首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 968 毫秒
1.
湖泊沉积物-水界面磷的迁移转化机制与定量研究方法   总被引:4,自引:0,他引:4  
湖泊磷循环主要指磷在沉积物、上覆水和生物体间的迁移转化,而沉积物-水界面磷的迁移转化作为富营养湖泊磷循环的关键过程,备受关注.本文就国内外研究进展,综述了磷在上覆水、沉积物中的赋存形态和生物有效性,沉积物-水界面磷迁移转化的机制与定量研究方法.探讨沉积物性质、环境因子和生物特性对界面磷迁移的驱动机制,以及磷在浅水湖泊、深水湖泊中迁移转化机制的差异,指出现阶段迁移机制的研究多集中在单因素和定性化方面,而对多因素和定量化的研究还相对缺乏,未来可深入探究多因素耦合作用下磷的迁移规律.分析了野外调查、模拟实验、质量衡算和模型等研究方法的优缺点及适用情况,提出未来可将野外调查、模拟实验和模型法相结合,借助野外调查识别磷的迁移过程,模拟实验验证磷迁移的机制,并以野外调查和模拟实验的数据和结论为基础,构建模型量化具体迁移过程及其对湖泊磷循环的贡献,从而全面认识磷迁移转化规律.最后,提出了未来湖泊沉积物-水界面磷迁移研究需要关注的几个方面.  相似文献   

2.
申秋实  范成新  王兆德  张雷  刘成 《湖泊科学》2016,28(6):1175-1184
湖泊水底Fe~(2+)和ΣS~(2-)浓度的快速增加是湖泛暴发最早发生于沉积物-水界面的主要前提,缺氧环境下水底扩散层附近Fe~(2+)和ΣS~(2-)的迁移是其在沉积物-水界面处稳定积累的重要原因.以蓝藻聚积水体沉积物-水界面为研究对象,应用湖泊过程模拟装置及间隙水被动采样等技术,重点研究了间隙水和底层上覆水中Fe~(2+)和ΣS~(2-)的垂向分布特征,并定量估算了二者的扩散通量及迁移方向.结果表明:湖泛样品水体沉积物-水界面处于典型的还原性环境,表层沉积物间隙水中Fe~(2+)和ΣS~(2-)浓度显著高于对照样品,二者在表层沉积物中积累趋势明显.湖泛水体沉积物-水界面处Fe~(2+)释放通量较高,表现出较强烈的自沉积物向上覆水方向的释放能力;而湖泛样品ΣS~(2-)在沉积物-水界面处释放通量为负,迁移方向为自上覆水向沉积物扩散.Fe~(2+)和ΣS~(2-)在湖泛水体沉积物-水界面处不同的迁移特征证明:缺氧/厌氧条件下,湖泊水体表层沉积物间隙水中高浓度Fe~(2+)向上覆水的扩散为湖泛致黑物质的形成提供了重要的物质基础;底层上覆水及界面水中SO~(2-)4在表层沉积物中被还原,为终端还原产物ΣS~(2-)为湖泛致黑物质的形成提供了另一重要物质来源.  相似文献   

3.
磷在"沉积物-自然生物膜-上覆水"三相体系中的迁移转化   总被引:1,自引:0,他引:1  
地表水体中沉积物表面通常会附着一层自然生物膜,对上覆水-沉积物界面化学物质的迁移转化有着重要的影响.以往研究往往会忽略这一生物层面,因而,开展磷在"沉积物-自然生物膜-上覆水"三相界面之间的迁移转化研究具有重要的实际意义.以软性填料表面形成的自然生物膜模拟沉积物表层以及悬浮颗粒物表层的自然生物膜,开展磷在沉积物-自然生物膜-上覆水之间的迁移转化过程研究.结果表明:有无曝气情况下,自然生物膜界面的存在均能够显著降低上覆水中总磷、溶解态总磷、溶解态无机磷的含量,明显抑制沉积物中可交换态磷向上覆水释放.研究证明自然生物膜在水体磷的迁移转化中起着不可忽视的作用,在研究沉积物-上覆水界面之间磷的迁移转化行为时,要充分考虑自然生物膜界面的存在.  相似文献   

