclear explosion, performed in an MHD approximation, are presented. The main regularities and specific features of the development of a large-scale plasma flow have been analyzed for a later stage (up to several hundreds of seconds) depending on the altitude and plasma bulge energy.  相似文献   

9.
The contribution of resonant wave-particle interactions to the formation and decay of the magnetospheric ring current is analysed in the framework of a self-consistent set of equations which take into account azimuthal plasmasphere asymmetry. It is shown that the cyclotron interaction of westward drifting energetic protons with Alfven waves in the evening-side plasmaspheric bulge region leads to the formation of a ring current asymmetry located near 18:00 MLT. The time-scale of this asymmetry is determined by the proton drift time through the plasmaspheric bulge and is about 1 - 3 h. A symmetrical ring current decays mainly due to charge exchange processes. The theory is compared with known experimental data on ions and waves in the ring current and on low-latitude magnetic disturbances. New low-latitude magnetometer data on the magnetic storm of 24 - 26 July 1986 are also discussed. The model presented explains the observed localization of an asymmetrical ring current loop in the evening sector and the difference in relaxation time-scales of the asymmetry and the Dst index. It also explains measured wave turbulence levels in the evening-side plasmasphere and wave observation statistics.  相似文献   

10.
Summary Direct measurements of the thermal plasma parameters in the topside ionosphere reveal variations of the plasmasphere boundary in the dusk sector. The ACTIVE satellite's near-polar orbits at altitudes of 500 – 1800 km around winter solstice 1989 were used to study the bulge region of the plasmasphere during intervals with different levels of geomagnetic agitation. The narrow, sharply defined trough in electron concentration corresponding to the plasmapause under quiet conditions situated at L = 6 – 7 moved to lower L-values with increasing geomagnetic activity. This narrow trough can be found in all main ion constituents. During periods of moderate geomagnetic activity, following the onset of a weak magnetic storm, a portion of the plasmaspheric bulge region was separated from the main plasmaspheric body. This can be seen in the outer ionosphere as an inner narrow trough at lower L-value. Troughs in light ions need no longer coincide with this in electron concentration. He+ is the most sensitive constituent reflecting the dusk sector plasmaspheric situation at this altitude.Dedicated to the Memory of Professor Karel P  相似文献   

11.
Recent seismic and tectonic activity in Rabaul Caldera, Papua New Guinea, suggests that magma is accumulating at a shallow depth beneath this partially submerged structure and that a new volcano may be developing. Changes in onshore elevation since 1971 (as much as 2 m on south Matupit Island) indicate that rapid and large-scale uplifts have occurred on the seafloor near the center of the caldera. The frequency of seismic events within the caldera has also increased during this period. Earthquake locations define an elliptical ring surrounding the center of this uplift within the caldera.A marine geophysical survey in 1982 by the U.S. Geological Survey's R/V “S.P. Lee” in Rabaul Caldera shows the development of a bulge in the seafloor near the center of the caldera. High-resolution seismic reflection profiles show that this bulge consists of two domal uplifts bounded and separated by two major north-south-trending fault zones. Deformed sediments overlie these zones; a prominent slump flanks the area of the bulge.Five major acoustic units were identified in the seismic reflection profiles: an acoustic basement and four sedimentary units consisting of irregularly layered, cross-layered, contorted, and well-layered sequences. The acoustic basement is probably composed of crystalline volcanic rocks, and the layered acoustic units are probably sediments, primarily ash deposited in different environments. The cross-layered, irregularly layered, and contorted units appear to have been deposited in a dynamic environment subjected to strong currents, seismicity, and/or mass wasting, while the well-layered units were deposited in a low-energy environment. Locally, well-layered sequences interfinger with the other sedimentary units, indicating a transitional environment that alternated between high-energy and low-energy depositional processes.A submarine channel cuts most of the acoustic units and appears to be the conduit for sediment transport out of the caldera; it occupies an older buried channel north of the caldera that is presently being exhumed. In the south, active erosion of well-layered sediments is taking place. What are believed to be several young volcanic cones also disrupt the depositional layers.We conclude that the bulge in the seafloor and the associated fault zones are a result of emplacement of magma at a shallow depth. Contorted sediment and slumps adjacent to the bulge are probably the result of uplift and seismic activity. The pattern of seismicity appears to reflect increased magma pressure at depth beneath the caldera floor. This activity may eventually lead to an eruption.  相似文献   

