首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 543 毫秒
1.
Sierra de Segura (Betic Cordillera), with a total area of over 3000 km2, is the source of the two principal rivers in southern Spain, the Guadalquivir and the Segura. Due to the orographic effect of these mountains, precipitations are considerably more abundant than in nearby lowland areas, where the climate is semi-arid. Sierra de Segura is constituted of Mesozoic and Cenozoic sedimentary rocks, among which there are thick limestone–dolomitic formations which have given rise to extensive outcrops of permeable materials. In geomorphological terms, there is a large plateau intensively karstified that constitutes the main recharge area. Discharge takes place via a large number of springs, of which the 50 most important add up to a mean spring flow of about 13,500 l/s. The active geochemical processes in aquifers of Sierra de Segura, with their corresponding time sequence, are: dissolution of CO2, dissolution of calcite, incongruent dissolution of dolomite, dedolomitization, exsolution of CO2, and precipitation of calcite. More evolved water has higher temperature, magnesium content and Mg/Ca ratio; therefore, these parameters can be utilised as indicators of the degree of hydrochemical evolution. In addition, a good correlation between water temperature and magnesium concentration (or Mg/Ca ratio) indicates that an increase in temperature accelerates the kinetics of the dissolution of dolomite. Finally, the distribution of the temperatures in the vadose zone, determined by atmospheric thermal gradient, implies an apparent stratification of the predominant hydrochemical processes and of the groundwater physical and chemical characteristics.  相似文献   

2.
Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain.  相似文献   

3.
Major‐ion compositions of groundwater are employed in this study of the water–rock interactions and hydrogeochemical evolution within a carbonate aquifer system. The groundwater samples were collected from boreholes or underground tunnels in the Ordovician limestone of Yanzhou Coalfield where catastrophic groundwater inflows can be hazardous to mining and impact use of the groundwater as a water supply. The concentration of total dissolved solid (TDS) ranged from 961 to 3555 mg/l and indicates moderately to highly mineralized water. The main water‐type of the middle Ordovician limestone groundwater is Ca‐Mg‐SO4, with SO42‐ ranging from 537 to 2297 mg/l, and average values of Ca2+ and Mg2+ of 455.7 and 116.6 mg/l, respectively. The water samples were supersaturated with respect to calcite and dolomite and undersaturated or saturated with respect to gypsum. Along the general flow direction, deduced from increases of TDS and Cl, the main water–rock interactions that caused hydrogeochemical evolution of the groundwater within the aquifer were the dissolution of gypsum, the precipitation of calcite, the dissolution or precipitation of dolomite, and ion exchange. Ion exchange is the major cause for the lower mole concentration of Ca2+ than that of SO42‐. The groundwater level of Ordovician aquifer is much higher than that of C‐P coal‐bearing aquifers, so the potential flow direction is upward, and the pyrite in coal is not a possible source of sulfate; additional data on the stable sulfur and oxygen isotopic composition of the sulfate may be helpful to identify its origin. Although ion exchange probably accounts for the higher mole concentration of Na+ than that of Cl, the dissolution of aluminosilicate cannot be ruled out. The data evaluation methods and results of this study could be useful in other areas to understand flow paths in aquifers and to provide information needed to identify the origin of groundwater. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
To improve understanding of Ca isotope transport during water-rock interaction on the continents, we measured dissolved δ44Ca values along a 236 km flow path in the Madison aquifer, South Dakota, where fluids have chemically evolved according to dolomite and anhydrite dissolution, calcite precipitation, and Ca-for-Na ion-exchange over a timescale spanning ~ 15 kyr. We used a reactive transport model employing rate data constrained from major ion mass-balances to evaluate the extent to which calcite precipitation and ion-exchange fractionate Ca isotopes. Elevated δ44Ca values during the initial and final stages of water transport possibly result from calcite precipitation under supersaturated conditions and Ca-for-Na ion-exchange, respectively. However, for the bulk of the flow path, δ44Ca values evolve by mixing between anhydrite and dolomite dissolution, with no fractionation during calcite precipitation under saturated conditions. We attribute the absence of Ca isotope fractionation to the long timescale of water-rock interaction and slow rate of calcite precipitation, which have enabled fluids to chemically and isotopically equilibrate with calcite. We therefore conclude that the equilibrium Ca isotope fractionation factor between calcite and water (Δcal–w) is very close to zero. To the extent that the Madison aquifer typifies other groundwater systems where calcite slowly precipitates from solutions at or near chemical equilibrium, this study suggests that groundwater contributions to δ44Ca variability on the continents can be modeled according to simple mixing theory without invoking isotope discrimination.  相似文献   

