首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

It is known that the El Niño Southern Oscillation (ENSO) phenomenon induces marked climate variability across many parts of the world. However, in seeking useful relationships between ENSO and climate, several indices are available. In addition to the choice of index, previous studies assessing ENSO effects have employed a range of different methods to classify periods as El Niño, La Niña or Neutral. It is therefore clear that significant subjectivity exists in the adoption of ENSO classification schemes. In this study, several ENSO classification methods are applied to a range of ENSO indices. Each method-index combination is investigated to determine which provides the strongest relationship with rainfall and runoff in the Williams River catchment, New South Wales, Australia. The results demonstrate substantial differences between the methods and indices. The Multivariate ENSO Index (or MEI) is found to provide the best classification irrespective of method. The potential for forecasting ENSO-related effects on rainfall, runoff and river abstractions is then investigated. A “rise rule” to account for dynamic ENSO trends is also assessed. Strong relationships were found to exist with runoff (rainfall) up to nine (eight) months in advance of the Summer/autumn period. Implications for improved forecasting of potential river abstractions are apparent.  相似文献   

2.
The El Niño Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) are two important climate oscillations that affect hydrological processes at global and regional scales. However, few studies have attempted to identify their single and combined influences on water discharge variability at multiple timescales. In this study, we examine temporal variation in water discharge from the Yangtze River into the sea and explore the influence of the ENSO and the PDO on multiscale variations in water discharge over the last century. The results of the wavelet transform analysis of the water discharge series show significant periodic variations at the interannual timescale of 2 to 8 years and the decadal timescale of 15 to 17 years. Water discharge tended to be higher during the La Niña–PDO cold phase and lower during the El Niño–PDO warm phase. The results of the cross wavelet spectrum and wavelet coherence analyses confirm the relationship between the interannual (i.e., 2 to 8 years) and decadal (i.e., 15 to 17 years) periodicities in water discharge with the ENSO and the PDO, respectively. As an important large‐scale climate background, the PDO can modulate the influence of the ENSO on water discharge variability. In general, the warm PDO enhances the influence of El Niño events, and the cold PDO enhances the influence of La Niña events. Our study is helpful in understanding the influencing mechanism of climate change on hydrological processes and provides an important scientific guideline for water resource prediction and management.  相似文献   

3.
The relationship between El Niño Southern Oscillation (ENSO) and precipitation along the Peruvian Pacific coast is investigated over 1964–2011 on the basis of a variety of indices accounting for the different types of El Niño events and atmospheric and oceanographic manifestations of the interannual variability in the tropical Pacific. We show the existence of fluctuations in the ENSO/precipitation relationship at decadal timescales that are associated with the ENSO property changes over the recent decades. Several indices are considered in order to discriminate the influence of the two types of El Niño, namely, the eastern Pacific El Niño and the central Pacific El Niño, as well as the influence of large‐scale atmospheric variability associated to the Madden and Julian Oscillation, and of regional oceanic conditions. Three main periods are identified that correspond to the interleave periods between the main climatic transitions over 1964–2011, i.e. the shifts of the 1970s and the 2000s, over which ENSO experiences significant changes in its characteristics. We show that the relationship between ENSO and precipitation along the western coast of Peru has experienced significant decadal change. Whereas El Niño events before 2000 lead to increased precipitation, in the 2000s, ENSO is associated to drier conditions. This is due to the change in the main ENSO pattern after 2000 that is associated to cooler oceanic conditions off Peru during warm events (i.e. central Pacific El Niño). Our analysis also indicates that the two extreme El Niño events of 1982/1983 and 1997/1998 have overshadowed actual trends in the relationship between interannual variability in the tropical Pacific and precipitation along the coast of Peru. Overall, our study stresses on the complexity of the hydrological cycle on the western side of the Andes with regard to its relationship with the interannual to decadal variability in the tropical Pacific. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Runoff signatures, including low flow, high flow, mean flow and flow variability, have important implications on the environment and society, predominantly through drought, flooding and water resources. Yet, the response of runoff signatures has not been previously investigated at the global scale, and the influencing mechanisms are largely unclear. Hence, this study makes a global assessment of runoff signature responses to the El Niño and La Niña phases using daily streamflow observations from 8217 gauging stations during 1960–2015. Based on the Granger causality test, we found that ~15% of the hydrological stations of multiple runoff signatures show a significant causal relationship with El Niño–southern oscillation (ENSO). The quantiles of all runoff signatures were larger during the El Niño phase than during the La Niña phase, implying that the entire flow distribution tends to shift upward during El Niño and downward during La Niña. In addition, El Niño has different effects on low and high flows: it tends to increase the low and mean flow signatures but reduces the high flow and flow variability signatures. In contrast, La Niña generally reduces all runoff signatures. We highlight that the impacts of ENSO on streamflow signatures are manifested by its effects on precipitation (P), potential evaporation (PET) and leaf area index (LAI) through ENSO-induced atmospheric circulation changes. Overall, our study provides a comprehensive picture of runoff signature responses to ENSO, with valuable insights for water resources management and flood and drought disaster mitigation.  相似文献   