12.
A three-level nested Regional Ocean Modeling System was used to examine the seasonal evolution of the Copper River (CR) plume and how it influences the along- and across-shore transport in the northern Gulf of Alaska (NGoA). A passive tracer was introduced in the model to delineate the growth and decay of the plume and to diagnose the spread of the CR discharge in the shelf, into Prince William Sound (PWS) and offshore. Furthermore, a model experiment with doubled discharge was conducted to investigate potential impacts of accelerated glacier melt in future climate scenarios. The 2010 and 2011 simulation revealed that the upstream (eastward) transport in the NGoA is negligible. About 60 % of the passive tracer released in the CR discharge is transported southwestward on the shelf, while another one third goes into PWS with close to 60 % of which exiting PWS to the shelf from Montague Strait. The rest few percent is transported across the shelf break and exported to the GoA basin. The downstream transport and the transport into PWS are strongly regulated by the downwelling-favorable wind, while the offshore transport is related to the accumulation of plume water in the shelf, frontal instability, and the Alaskan Stream. It takes weeks in spring for the buoyancy to accumulate so that a bulge forms outside of the CR estuary. The absence of strong storms as in the summer of 2010 allows the bulge continue growing to trigger frontal instability. These frontal features can interact with the Alaskan Stream to induce transport pulses across the shelf break. Alternatively as in 2011, a downwelling-favorable wind event in early August (near the peak discharge) accelerates the southwestward coastal current and produces an intense downstream transport event. Both processes result in fast drains of the buoyancy and the plume content, thereby rapid disintegration of the plume in the shelf. The plume in the doubled discharge case can be two to three times in size, which affects not only the magnitude but also the timing of certain transport events. In particular, the offshore transport increases by several folds because the plume appears to be more easily entrained by the seaward flow along the side of Hinchinbrook Canyon.  相似文献   

13.
The data from seismic stations of the Arkhangelsk network and the networks in the neighboring territories are analyzed for refining the focal parameters of the tectonic earthquakes recorded in the north of the Russian plate on October 22, 2005 (M = 2.9) and March 28, 2013 (M = 3.4). The epicenters of the earthquakes are confined to the large NW–SE striking faults which border the Arkhangelsk bulge starting from the Kara–Pinega rift in the northeast and Onega–Kandalaksha paleorift in the southwest. The calculated focal mechanism of the earthquake of March 28, 2013 agrees with the distribution of neotectonic stresses characteristic of the north of the Russian plate, and specifically, with the submeridional compression and sublatitudinal extension.  相似文献   

14.
勘探实践证实,准噶尔盆地石炭系已成为一套现实勘探层系;陆东-五彩湾地区石炭系火山岩体规模大、分布广,是重要的天然气储集体;火山岩储层有效性主要受不整合、岩性、岩相控制,识别火山结构、火山岩岩性、岩相成为判别储层有效性的关键.由于主要目的层巴塔玛依内山组特殊的三段式火山岩组合层序结构,为通过测井、地震物探手段识别火山岩岩...  相似文献   

15.
A long-term salt balance model is coupled with the small catchment water balance model presented in Part 1 of this series of papers. The salt balance model was designed as a simple robust, conceptually based model of the fundamental salt fluxes and stores in forested and cleared catchments. The model has four interdependent stores representing salt storage in the unsaturated zone, the deep permanent saturated groundwater system, the near-stream perched groundwater system and in a ‘salt bulge’ just above the permanent water-table. The model has performed well in simulations carried out on Salmon and Wights, two small experimental catchments in south-west Western Australia. When applied to Wights catchment the salt balance model was able to predict the stream salinities prior to clearing of native forests, and the increased salinities after the clearing.  相似文献   