5.
The Agua Negra drainage system (30 12′S, 69 50′ W), in the Argentine Andes holds several ice‐ and rock‐glaciers, which are distributed from 4200 up to 6300 m a.s.l. The geochemical study of meltwaters reveals that ice‐glaciers deliver a HCO3?? Ca2+ solution and rock‐glaciers a SO42?? HCO3?? Ca2+ solution. The site is presumably strongly influenced by sublimation and dry deposition. The main processes supplying solutes to meltwater are sulphide oxidation (i.e. abundant hydrothermal manifestations), and hydrolysis and dissolution of carbonates and silicates. Marine aerosols are the main source of NaCl. The fine‐grained products of glacial comminution play a significant role in the control of dissolved minor and trace elements: transition metals (e.g. Mn, Zr, Cu, and Co) appear to be selectively removed from solution, whereas some LIL (large ion lithophile) elements, such as Sr, Cs, and major cations, are more concentrated in the lowermost reach. Daily concentration variation of dissolved rare earth elements (REE) tends to increase with discharge. Through PHREEQC inverse modelling, it is shown that gypsum dissolution (i.e. sulphide oxidation) is the most important geochemical mechanism delivering solutes to the Agua Negra drainage system, particularly in rock‐glaciers. At the lowermost reach, the chemical signature appears to change depending on the relative significance of different meltwater sources: silicate weathering seems to be more important when meltwater has a longer residence time, and calcite and gypsum dissolution is more conspicuous in recently melted waters. A comparison with a non‐glacierized semiarid drainage of comparable size shows that the glacierized basin has a higher specific denudation, but it is mostly accounted for by relatively soluble phases (i.e. gypsum and calcite). Meltwater chemistry in glacierized arid areas appears strongly influenced by sublimation/evaporation, in contrast with its humid counterparts. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Thermal springs associated with normal faults in Utah have been analyzed for major cations and anions, and oxygen and hydrogen isotopes. Springs with measured temperatures averaging greater than 40°C are characterized by Na + K- and SO4 + Cl-rich waters containing 103 to 104 mg/l of dissolved solids. Lower temperature springs, averaging less than 40°C, are more enriched in Ca + Mg relative to Na + K. Chemical variations monitored through time in selected thermal springs are probably produced by mixing with non-thermal waters. During the summer months at times of maximum flow, selected hot springs exhibit their highest temperatures and maximum enrichments in most chemical constituents.Cation ratios and silica concentrations remain relatively constant through time for selected Utah thermal springs assuring the applicability of the geothermometer calculations regardless of the time of year. Geothermometer calculations utilizing either the quartz (no steam loss), chalcedony or Mg-corrected Na/K/Ca methods indicate that most thermal springs in Utah associated with normal faults have subsurface temperatures in the range of 25 to less than 120°C. This temperature range suggests fluid circulation is restricted to depths less than about three kilometers assuming an average thermal gradient of about 40°C/km.Thermodynamic calculations suggest that most thermal springs are oversaturated with respect to calcite, quartz, pyrophyllite, (Fe, Mg)-montmorillonite, microcline and hematite, and undersaturated with respect to anhydrite, gypsum, fluorite and anorthite. Chalcedony and cristobalite appear to be the only phases consistently at or near saturation in most waters. Theoretical evaluation of mixing on mineral saturation trends indicates that anhydrite and calcite become increasingly more undersaturated as cold, dilute groundwater mixes with a hot (150°C), NaCl-rich fluid. The evolution of these thermal waters issuing from faults appears to be one involving the dissolution of silicates such as feldspars and micas by CO2-enriched groundwaters that become more reactive with increasing temperature and/or time. Solution compositions plotted on mineral equilibrium diagrams trend from product phases such as kaolinite or montmorillonite toward reactant phases dominated by alkali feldspars.Isotopic compositions indicate that these springs are of local surface origin, either meteoric (low TDS, < 5000 mg/l) or connate ground water (high TDS, > 5000 mg/l). Deviations from the meteoric water line are the result of rock-water isotopic exchange, mixing or evaporation. Fluid source regions and residence times of selected thermal spring systems (Red Hill, Thermo) have been evaluated through the use of a σ D-contour map of central and western Utah. Ages for waters in these areas range from about 13 years to over 500 years. These estimates are comparable to those made for low-temperature hydrothermal systems in Iceland.  相似文献   