5.
Paired watershed experiments involving the removal or manipulation of forest cover in one of the watersheds have been conducted for more than a century to quantify the impact of forestry operations on streamflow. Because climate variability is expected to be large, forestry treatment effects would be undetectable without the treatment–control comparison. New understanding of climate variability provides an opportunity to examine whether climate variability interacts with forestry treatments, in a predictable manner. Here, we use data from the H. J. Andrews Experimental Forest, Oregon, USA, to examine the impact of the El Niño‐Southern Oscillation on streamflow linked to forest harvesting. Our results show that the contrast between El Niño and La Niña events is so large that, whatever the state of the treated watershed in terms of regrowth of the forest canopy, extreme climatic variability related to El Niño‐Southern Oscillation remains the more dominant driver of streamflow response at this location. Improvements in forecasting interannual variation in climate might be used to minimize the impact of forestry treatments on streamflow by avoiding initial operations in La Niña years. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Rivers display temporal dependence in suspended sediment–water discharge relationships. Although most work has focused on multi‐decadal trends, river sediment behavior often displays sub‐decadal scale fluctuations that have received little attention. The objectives of this study were to identify inter‐annual to decadal scale fluctuations in the suspended sediment–discharge relationship of a dry‐summer subtropical river, infer the mechanisms behind these fluctuations, and examine the role of El Niño Southern Oscillation climate cycles. The Salinas River (California) is a moderate sized (11 000 km2), coastal dry‐summer subtropical catchment with a mean discharge (Qmean) of 11.6 m3 s?1. This watershed is located at the northern most extent of the Pacific coastal North America region that experiences increased storm frequency during El Niño years. Event to inter‐annual scale suspended sediment behavior in this system was known to be influenced by antecedent hydrologic conditions, whereby previous hydrologic activity regulates the suspended sediment concentration–water discharge relationship. Fine and sand suspended sediment in the lower Salinas River exhibited persistent, decadal scale periods of positive and negative discharge corrected concentrations. The decadal scale variability in suspended sediment behavior was influenced by inter‐annual to decadal scale fluctuations in hydrologic characteristics, including: elapsed time since small (~0.1 × Qmean), and moderate (~10 × Qmean) threshold discharge values, the number of preceding days that low/no flow occurred, and annual water yield. El Niño climatic activity was found to have little effect on decadal‐scale fluctuations in the fine suspended sediment–discharge relationship due to low or no effect on the frequency of moderate to low discharge magnitudes, annual precipitation, and water yield. However, sand concentrations generally increased in El Niño years due to the increased frequency of moderate to high magnitude discharge events, which generally increase sand supply. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Crop yield is very sensitive to climate variability. The El Niño–Southern Oscillation (ENSO) is one of the most important contributors to global climate fluctuation, and therefore has a major impact on agricultural production. In this study, we structure an ENSO–climate fluctuation–crop yield early warning system to model the maize yield in Jilin and Liaoning Provinces in Northeast China. The system, which consists of a weather generator and a Model to capture the Crop Weather relationship over a Large Area (MCWLA), is not only capable of simulating the maize yield both at the provincial (regional) scale and the grid scale, but can also provide the exceedance probability of yield. Simulation results show maize yields in El Niño years to be higher on average than those in neutral years, while yields in La Niña years are the lowest. Spatially, the central part of the study area always shows a higher yield than other parts of the study, while yields in the northeast and northwest parts are relatively lower, no matter how high or low the exceedance probability and whatever the ENSO phase. Our study strongly implies that such a warning system shows considerable potential for application in other areas of China.  相似文献   