16.
Two-dimensional (cross-shelf and depth) circulation by downwelling wind in the presence of a prograding front (with isopycnals that slope in the same direction as the topographic slope) over a continental shelf is studied using high-resolution numerical experiments. The physical process of interest is the cross-shelf circulation produced by northeasterly monsoon winds acting on the Kuroshio front over the East China Sea outer shelf and shelfbreak where upwelling is often observed. However, a general problem is posed and solved by idealized numerical and analytical models. It is shown that upwelling is produced shoreward of the front. The upwelling is maintained by (1) a surface bulge of negative vorticity at the head of the front; (2) bottom offshore convergence beneath the front; and (3) in the case of a surface front that is thin relative to water depth, also by upwelling due to the vorticity sheet under the front. The near-coast downwelling produces intense mixing due to both upright and slant-wise convection in regions of positive potential vorticity. The analytical model shows that the size and on-shore propagating speed of the bulge are determined by the wind and its shape is governed by a nonlinear advection–dispersion equation which yields unchanging wave-form solutions. Successive bulges can detach from the front under a steady wind. Vertical circulation cells develop under the propagating bulges despite a stable stratification. These cells can have important consequences to vertical exchanges of tracers and water masses.  相似文献   

17.
—The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is used to investigate the mutual response of a tropical squall line and the ocean. Simulated squall line compares well with the observations, and consists of counterrotating vortices, and has a bow shape bulge toward the leading edge. In addition to these features, which are also shown in the previous numerical simulations, the unique results from the coupled simulation indicate that the air–sea interaction processes within the squall line are important. They affect both the atmosphere and the ocean locally. Simulated upper ocean displays significant response to the squall line with upwelling and baroclinicity. Depth of the ocean mixed layer in the coupled simulation becomes modified due to feedback processes. Ocean temperature acts as a destabilizing factor, and the salinity as a stabilizing factor. Surface turbulent fluxes from the coupled simulation are about 10% less than that of the uncoupled simulation. The SST in the coupled simulation decreases by about 0.21°C. Predicted squall line in the coupled simulation is weaker as compared to the uncoupled simulation. This is reflected in terms of differences in surface fluxes, cloud water, rain water and vertical velocities between the two simulations.  相似文献   

18.
青海拉脊山断裂带新活动特征的初步研究   总被引:10,自引:0,他引:10  
拉脊山断裂带由拉脊山北缘断裂和拉脊山南缘断裂两条向NE凸出的弧形断裂所组成,分别长约230km和220km。它们是介于NNW向的热水一日月山右旋走滑断裂带和NWW向的西秦岭北缘左旋走滑断裂带之间的一个大型挤压构造区和构造转换带,也是分隔拉脊山南北两侧的西宁一民和盆地和循化一化隆盆地的重要边界断裂。沿断裂带的追踪考察,发现了其新活动的部分地质地貌证据。其最新活动时代为晚更新世晚期(仅局部为全新世早期),性质以挤压逆冲为主稍具左旋特征。该断裂的新活动可能导致了该区20余次5级左右中等地震的发生。可以说,拉脊山地区既是反映构造活动,又是反映地震活动的地震构造窗。  相似文献   

19.
本文分析了四种影响等离子体层顶突起位置的因素:(1)对流电场Ex分量的存在;(2)白天和夜间的Ey分量的不对称性;(3)偏心极光椭圆带;(4)Ey分量的突然变化。文章着重讨论了在平静时和在磁活动性增强时正Ex分量存在的可能性。文章肯定了Volland电场模型,但指出它存在某些缺点,建议做进一步改进。  相似文献   

20.
Processes generating block and ash flows by gravitational dome collapse (Merapi-type pyroclastic flow) were observed in detail during the 1990–1995 eruption of Unzen volcano, Japan. Two different types were identified by analysis of video records and observations during helicopter flights. Most of the block and ash flows erupted during the 1991–1993 exogenous dome growth stage initially involved crack propagation due to cooling and flowage of the dome lava lobes. The mass around the crack became unstable, locally decreasing in tensile strength. Finally, a slab separated from the lobe front, fragmented progressively from the base to the top within a few seconds, and became a block and ash flow. Rock falls immediately followed, in response to local instability of the lobe front. Clasts in these rock falls fragmented and merged with the preceding flow. In contrast, block and ash flows during the endogenous dome growth stage in 1994 were generated due to local bulge of the dome. Unstable lava blocks collapsed and subsequently fragmented to produce block and ash flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号