7.
Over 180 springs emerge in the Panamint Range near Death Valley National Park, CA, yet, these springs have received very little hydrogeological attention despite their cultural, historical, and ecological importance. Here, we address the following questions: (1) which rock units support groundwater flow to springs in the Panamint Range, (2) what are the geochemical kinetics of these aquifers, and (3) and what are the residence times of these springs? All springs are at least partly supported by recharge in and flow through dolomitic units, namely, the Noonday Dolomite, Kingston Peak Formation, and Johnnie Formation. Thus, the geochemical composition of springs can largely be explained by dedolomitization: the dissolution of dolomite and gypsum with concurrent precipitation of calcite. However, interactions with hydrothermal deposits have likely influenced the geochemical composition of Thorndike Spring, Uppermost Spring, Hanaupah Canyon springs, and Trail Canyon springs. Faults are important controls on spring emergence. Seventeen of twenty-one sampled springs emerge at faults (13 emerge at low-angle detachment faults). On the eastern side of the Panamint Range, springs emerge where low-angle faults intersect nearly vertical Late Proterozoic, Cambrian, and Ordovician sedimentary units. These geologic units are not present on the western side of the Panamint Range. Instead, springs on the west side emerge where low-angle faults intersect Cenozoic breccias and fanglomerates. Mean residence times of springs range from 33 (±30) to 1,829 (±613) years. A total of 11 springs have relatively short mean residence times less than 500 years, whereas seven springs have mean residence times greater than 1,000 years. We infer that the Panamint Range springs are extremely vulnerable to climate change due to their dependence on local recharge, disconnection from regional groundwater flow (Death Valley Regional Flow System - DVRFS), and relatively short mean residence times as compared with springs that are supported by the DVRFS (e.g., springs in Ash Meadows National Wildlife Refuge). In fact, four springs were not flowing during this campaign, yet they were flowing in the 1990s and 2000s.  相似文献   

8.
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

9.
The carbon isotopic composition of diagenetic dolomite and calcite in some sediments of the Gulf of Mexico varies between “normal-marine” (δ13C ca. 0‰) and −14.6‰ which suggests that biogenic CO2 contributed to the carbonate formation. The δ13O values of dolomite and coexisting calcite are very similar but variable down-core.Dolomite and calcite precipitated early from pore water where SO42− was not reduced. However, during (and after?) SO42− reduction dolomite and calcite still formed and there are at least two generations of carbonate minerals present.  相似文献   

10.
With the increasing demand for water resources, the utilization of marginal water resources of poor-quality has become a focus of attention. The brackish water developed in the Loess Plateau is not only salty but also famous for its ‘bitterness’. In the present work, multi-isotope analysis (Sr, B) was combined with geochemical analysis to gain insight into the hydrogeochemical evolution and formation mechanisms of brackish water. These results demonstrate that groundwater in the headwater is influenced by carbonate weathering. After the confluence of several tributaries in the headwater, the total dissolved solids (TDS) of water is significantly increased. The dissolution of evaporates is shown to be the main source of salinity in brackish water, which also greatly affects the strontium isotopic composition of water. This includes the dissolution of Mg-rich minerals, which is the main cause of the bitterness. Furthermore, the release of calcium from the dissolution of gypsum may induce calcite precipitation and incongruent dissolution of dolomite, which also contributes to the enrichment of magnesium. The highly fractionated boron isotopic values observed in the upstream groundwater were explained by the absorption with clay minerals. The inflow of brackish groundwater is the source of river water. Then evaporation further aggravates the salinization of river water, with water quality evolving to saline conditions in the lower reach. When the river reaches the valley plain, the 87Sr/86Sr ratios decreases significantly, which is primarily related to erosion of the riverbanks during runoff. These results indicate that water resource sustainability could be enhanced by directing focus to mitigating salinization in the source area of the catchment.  相似文献   