4.
沉积物-水界面污染物迁移扩散的研究进展   总被引:6,自引:0,他引:6  
雷沛  张洪  王超  潘科 《湖泊科学》2018,30(6):1489-1508
污染物在沉积物-水界面的迁移扩散对研究其环境生物地球化学循环过程和评估水生态系统质量具有重要意义.本文回顾了关于沉积物-水界面的基本研究历程,重点介绍沉积物-水界面的垂向结构以及扩散边界层(DBL)的作用,展示污染物在沉积物-水界面的多维度分布(一维垂向、二维平面和三维立体)及其在沉积物-水界面的扩散过程,详细总结影响污染物在沉积物-水界面迁移扩散的环境因素(包括温度、溶解氧或氧化还原条件、pH值、离子强度或盐度、沉积物组成、共存污染物、溶解性有机质、水动力条件、生物扰动、微生物以及其他因素),讨论当前关于沉积物-水界面污染物扩散通量估算几种方法的优缺点,最后,对沉积物-水界面污染物扩散研究在未来发展需要关注的几个方面进行了展望.  相似文献   

5.
浅水湖泊生态系统中的沉积物—水界面是湖泊内源氮释放的重要界面,而水动力因素是改变沉积物氮释放的重要因素.三峡大坝修建以后,长江中下游通江湖泊的水动力条件发生了明显的变化.通过采集洞庭湖湖口区域的沉积物和水样,在双向环形水槽动力模拟装置内模拟湖泊水位和流速的变化,探讨湖泊沉积物氮在沉积物和水系统中的二次释放特征.结果表明,随着扰动强度的增加,上覆水悬浮物浓度增大,上覆水中总氮浓度增加,沉积物向上覆水释放氮的强度增强,水动力条件的改变所引起的沉积物内源氮释放不容忽视.在该模拟实验条件下,沉积物存在最适扰动水位(20cm),此水位下上覆水中悬浮物浓度最低,总氮浓度最小.水动力条件的改变对上覆水和沉积物—水界面处铵态氮和硝态氮浓度的影响并不明显,孔隙水中铵态氮与硝态氮之间发生形态的转化.  相似文献   

6.
水生植物是湖泊生态系统的重要组成部分,沉积物-水界面是湖泊生态系统中营养盐循环的重要界面,因而研究水生植物对沉积物-水界面微观剖面的影响具有重要意义.本文利用轮叶黑藻作为研究对象,研究了来自于香溪河、太湖和东湖3个样点的沉积物及上覆水中N、P等理化性质,并利用微电极研究轮叶黑藻对3种沉积物-水界面微观剖面是否有影响.实验结果表明:轮叶黑藻生长迅速.增长率因沉积物不同而不同,有一定的耐污能力;轮叶黑藻使水体和沉积物中总氮、总磷含量减少,对水体和底泥有一定的净化作用;轮叶黑藻可使水体溶解氧升高,并使沉积物有氧层厚度增加,改变沉积物的氧化还原电位;轮叶黑藻可能改变了根际微环境中微生物的数量和种类,而使沉积物和上覆水中的pH、N2O和H2S等发生变化.  相似文献   

7.
水动力条件对沉积物-水界面氧通量的影响   总被引:2,自引:0,他引:2  
氧环境决定了水体沉积物中各种生命所需元素的最终归趋,沉积物-水界面是水相与沉积物相氧传递的重要场所,而水动力条件是影响沉积物-水界面氧传递的重要因素.选择三峡库区一级支流御临河为研究对象,根据长年监测数据建立实验室模型,采用声学多普勒流速测试仪及微电极测试系统构建了非侵入式涡度相关测试系统,探究了不同水动力条件对沉积物-水界面氧通量的影响.结果表明:水体静止状态下沉积物-水界面溶解氧浓度随时间的增加而减少,非静止状态下随时间的增加而增加;沉积物-水界面氧通量随水体流速的增加而增加.根据氧通量求解对应流速下垂直涡动扩散系数并进行线性拟合,当水体流速为0.01~0.14 m/s时,垂直涡动扩散系数与水体流速的相关性最好,此时沉积物-水界面氧通量的传递以涡动扩散为主导.  相似文献   

