首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Alxa Block is the westernmost part of the North China Craton (NCC), and is regarded as one of the basement components of the NCC. Its geological evolution is of great significance for the understanding of the NCC. However, the Precambrian basement of the Alxa Block is still poorly studied. In this study, we present new in situ LA-ICP-MS zircon U-Pb and Lu-Hf isotope data from the Diebusige Metamorphic Complex (DMC) which located in the eastern Alxa Block. Field and petrological studies show that the DMC consists mainly of metamorphic supracrustal rocks and minor metamorphic plutonic rocks and has experienced amphibolite-granulite facies metamorphism. Zircon U-Pb dating results suggested that the amphibolite sample yields a crystallization age of 2636 ± 14 Ma and metamorphic ages of 2517–2454 Ma and 1988–1952 Ma, proving the existence of exposed Archean rocks in the Langshan area and indicating that late Neoarchean to Paleoproterozoic metamorphic events existed in the Alxa Block. Two paragneiss samples show that the magmatic detrital zircons from the DMC yield 207Pb/206Pb ages ranging from 2.48 Ga to 2.10 Ga with two youngest peaks at 2.13 Ga and 2.16 Ga, respectively, and they were also overprinted by metamorphic events at 1.97–1.90 Ga and 1.89–1.79 Ga. Compilation of U-Pb ages of magmatic detrital and metamorphic zircons suggested that the main part of the DMC may have been formed at 2.1–2.0 Ga. Zircon Lu-Hf isotope data show that the source materials of the main part of the DMC were originated from the reworking of ancient Archean crust (3.45–2.78 Ga). The Hf isotope characteristics and the tectonothermal event records exhibit different evolution history with the Khondalite Belt and the Yinshan Block and the other basements of the Alxa Block, indicating that the Langshan was likely an independent terrain before the middle Paleoproterozoic and was subjected to the middle to late Paleoproterozoic tectonothermal events with the Khondalite Belt as a whole.  相似文献   

2.
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.  相似文献   

3.
Turbidites from the Shiquanhe–Namco Ophiolite Mélange Zone(SNMZ) record critical information about the tectonic affinity of the SNMZ and the evolutionary history of the Meso-Tethys Ocean in Tibet.This paper reports sedimentologic,sandstone petrographic,zircon U-Pb geochronologic,and clastic rocks geochemical data of newly identified turbidites(Asa Formation) in the Asa Ophiolite Mélange.The youngest ages of detrital zircon from the turbiditic sandstone samples,together with ~115 Ma U-Pb concordant age from the tuff intercalation within the Asa Formation indicate an Early Cretaceous age.The sandstone mineral modal composition data show that the main component is quartz grains and the minor components are sedimentary and volcanic fragments,suggesting that the turbidites were mainly derived from a recycled orogen provenance with a minor addition of volcanic arc materials.The detrital U-Pb zircon ages of turbiditic sandstones yield main age populations of170–120 Ma,300–220 Ma,600–500 Ma,1000–700 Ma,1900–1500 Ma,and ~2500 Ma,similar to the ages of the Qiangtang Terrane(age peak of 600–500 Ma,1000–900 Ma,~1850 Ma and ~2500 Ma) and the accretionary complex in the Bangong–Nujiang Ophiolite Zone(BNMZ) rather than the age of the Central Lhasa Terrane(age peak of ~300 Ma,~550 Ma and ~1150 Ma).The mineral modal compositions,detrital U-Pb zircon ages,and geochemical data of clastic rocks suggest that the Asa Formation is composed of sediments primarily recycled from the Jurassic accretionary complex within the BNMZ with the secondary addition of intermediate-felsic island arc materials from the South Qiangtang Terrane.Based on our new results and previous studies,we infer that the SNMZ represents a part of the Meso-Tethys Suture Zone,rather than a southward tectonic klippe of the BNMZ or an isolated ophiolitic mélange zone within the Lhasa Terrane.The Meso-Tethys Suture Zone records the continuous evolutionary history of the northward subduction,accretion,arc-Lhasa collision,and Lhasa-Qiangtang collision of the Meso-Tethys Ocean from the Early Jurassic to the Early Cretaceous.  相似文献   