11.
Study Area is located in the southwestern part of Bangalore South Taluk, Bangalore district, Karnataka state between 12°48??24.52?? to 12°53??59.85?? North latitude and 77°24??59.95?? to 77°30??6.72?? East Longitude. The major hydro-chemical facies that predominates in the study area is Ca2+-Mg2+-HCO 3 ? type during both pre- and post-monsoon seasons of the year 2007, could be as a result of dissolution of carbonate minerals like calcite and dolomite prevailing in the study area. However, cation-exchange processes could be responsible for the formation of the Ca2+-Mg2+-Cl?-SO 4 2? water type (??32%) from the CaSO4, MgCO3 and NaCl type that are formed due to the dissolution of anhydrite, gypsum, magnesite and halite. Besides, suitability of water for irrigation is evaluated based on sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard and USSL diagram. Hydrogeochemical speciation model calculations carried out using WATEQ4F program showed similar seasonal variation in the concentration of saturation indices of specific mineral phases, majority of the samples kinetically saturated with carbonate minerals (viz., aragonite, calcite and dolomite) indicating the influence of carbonate mineral phases on the chemistry of groundwater. On one hand, the samples were significantly oversaturated with Florapatite while on the other, they were undersaturated with respect to with anhydrite, gypsum and fluorite with halite being highly undersaturated. The Gibbs plots also gave an indication that there exists an interaction between rock and the percolating water into the subsurface by means of mineral dissolution. Factor analysis determined two factors mainly responsible for water quality during pre- and post-monsoon seasons, accounting to 52.84% and 51.09% of total variance respectively. Q-mode HCA Cluster analysis grouped the sampling stations into three clusters based on the similarity of water quality while R-mode HCA grouped analyzed parameters into two groups based on the effects of factors in the hydrochemistry.  相似文献   

12.
Significant uncertainty remains in understanding the groundwater flow pathways in the northeastern Qinghai–Tibet Plateau. Hydrogeochemical and isotopic data as well as hydrogeological data were combined to explore the groundwater flow path in a representative cold alpine catchment in the headwater region of the Heihe River. The results indicate that the suprapermafrost groundwater chemical components were mainly affected by calcite dissolution and evaporation, whereas the geochemistry of subpermafrost groundwater was controlled by dolomite and gypsum dissolution, calcite precipitation, and albite and halite dissolution. Distinct hydrogeochemical characteristics and controlling processes suggest a poor hydraulic connectivity between the suprapermafrost and subpermafrost groundwater. The hydraulic connectivity between permafrost groundwater and groundwater in the seasonally frozen area was confirmed by their similar hydrogeochemical features. In the seasonally frozen area, a silty clay layer with low permeability separates the aquifer into the deep (depth >20 m) and shallow (depth <20 m) flow paths. The deep groundwater was characterized by the enhanced dedolomitization and enhanced cation exchange processes compared with the shallow groundwater. Groundwater in the seasonally frozen area finally discharges as base flow into the stream. These results provide useful information about the groundwater flow systems in the unique alpine gorge catchments in Qinghai–Tibet Plateau. The above findings suggest that the permafrost distribution and the aquifer structures within the seasonally frozen area have significant impact on groundwater flow paths. Cross‐validation by drilling work and hydrograph data confirms that the hydrogeochemical and isotopic tracers combined with field investigations can be relatively low‐cost tools in interpreting the groundwater flow paths in similar alpine catchments.  相似文献   