8.
A number of previous studies have identified changes in the climate occurring on decadal to multi‐decadal time‐scales. Recent studies also have revealed multi‐decadal variability in the modulation of the magnitude of El Niño–Southern Oscillation (ENSO) impacts on rainfall and stream flow in Australia and other areas. This study investigates multi‐decadal variability of drought risk by analysing the performance of a water storage reservoir in New South Wales, Australia, during different climate epochs defined using the Inter‐decadal Pacific Oscillation (IPO) index. The performance of the reservoir is also analysed under three adaptive management techniques and these are compared with the reservoir performance using the current ‘reactive’ management practices. The results indicate that IPO modulation of both the magnitude and frequency of ENSO events has the effect of reducing and elevating drought risk on multi‐decadal time‐scales. The results also confirm that adaptive reservoir management techniques, based on ENSO forecasts, can improve drought security and become significantly more important during dry climate epochs. These results have marked implications for improving drought security for water storage reservoirs. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

9.
The relationship between El Niño–Southern Oscillation (ENSO) events versus precipitation anomalies, and the response of seasonal precipitation to El Niño and La Niña events were investigated for 30 basins that represent a range of climatic types throughout South‐east Asia and the Pacific region. The teleconnection between ENSO and the hydroclimate is tested using both parametric and non‐parametric approaches, and the lag correlations between precipitation anomalies versus the Southern Oscillation Index (SOI) several months earlier, as well as the coherence between SOI and precipitation anomalies are estimated. The analysis shows that dry conditions tend to be associated with El Niño in the southern zone, and part of the middle zone in the study area. The link between precipitation anomalies and ENSO is statistically significant in the southern zone and part of the middle zone of the study area, but significant correlation was not observed in the northern zone. Patterns of precipitation response may differ widely among basins, and even the response of a given river basin to individual ENSO events also may be changeable. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding the influences of local hydroclimatology and two large-scale oceanic-atmospheric oscillations (i.e., Atlantic Multidecadal Oscillation (AMO) and El Niño-Southern Oscillation (ENSO)) on seasonal precipitation (P) and temperature (T) relationships for a tropical region (i.e., Florida) is the focus of this study. The warm and cool phases of AMO and ENSO are initially identified using sea surface temperatures (SSTs). The associations of SSTs and regional minimum, maximum and average surface air temperatures (SATs) with precipitation are then evaluated. The seasonal variations in P-SATs and P-SSTs associations considering AMO and ENSO phases for sites in (1) two soil temperature regimes (i.e., thermic and hyperthermic); (2) urban and non-urban regions; and (3) regions with and without water bodies, are analysed using two monthly datasets. The analyses are carried out using trend tests, two association measures, nonparametric and parametric statistical hypothesis tests and kernel density estimates. Decreasing (increasing) trend in precipitation (SATs) is noted in the recent multi-decadal period (1985–2019) compared to the previous one (1950–1984) indicating a progression towards warmer and drier climatic conditions across Florida. Spatially and temporally non-uniform variations in the associations of precipitation with SATs and SSTs are noted. Strong positive (weak negative) P–T associations are noted during the wet (dry) season for both AMO phases and El Niño, while significant (positive) P–T associations are observed across southern Florida during La Niña in the dry season. The seasonal influences are predominant in governing the P–T relationship over the regions with and without water bodies; however, considerable variations between El Niño and La Niña are noted during the dry season. The climate variability influences on P–T correlations for hyperthermic and thermic soil zones are found to be insignificant (significant) during the wet (dry) season. Nonparametric clustering is performed to identify the spatial clusters exhibiting homogeneous P–T relationships considering seasonal and climate variability influences.  相似文献   