4.
Abstract: Sensitive, high-resolution ion microprobe zircon U–Pb ages of Paleoproterozoic, high-grade, metasedimentary rocks from the south-western part of the Siberian Craton are reported. Early Precambrian, high-grade complexes, including garnet–biotite, hypersthene–biotite, and cordierite-bearing gneisses compose the Irkut terrane of the Sharyzhalgay Uplift. Protoliths of studied gneisses correspond to terrigenous sediments, ranging from greywacke to shale. The paragneiss model Nd ages of 2.4–3.1 Ga indicate Archean-to-Paleoproterozoic source provinces. Zircons from gneisses show core-rim textures in cathodoluminescence (CL) image. Round or irregular shaped cores indicate detrital origin. Structureless rims with low Th/U are metamorphic in origin. The three age groups of detrital cores are: ≥2.7, ~2.3, and 1.95–2 Ga. The ages of metamorphic rims range from 1.86 to 1.85 Ga; therefore, the sediments were deposited between 1.95 and 1.86 Ga and derived from Archean and Paleoproterozoic source rocks. It should be noted that Paleoproterozoic metasedimentary rocks of the Irkut Block are not unique. High-grade metaterrigenous sediments, with model Nd ages ranging from 2.3 to 2.5 Ga, are widely distributed within the Aldan and Anabar Shields of the Siberian Craton. The same situation is observed in the North China Craton, where metasedimentary rocks contain detrital igneous zircon grains with ages ranging from 3 to 2.1 Ga (Wan et al., 2006). All of these sedimentary units were subjected to Late Paleoproterozoic metamorphism. In the Siberian Craton, the Paleoproterozoic sedimentary deposits are possibly marked passive margins of the Early Precambrian crustal blocks, and their high-grade metamorphism was related to the consolidation of the Siberian Craton.  相似文献   

5.
Oldest rocks are sparsely distributed within the Dharwar Craton and little is known about their involvement in the sedimentary sequences which are present in the Archean greenstone successions and the Proterozoic Cuddapah basin.Stromatolitic carbonates are well preserved in the Neoarchean greenstone belts of Dharwar Craton and Cuddapah Basin of Peninsular India displaying varied morphological and geochemical characteristics.In this study,we report results from U-Pb geochronology and trace element composition of the detrital zircons from stromatolitic carbonates present within the Dharwar Craton and Cuddapah basin to understand the provenance and time of accretion and deposition.The UPb ages of the detrital zircons from the Bhimasamudra and Marikanve stromatolites of the Chitradurga greenstone belt of Dharwar Craton display ages of 3426±26 Ma to 2650±38 Ma whereas the Sandur stromatolites gave an age of 3508±29 Ma to 2926±36 Ma suggesting Paleo-to Neoarchean provenance.The U-Pb detrital zircons of the Tadpatri stromatolites gave an age of 2761±31 Ma to1672±38 Ma suggesting Neoarchean to Mesoproterozoic provenance.The Rare Earth Element(REE)patterns of the studied detrital zircons from Archean Dharwar Craton and Proterozoic Cuddapah basin display depletion in light rare earth elements(LREE)and enrichment in heavy rare earth elements(HREE)with pronounced positive Ce and negative Eu anomalies,typical of magmatic zircons.The trace element composition and their relationship collectively indicate a mixed granitoid and mafic source for both the Dharwar and Cuddapah stromatolites.The 3508±29 Ma age of the detrital zircons support the existence of 3.5 Ga crust in the Western Dharwar Craton.The overall detrital zircon ages(3.5-2.7 Ga)obtained from the stromatolitic carbonates of Archean greenstone belts and Proterozoic Cuddapah basin(2.7-1.6 Ga)collectively reflect on^800-900 Ma duration for the Precambrian stromatolite deposition in the Dharwar Craton.  相似文献   