13.
Caves deliver freshwater from coastal carbonate landscapes to estuaries but how these caves form and grow remains poorly understood. Models suggest fresh and salt water mixing drives dissolution in eogenetic limestone, but have rarely been validated through sampling of mixing waters. Here we assess controls on carbonate mineral saturation states using new and legacy geochemical data that were collected in vertical profiles through three cenotes and one borehole in the Yucatan Peninsula. Results suggest saturation states are primarily controlled by carbon fluxes rather than mixing. Undersaturation predicted by mixing models that rely on idealized end members is diminished or eliminated when end members are collected from above and below actual mixing zones. Undersaturation due to mixing is limited by CO2 degassing from fresh water in karst windows, which results in calcite supersaturation. With respect to saline groundwater, controls on capacity for mixing dissolution were more varied. Oxidation of organic carbon increased pCO2 of saline groundwater in caves (pCO2 = 10–2.06 to 10–0.96 atm) relative to matrix porosity (10–2.39 atm) and local seawater (10–3.12 atm). The impact of increased pCO2 on saturation state, however, depended on the geochemical composition of the saline water and the magnitude of organic carbon oxidation. Carbonate undersaturation due to mixing was limited where gypsum dissolution (Cenote Angelita) or sulfate reduction (Cenote Calica) increased concentrations of common ions (Ca2+ or HCO3?, respectively). Maximum undersaturation was found to occur in mixtures including saline water that had ion concentrations and ratios similar to seawater, but with moderately elevated pCO2 (Cenote Eden). Undersaturation, however, was dominated by the initial undersaturation of the saline end member, mixing was irrelevant. Our results add to a growing body of literature that suggests oxidation of organic carbon, and not mixing dissolution, is the dominant control on cave formation and enlargement in coastal eogenetic karst aquifers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The Sierra Gorda aquifer is one of the most extensive of southern Spain. The main groundwater discharge is produced at its northern boundary through several high‐flow springs. In this study, stable isotopes of dissolved sulfate (δ34S and δ18O) and groundwater chemistry were used to determine the origin of the sulfate and to characterize the groundwater flow. We sampled the main springs, as well as other minor outlets related to perched water tables, in order to determine the different sources of SO42? (e.g., dissolution of evaporites and atmospheric deposition). The substantial difference in the amount of dissolved SO42? between the springs located in its northwestern part (≈25 mg/L) and those elsewhere in the northern part (≈60 mg/L) suggests zones with separate groundwater flow systems. A third group of springs, far from the northeastern boundary of the permeable outcrops, shows higher SO42? content than the rest (≈125 mg/L). The isotopic range of sulfate (?0.3‰ to 14.82‰ V‐CTD) points to several sources, including dissolution of Triassic or Miocene evaporites, atmospheric deposition, and decomposition of organic material in the soil. Among these, the dissolution of Triassic gypsum—which overlies the saturated zone as a consequence of the folds and faults that deform the aquifer—is the main source of SO42? (range from 12.79‰ to 14.82‰ V‐CTD). This range is typical for Triassic gypsum. The higher karstification in the western sector, together with important differences in the saturated thickness between the western and eastern sectors, would also be due to the tectonic structure and could explain the difference in SO42? contents in the water. This singular arrangement may cause a higher residence time of groundwater in the eastern sector; thus, a higher contact time with Triassic evaporitic rocks is inferred. Accordingly, the stable isotopes of SO42? are found to be a valuable tool for identifying areas with different flow systems in the saturated zone of karstic aquifers, as well as for evaluating aspects such as the degree of karstification .  相似文献   