11.
The El Niño–Southern Oscillation (ENSO) is a climatic phenomenon that affects socio-economical welfare in vast areas in the world. A continuous record of Holocene ENSO related climate variability of the Indo-Pacific Warm pool (IPWP) is constructed on the basis of stable oxygen isotopes in shells of planktic foraminifera from a sediment core in the western Pacific Ocean. At the centennial scale, variations in the stable oxygen isotope signal (δ18O) are thought be a representation of ENSO variability, although an imprint of local conditions cannot be entirely excluded. The record for the early Holocene (10.3–6 ka BP) shows, in comparison with the mid- to late Holocene, small amplitude variations in the δ18O record of up to 0.3‰ indicating relatively stable and warm sea surface conditions. The mid- to late Holocene (6–2 ka BP) exemplified higher variability in δ18O and thus in oceanic IPWP conditions. Climatically, we interpret this change (5.5–4.2 ka BP) as a phenomenon induced by variability in frequency and/or intensity changes of El Niño. In the period 4.2–2 ka BP we identified several periods, centred on 1.9, 2.1, 2.7, 3.3, 3.7 and 4.2 ka BP, with in general heavy δ18O values. During these periods, the IPWP was relocated to a more eastward position, enhancing the susceptibility for El Niño-like conditions at the core site. Over the last 2000 yr precipitation increased in the area as a response to an increase in Asian monsoon strength, resulting in a freshening of the surface waters. This study corroborates previous findings that the present-day ENSO activity started around 5.5 ka BP.  相似文献   

12.
Abstract

El Niño Southern Oscillation (ENSO) has been linked to climate anomalies throughout the world. This paper presents an overview of global ENSO-streamflow teleconnection and identifies regions where the relationship may be exploited to forecast streamflow several months ahead. The teleconnection is investigated by fitting a first harmonic to 24-month El Niño streamflow composites from 581 catchments worldwide and the potential for forecasting is investigated by calculating the lag correlation between streamflow and two indicators of ENSO. The analyses indicate clear ENSO-streamflow teleconnections in many catchments, some of which are consistent across large geographical regions. Strong and regionally consistent ENSO-streamflow teleconnections are identified in Australia and New Zealand, South and Central America, and weaker signals are identified in some parts of Africa and North America. The results suggest that the ENSO-streamflow relationship and the serial correlation in streamflow can be used to successfully forecast streamflow. The streamflow forecasts can be used to help manage water resources, particularly in systems with high interannual variability in Australia, southern and drier parts of Africa and some areas of North America.  相似文献   

13.
Deciphering the mechanisms through which the El Niño/Southern Oscillation (ENSO) affects hydrometeorological parameters in the tropics and extratropics is of great interest. We investigate climatic teleconnections between warm or cold phases of ENSO and streamflow patterns over South Korea using an empirical methodology designed to detect regions showing a strong and consistent hydroclimatic signal associated with ENSO. We calculate not only spatial coherence values by monthly streamflow composite formed over 2‐year ENSO cycle and the first harmonic fit to detect candidate regions but also temporal consistency rates by aggregate composite and index time series to determine core regions. As a result, the core regions, namely, the Han river basin and the Nakdong river basin, are detected with a high level of response of ENSO phenomena to streamflow patterns. The ENSO composites for both core regions indicate drier (wetter) conditions in early autumn of the warm (cold) episode years and wetter (drier) conditions from winter to spring of the following year. For both regions, the spatial coherences are over 92% (82%) and the temporal consistencies are 71% (75%) during the El Niño (La Niña) events. In addition, for the core regions identified by composite‐harmonic analysis for both extreme episodes, the results of comparative analyses by using correlation, annual cycle, and Wilcoxon rank sum test indicate that 2 opposite phases‐streamflow relationships have a tendency of sign reversal of the streamflow anomaly. Also, the positive departures during the El Niño years show more coherent and strong responses than the negative anomalies in the La Niña events. In conclusion, South Korea experiences climatic teleconnection between ENSO forcing and midlatitude streamflow patterns.  相似文献   