8.
季节性缺氧导致夏季沉积物内源磷强烈释放,加剧水体富营养化,是我国西南地区深水湖泊(水库)面临的重要挑战.有效增加夏季缺氧期深水沉积物-水界面的含氧量,是减少内源磷释放的关键.现有的深水增氧技术由于缺乏对沉积物-水界面增氧的针对性,因此治理效果有限.近年来,纳米气泡已被证实具有的稳定性好、氧传质速率高和环境风险低等优点,为新型深水增氧技术研发提供了巨大潜力.本文以天然矿物材料白云母、绢云母、硅藻土和沸石为基底,负载纳米气泡,研发纳米气泡改性矿物颗粒技术,开展湖泊沉积物-水界面增氧模拟实验研究,运用平面光电极技术评估其界面增氧效果.结果表明,纳米气泡改性矿物颗粒对沉积物-水界面具有比较明显的增氧效果.其中,改性白云母、绢云母和沸石的界面持续增氧时间可达7天以上,增氧后的界面最大溶解氧(DO)浓度达4.40 mg/L,而改性硅藻土不具有增氧能力.其次,矿物粒度对改性颗粒的增氧效果有一定影响:粒度越细,界面的最大增氧浓度越高,且持续增氧时间越长.纳米气泡改性矿物颗粒技术有望成为夏季缺氧期深水沉积物-水界面精准增氧和内源污染控制的有效技术手段.  相似文献   

9.
回顾了有关长江中下游地区湖泊水、生物、沉积物中营养盐的迁移、转化、循环和交换等研究工作进展.典型湖泊的研究结果显示,历史上长江中下游地区湖泊的营养本底的确较高,处于中营养和富营养状态;人类活动在最近几十年中加快了这些湖泊的富营养化进程.长江中下游地区湖泊的治理不仅要重视外源污染的削减,也要重视湖泊内源污染的控制.长江中下游地区的浅水湖泊沉积物中,一般只有30%以下的磷是以较活跃的藻类易利用态存在的,表层沉积物通过吸附-解吸等交换作用对浅水湖泊水体中磷的浓度有较大的影响.长江中下游浅水湖泊沉积物中的营养盐释放主要有静态和动态二种释放方式.前者是基于化学平衡条件下的水土界面扩散作用.决定其释放量大小的主要因子是孔隙水与上覆水之间的营养盐浓度差.后者是基于水动力扰动对水土界面物理破坏条件下的底泥悬浮释放作用.二种释放模式在浅水水体中都存在.无论是静态或动态,水土界面的氧化还原环境,铁、锰、铝等元素含量,都对释放有影响.动态释放能在短期内大大提高水体颗粒态营养盐的浓度.在动态释放的初期,将有效增加水体可溶性营养盐,但是如果沉积物中铁、铝等金属元素较丰富,水体中的溶解性营养盐将由于吸附等作用而沉淀至湖底,因此,这样的湖泊往往具有较强的自我净化能力.长江中下游地区绝大多数湖泊都属于这种类型的湖泊.用底泥疏浚方法来控制湖泊内源污染的方法只适用湖泊面积较小、还原环境强烈,或者沉积物中铁、锰含量较低、水体去除可溶性营养盐的能力较弱的水体.此外,长江中下游地区的浅水湖泊生态系统对富营养化也具有强烈的反馈作用.水华暴发期间蓝藻的暴发性生长能通过改变水体的pH而引发沉积物中磷释放数量的大幅增加,大量释放的营养盐反过来又会促使蓝藻的大量生长,从而加剧水华的暴发.研究显示污染相对较重的水域水体中营养盐的含量高,微生物的生物量及生产力也高,碱性磷酸酶的活性也高,水体营养盐的循环也就更快.这反过来又促使微生物生产力增加,营养盐循环更快,加剧富营养化的危害.今后的工作应该重点围绕生物参与下营养盐的迁移转化等方面开展工作.  相似文献   