15.
This study is undertaken to understand how calcite precipitation and dissolution contributes to depth-related changes in porosity and permeability of gas-bearing sandstone reservoirs in the Kela 2 gas field of the Tarim Basin, Northwestern China. Sandstone samples and pore water samples are col-lected from well KL201 in the Tarim Basin. Vertical profiles of porosity, permeability, pore water chem-istry, and the relative volume abundance of calcite/dolomite are constructed from 3600 to 4000 m below the ground surface within major oil and gas reservoir rocks. Porosity and permeability values are in-versely correlated with the calcite abundance, indicating that calcite dissolution and precipitation may be controlling porosity and permeability of the reservoir rocks. Pore water chemistry exhibits a sys-tematic variation from the Na2SO4 type at the shallow depth (3600-3630 m), to the NaHCO3 type at the intermediate depth (3630―3695 m),and to the CaCl2 type at the greater depth (3728―3938 m). The geochemical factors that control the calcite solubility include pH, temperature, pressure, Ca2 concen-tration, the total inorganic carbon concentration (ΣCO2), and the type of pore water. Thermodynamic phase equilibrium and mass conservation laws are applied to calculate the calcite saturation state as a function of a few key parameters. The model calculation illustrates that the calcite solubility is strongly dependent on the chemical composition of pore water, mainly the concentration difference between the total dissolved inorganic carbon and dissolved calcium concentration (i.e., [ΣCO2] -[Ca2 ]). In the Na2SO4 water at the shallow depth, this index is close to 0, pore water is near the calcite solubility. Calcite does not dissolve or precipitate in significant quantities. In the NaHCO3 water at the intermedi-ate depth, this index is greater than 0, and pore water is supersaturated with respect to calcite. Massive calcite precipitation was observed at this depth interval and this intensive cementation is responsible for decreased porosity and permeability. In the CaCl2 water at the greater depth, pore water is un-der-saturated with respect to calcite, resulting in dissolution of calcite cements, as consistent with microscopic dissolution features of the samples from this depth interval. Calcite dissolution results in formation of high secondary porosity and permeability, and is responsible for the superior quality of the reservoir rocks at this depth interval. These results illustrate the importance of pore water chemis-try in controlling carbonate precipitation/dissolution, which in turn controls porosity and permeability of oil and gas reservoir rocks in major sedimentary basins.  相似文献   

16.
17.
Identifying the key factors controlling groundwater chemical evolution in mountain-plain transitional areas is crucial for the security of groundwater resources in both headwater basins and downstream plains. In this study, multivariate statistical techniques and geochemical modelling were used to analyse the groundwater chemical data from a typical headwater basin of the North China Plain. Groundwater samples were divided into three groups, which evolved from Group A with low mineralized Ca-HCO3 water, through Group B with moderate mineralized Ca-SO4-HCO3 water, to Group C with highly saline Ca-SO4 and Ca-Cl water. Water-rock interaction and nitrate contamination were mainly responsible for the variation in groundwater chemistry. Groundwater chemical compositions in Group A were mainly influenced by dissolution of carbonates and cation exchange, and suffered less nitrate contamination, closely relating to their locations in woodland and grassland with less pronounced human interference. Chemical evolution of groundwater in Groups B and C was gradually predominated by the dissolution of evaporites, reverse ion exchange, and anthropogenic factors. Additionally, the results of the inverse geochemical model showed that dedolomitization caused by gypsum dissolution, played a key role in the geochemical evolution from Group A to Group B. Heavy nitrate enrichment in most groundwater samples of Groups B and C was closely associated with the land-use patterns of farmland and residential areas. Apart from the high loads of chemical fertilizers in irrigation return flow as the main source for nitrate contamination, the stagnant zones, flood irrigation pattern, mine drainage, and groundwater-exploitation reduction program were also important contributors for such high mineralization and heavy NO3 contents in Group C. The important findings of this work not only provide the conceptual framework for the headwater basin but also have important implications for sustainable management of groundwater resources in other headwater basins of the North China Plain.  相似文献   

18.
Abstract

In order to evaluate groundwater quality and geochemical reactions arising from mixing between seawater and dilute groundwater, we performed a hydrochemical investigation of alluvial groundwater in a limestone-rich coastal area of eastern South Korea. Two sites were chosen for comparison: an upstream site and a downstream site. Data of major ion chemistry and ratios of oxygen–hydrogen isotopes (δ18O, δD) revealed different major sources of groundwater salinity: recharge by sea-spray-affected precipitation in the upstream site, and seawater intrusion and diffusion zone fluctuation in the downstream site. The results of geochemical modelling showed that Ca2+ enrichment in the downstream area is caused by calcite dissolution enhanced by the ionic strength increase, as a result of seawater–groundwater mixing under open system conditions with a constant PCO2 value (about 10?1.5 atm). The results show that, for coastal alluvial groundwater residing on limestone, significant hydrochemical change (especially increased hardness) due to calcite dissolution enhanced by seawater mixing should be taken into account for better groundwater management. This process can be effectively evaluated using geochemical modelling.