14.
15.
The influence of the El Niño Southern Oscillation (ENSO) phenomenon on monthly mean river flows of 12 rivers in the extreme south of South America in the 20th century is analysed. The original dataset of each river is divided into two subsets, i.e. warm ENSO events or El Niño, and cold ENSO events or La Niña. The elements of the subsets are composites of 24 consecutive months, from January of the year when the ENSO event begins to December of the following year. The ENSO signal is analysed by comparing the monthly mean value of each subset to the long-term monthly mean. The results reveal that, in general, monthly mean El Niño (La Niña) river flows are predominantly larger (smaller) than the long-term monthly mean in the rivers studied. The anomalies are more evident during the second half of the year in which the event starts and the first months of the following year.  相似文献   

16.
近年来极端气候事件的频发对全球和区域性水循环产生了重大影响,特别是2005—2017年间两次强ENSO(El Nino-Southern Oscillation)事件使得全球陆地水储量出现了较大的年际波动.GRACE(Gravity Recovery and Climate Experiment)重力卫星随着数据质量的提高、后处理方法的完善和超过十年的连续观测,捕捉陆地水储量异常的能力明显提高,这为研究2005—2017年间两次强ENSO事件对中国区域陆地水储量变化的影响提供了观测基础.本文综合利用GRACE卫星重力数据、GLDAS水文模型和实测降水资料分析了中国区域陆地水储量年际变化和与ENSO的关系.研究发现:长江流域中、下游地区和东南诸河流域与ENSO存在较高的相关性,与ENSO的相关系数最大值分别为0.55、0.78、0.70,较ENSO分别滞后约7个月、5个月和5个月.其中长江流域下游地区与ENSO的相关性最强,2010/11 La Nina和2015/16 El Nino两次强ENSO事件使得陆地水储量分别发生了约-24.1亿吨和27.9亿吨的波动.在2010/11 La Nina期间,长江流域下游地区和东南诸河流域陆地水储量异常约在2011年4—5月达到谷值,而长江流域中游地区晚1~2月达到谷值.在2015/16 El Nino期间,长江流域中、下游地区和东南诸河流域陆地水储量从2015年9月到2016年7月持续出现正异常信号.其中,2015年秋冬季(2015年9月至2016年1月)陆地水储量异常明显是受此次El Nino同期影响的结果;2016年春季(4—5月)陆地水异常是受到此次厄尔尼诺峰值的滞后影响所致;2016年7月的陆地水储量异常则与西北太平洋存在的异常反气旋环流有关.  相似文献   

17.
The South Pacific low latitude western boundary currents (LLWBCs) carry waters of subtropical origin through the Solomon Sea before joining the equatorial Pacific. Changes in their properties or transport are assumed to impact El Niño Southern Oscillation (ENSO) dynamics. At ENSO timescales, the LLWBCs transport tends to counterbalance the interior geostrophic one. When transiting through the complex geography of the Solomon Sea, the main LLWBC, the New Guinea Coastal Undercurrent, cannot follow a unique simple route to the equator. Instead, its routes and water mass properties are influenced by the circulation occurring in the Solomon Sea. In this study, the response of the Solomon Sea circulation to ENSO is investigated based on a numerical simulation. The transport anomalies entering the Solomon Sea from the south are confined to the top 250 m of the water column, where they represent 7.5 Sv (based on ENSO composites) for a mean transport of 10 Sv. The induced circulation anomalies in the Solomon Sea are not symmetric between the two ENSO states because of (1) a bathymetric control at Vitiaz Strait, which plays a stronger role during El Niño, and (2) an additional inflow through Solomon Strait during La Niña events. In terms of temperature and salinity, modifications are particularly notable for the thermocline water during El Niño conditions, with cooler and fresher waters compared to the climatological mean. The surface water at Vitiaz Strait and the upper thermocline water at Solomon Strait, feeding respectively the equatorial Pacific warm pool and the Equatorial Undercurrent, particularly affect the heat and salt fluxes. These fluxes can change by up to a factor of 2 between extreme El Niño and La Niña conditions.  相似文献   