10.
湖泊氮素生物地球化学循环及微生物的作用   总被引:21,自引:2,他引:19  
氮素是影响湖泊富营养化的关键元素之一,对湖泊中氮素生物地球化学循环整个过程进行全面的了解,有利于对湖泊富营养化进行控制和治理.本文综述了湖泊生态系统(特别是富营养化湖泊)中氮素的输入、输出及其在沉积物-水界面的迁移转化规律,着重分析和比较了藻型湖泊和草型湖泊的不同食物链中的氮素营养循环过程,重点讨论了微生物参与的硝化作用、反硝化作用、生物固氮和厌氧氨氧化等过程的最新研究进展,并对氮循环相关的研究方法和技术进行了小结.最后指出当前国内外研究中亟待解决的问题,并对湖泊氮循环今后的研究方向提出了建议.  相似文献   

11.
不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析   总被引:15,自引:2,他引:13  
龚春生  范成新 《湖泊科学》2010,22(3):430-436
在实验室控制条件下,研究了玄武湖底泥在饱和溶解氧、75%、50%、25%、0%溶解氧水平下底泥-水界面磷交换,探讨了溶解氧对底泥-水界面磷交换的影响途径.结果表明:(1)上覆水溶解氧与玄武湖底泥溶解性磷酸盐、溶解性总磷释放速率呈开口向上的抛物线关系;(2)上覆水溶解氧水平可以决定磷在底泥-水界面交换中的转换方向,而且还影响间隙水中溶解氧扩散深度,25%、50%、75%和饱和溶解氧水平下溶解氧最大扩散深度分别为0.974cm、1.377cm、1.687cm和1.948cm,溶解氧在间隙水中最大扩散深度影响底泥-水界面的磷交换;(3)溶解氧可通过影响底泥-水界面处电位、藻类聚磷作用以及pH来影响底泥-水界面的磷交换.  相似文献   

12.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

13.
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.  相似文献   

14.
15.
Abstract

Models on flow and transport in surface water sediments currently neglect compaction, although it is well understood that compaction is one of the major processes below the free fluid-sediment interface. Porosity changes in the sediment layers, as a result of compaction, are measured in almost all probes: porosity decreases with the distance from the surface water-sediment interface. This paper provides a rigorous derivation of basic flux terms for a frame of reference that is moving with the fluid-sediment interface. It is shown how burial rate, interface velocity, velocities of fluid and solid phase and porosity are connected—under steady-state conditions. It turns out that porosity and the velocities in a one-dimensional column can be directly computed from each other. These findings are important not only for the understanding of compaction-driven flow itself; they are crucial for all studies on storage and transport of chemical components in sediments. As mass fluxes across the sediment-water interface may be affected, there is an indirect link on surface water quality, making these findings relevant also for research on eutrophication of surface water bodies and/or on biogeochemical cycles.  相似文献   

16.
Colloid transport and distribution in the hyporheic zone   总被引:1,自引:0,他引:1  
Colloids moving from the stream into the hyporheic zone may have a negative impact on aquatic ecosystems as they are potential contaminants or carriers of contaminants. Moreover, retained colloids in the hyporheic zone could not only reduce the exchange flux between the stream and streambed but also change the conditions of the bed, affecting the habitats for aquatic organisms. Previous studies focused on the exchange flux across the sediment–water interface, but the colloid transport processes and distribution of retained colloids in the streambed have received little attention. We conducted experiments within a laboratory flume to examine these processes in a streambed driven by bedform‐induced hyporheic flow. Retained colloids measured in the bed at the end of the experiments revealed colloid retention mainly in the shallow layer of hyporheic zone (0–5 cm below the interface). The results demonstrated significant effects of particle trapping and settling on the colloid transport and distribution in the streambed. Retention leads to the formation of a colloid‐filled shallow layer in the bed. Particle paths based on model simulations showed that colloid settling in pore water modifies the direction of colloid transport and allows the colloid particles to move more deeply in the bed.  相似文献   