Editor D. Koutsoyiannis; Associate editor Y. Guttman

Citation Chae, G.-T., Yun, S.-T., Yun, S.-M., Kim, K.-H., and So, C.-S., 2012. Seawater–freshwater mixing and resulting calcite dissolution: an example from a coastal alluvial aquifer in eastern South Korea. Hydrological Sciences Journal, 57 (8),1–12.  相似文献   

19.
A theoretical model is derived in which isotopic fractionations can be calculated as a function of variations in dissolved carbonate species on CO2 degassing and calcite precipitation. This model is tested by application to a calcite-depositing spring system near Westerhof, Germany. In agreement with the model,13C of the dissolved carbonate species changes systematically along the flow path. The difference in δ values between the upper and lower part of the stream is about 1‰. The13C content of the precipitated calcite is different from that expected from the theoretical partitioning. The isotopic composition of the solid CaCO3 is similar to that of the dissolved carbonate, though in theory it should be isotopically heavier by about 2.4‰. The18O composition of dissolved carbonate and H2O is constant along the stream. Calculated calcite-water temperatures differ by about +5°C from the observed temperatures demonstrating isotopic disequilibrium between the water and precipitated solid. This is attributed to kinetic effects during CaCO3 deposition from a highly supersaturated solution, in which precipitation is faster than equilibration with respect to isotopes.Plant populations in the water have virtually no influence on CO2 degassing, calcite saturation and isotopic fractionation. Measurements of PCO2, SC and13C within a diurnal cycle demonstrate that metabolic effects are below the detection limit in a system with a high supply-rate of dissolved carbonate species. The observed variations are due to differences in CO2 degassing and calcite precipitation, caused by continuously changing hydrodynamic conditions and carbonate nucleation rates.  相似文献   

20.
Processes driving carbonate diagenesis in islands of the northern Bahamas are investigated using major ion, dissolved oxygen and dissolved organic carbon analyses of water samples from surface and ground waters, and measurements of soil gas P. Meteoric waters equilibrate with aragonite, but reactions are water controlled rather than mineral‐controlled and drive dissolution rather than concurrent precipitation of calcite. Surface runoff waters equilibrate with atmospheric P and rapidly recharge the vadose zone, limiting subaerial bedrock dissolution to only 6·6–15 mg l?1 Ca. P of soil gas measured in the summer wet season ((7·4 ± 3·7) × 10?3 atm) is elevated compared with that of the atmosphere, despite the thin skeletal organic nature of the soil and the discontinuous soil cover. Soil waters retained in surface pockets are equilibrated with respect to aragonite and have dissolved 51 ± 19 mg l?1 Ca. This is substantially less than the 93 ± 18 mg l?1 Ca in samples from pumping boreholes that sample meteoric waters from the freshwater lens. The high P of the freshwater lens ((16 ± 8·3) × 10?3 atm for pumping boreholes) suggests that significant additional CO2 may be derived by oxidation of soil‐ and surface‐derived organic carbon within the lens. The suboxic nature of the majority of the freshwater lens and the observed depletion in sulphate support this suggestion, and indicate that both aerobic and anaerobic oxidation may take place. Shallow lens samples from observation boreholes are calcite supersaturated and have a lower P than deeper lens waters, indicating that CO2 degasses from the water table, driving precipitation of calcite cements. We suggest that the geochemical evolution of waters in the vadose zone and upper part of the freshwater lens may be determined by the presence of a body of ground air with P controlled by production in the freshwater lens and soil and by degassing to the atmosphere. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号