18.
Lareef Zubair 《水文研究》2003,17(12):2439-2448
As part of an effort to demonstrate the use of climate predictions for water resources management, the El Niño/Southern Oscillation (ENSO) influences on stream flow in the Kelani River in Sri Lanka were investigated using correlation analysis, composite analysis and contingency tables. El Niño (warm phase of ENSO) was associated with decreased annual stream flow and La Niña (cold phase of ENSO) with increased annual flows. The annual stream flow had a negative correlation with the simultaneous ENSO index of NINO3·4 that was significant at the 95% level. This negative correlation is enhanced to a 99% level if the aggregate January to September or the April to September stream flow alone were considered. Although, there is little correlation between ENSO indices and stream flow during the October to December period, there is a high correlation between rainfall and NINO3·4 (r = 0·51, significant at the 99% level). Therefore ENSO based rainfall predictions can be used along with a hydrological model to predict the October to December stream flow. This study demonstrates the viability of using ENSO based predictors for January to September or April to September stream flow predictions in the Kelani River. The October to December stream flow may be predicted by exploiting the strong relationship between ENSO and rainfall during that period. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
Drought is a slow‐onset, creeping natural hazard which is an inevitable part of normal climate fluctuation especially in arid and semiarid regions, and its variability can be explained in terms of large‐scale atmospheric circulation patterns. Standardized streamflow index (SSFI) was utilized to characterize hydrological drought in the west of Iran for the hydrological years of 1969–1970 to 2008–2009. The linkage of atmospheric circulation patterns (ENSO, NAO) to hydrological drought was also used to reveal relations of climate variability affecting hydrological drought. River discharges exhibited negative anomalies during the warm phase of ENSO (El Niño) which caused the extreme and severe droughts in the study area, being strongest during the hydrological years of 2007–2008 and 2008–2009. The analysis also indicated the teleconnection impact of ENSO on the hydrological drought severity in the first half of the hydrological year especially between November and March. Moreover, the concurrent and lag correlations revealed a weak relationship between the SSFI drought severity and the NAO index. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
Relative little is known about the interaction between climate change and groundwater. Analysis of aquifer response to climatic variability could improve the knowledge related to groundwater resource variations and therefore provides guidance on water resource management. In this work, seasonal and annual variations of groundwater levels in Kumamoto plain (Japan) and their possible interactions with climatic indices and El Niño Southern Oscillation (ENSO) were analyzed statistically. Results show the following: (1) The water level in the recharge area mainly fluctuates at 1‐ and 2‐year periods, whereas the significant periodicity for water level oscillation in the coastal aquifer is 0.5 year. (2) The aquifer water levels are possibly influenced by variability in precipitation, air temperature, barometric pressure, humidity variances and ENSO. Relative high correlations and large proportions of similarities in wavelet power patterns were found between these variables and water levels. (3) Aquifer response to climatic variances was evaluated using cross wavelet transform and wavelet coherence. In recharging aquifers, the ENSO‐induced annual variations in precipitation, air temperature, humidity and barometric pressure affect aquifer water levels. The precipitation, air temperature and humidity respond to ENSO with a 4‐, 6‐ and 8‐month time lag, respectively, whereas the ENSO imparts weak influence on the barometric pressure. Significant biennial variation of water levels during 1991–1995 is caused primarily by precipitation and humidity variations. In the coastal aquifer, the 0.5‐year variability in ENSO is transferred by precipitation, barometric pressure and humidity to aquifer water levels, and the precipitation/humidity influence is more significant comparing with the barometric pressure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号