17.
当代地球物理学研究的核心科学问题和发展导向   总被引:20,自引:14,他引:6       下载免费PDF全文
地球物理学在20世纪的百年中取得了辉煌的成就,也提出了一系列有待研究和探索的科学问题.基于国家战略需求和自主创新的方针,基于国家在金属矿产资源、油气能源、地震与火山灾害和军事与国防的需求和防范,则必须深化研究和认识地球本体.为此,地球内部物质与能量的交换、深层过程和动力学响应已成为21世纪地球科学研究和发展的核心,地球物理学必须造福于人类.  相似文献   

18.
氧化还原条件对红枫湖沉积物磷释放影响的微尺度分析   总被引:7,自引:0,他引:7  
选取贵州红枫湖为研究对象,在实验室条件下模拟了自然、好氧和厌氧条件下沉积物内源磷的释放过程,联合应用微电极技术和沉积物磷形态分析对沉积物—水界面开展了微尺度观测与研究.结果表明,厌氧条件下红枫湖沉积物总磷含量显著降低,且主要是NaOH提取态磷(NaOH-P)和残渣态磷(rest-P)含量降低所致,厌氧条件下沉积物孔隙水中磷酸盐浓度明显升高,而好氧条件下沉积物孔隙水磷酸盐浓度显著降低,反映厌氧条件显著促进了红枫湖沉积物磷释放.厌氧条件下沉积物内部溶解氧浓度下降、硫还原活动增强可能是导致NaOH-P释放的主要原因.O_2浓度的降低加速了沉积物还原作用并产生大量H2S,进而与二价铁离子形成硫化亚铁沉淀,最终导致NaOH-P(Fe-P)释放到孔隙水中.好氧条件向厌氧条件的转换可通过改变沉积物内部pH值分布和微生物活动促使rest-P释放:厌氧条件下,厌氧微生物不仅可以消耗硫酸根产生H_2S,导致pH值降低,还可消耗有机质,将有机磷转变为无机磷.上述研究结果表明,沉积物—水界面氧化还原环境可影响沉积物氧渗透深度、pH值分布、微生物活动、硫循环以及有机质降解过程,进而控制沉积物磷的形态转化与释放.联合应用微电极技术和沉积物磷形态分析对湖泊沉积物—水界面开展微尺度观测研究是揭示沉积物内源磷释放机制与控制因素的有效途径.  相似文献   

19.
Oxygen microelectrodes were used to analyze the distribution of the diffusive boundary layer (DBL) at the sediment-water interface in relation to surface topography and flow velocity. The sediment, collected from saline ponds, was covered by a microbial mat that had high oxygen consumption rate and well-defined surface structure. Diffusion through the DBL constituted an important rate limitation to the oxygen uptake of the sediment. The mean effective DBL thickness decreased from 0.59 to 0.16 mm as the flow velocity of the overlying water was increased from 0.3 to 7.7 cm s-1 (measured 1 cm above the mat). The oxygen uptake rate concurrently increased from 3.9 to 9.4 nmol cm-2 min-1. The effects of surface roughness and topography on the thickness and distribution of the DBL were studied by three-dimensional mapping of the sediment-water interface and the upper DBL boundary at 0.1-mm spatial resolution. The DBL boundary followed mat structures that had characteristic dimensions > 1/2 DBL thickness but the DBL had a dampened relief relative to the mat. The effective surface area of the sediment-water interface and of the upper DBL boundary were 31 and 14% larger, respectively, than a flat plane. Surface topography thereby increased the oxygen flux across the sediment-water interface by 49% relative to a one-dimensional diffusion flux calculated from the vertical oxygen microgradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号