6.
The Sanchahe quartz monzonite intrusion is situated in the middle segment of the North Qinling tectonic belt, Central China mainland, and consists chiefly of sanukitoid–like and granodioritic-monzogranitic rocks. The sanukitoid–like rocks are characterized by quartz monzonites, which display higher Mg#(55.0–59.0), and enrichments in Na2 O+K2 O(7.28–8.94 %), Ni(21-2312 ppm), Cr(56-4167 ppm), Sr(553-923 ppm), Ba(912-1355 ppm) and LREE((La/Yb)N =9.47–15.3), from negative to slightly positive Eu anomalies(δEu=+0.61 to +1.10), but also depletion in Nb, Ta and Ti. The granodioritic-monzogranitic rocks diaplay various Mg#of 6.00-53.0, high Na2 O+K2 O(7.20– 8.30%), Sr(455–1081 ppm) and(La/Yb)N(27.6–47.8), with positive Eu anomalies(δEu=1.03–1.57) and depleted Nb, Ta and Ti. Laser ablation inductively coupled plasma mass spectrometry(LA-ICPMS) zircon U-Pb isotopic dating reveals that the sanukitoid-like rocks were emplaced at two episodes of magmatism at 457±3 Ma and 431±2 Ma, respectively. The monzogranites were emplaced at 445±7Ma. Sanukitoid–like rocks have their εHf(t) values ranging from +0.3 to +15.1 with Hf–depleted mantle model ages of 445 to 1056 Ma, and the monzogranite shows its εHf(t) values ranging from 21.6 to +10.8 with Hf–depleted mantle model ages of 635 to 3183 Ma. Petrological, geochemical and zircon Lu –Hf isotopic features indicate that the magmatic precursor of sanukitoid–like rocks was derived from partial melting of the depleted mantle wedge materials that were metasomatized by fluids and melts related to subduction of oceanic slab, subsequently the sanukitoid magma ascended to crust level. This emplaced mantle magma caused partial melting of crustally metamorphosed sedimentary rocks, and mixing with the crustal magma, and suffered fractional crystallization, which lead to formations of quartz monzonites. However, the magmatic precursor of the granodioritic-monzogranitic rocks were derived from partial melting of subducted oceanic slab basalts. Integrated previous investigation for the adackitic rocks in the south of the intrusion, the Sanchahe intrusion signed that the North Qinling tectonic zone was developed in an early Paleozoic transitionally tectonic background from an island arc to back–arc.  相似文献   

7.
The Mesoproterozoic Baoban Group is the oldest basement in Hainan Island and has played an important role in Columbia (Nuna) supercontinent reconstructions. The Mesoproterozoic granitic intrusions in the Baoban Group are the most widely-exposed Precambrian magmatic rocks and are the key to understanding the tectonic settings of Hainan Island and its relationship with the South China Block and the Columbia supercontinent. New LA-ICP-MS zircon U-Pb dating on three mylonitic granite samples from the Tuwaishan and Baoban areas yield ages ranging from 1447 Ma to 1437 Ma, representing the absolute timing of the emplacement of the granitic intrusions. Combined with previously published geochronological data for rocks from the Baoban Group and regional mafic intrusions, it is concluded that the Baoban Group formed at 1460–1430 Ma, coeval with the emplacement of the granitic and mafic intrusions. New in-situ zircon Lu-Hf isotope analyses for the three mylonitic granite samples yielded positive εHf(t) values, ranging from +0.49 to +8.27, with model ages (TCDM) ranging from 2181 Ma to 1687 Ma, suggesting that the granitic intrusions originated from a mixed source of Paleoproterozoic crust with juvenile crust. New zircon trace element data show characteristics of high Th/U values of 0.24–1.50, steep slopes from LREE to HREE and negative Pr, Eu anomalies with positive Ce, Sm anomalies, representing typical magmatic zircons formed in continental crust. Compared with available magmatic and detrital zircon ages from Precambrian rocks in the Cathaysia Block, Yangtze Block and western Laurentia, it is inferred that Hainan Island was separated from both the Cathaysia Block and the Yangtze Block, instead being connected with western Laurentia in the Columbia supercontinent. Considering the decreasing tendency of basin deposition time along the western margin of Laurentia, it is proposed that Hainan Island was located to the north or northwest of the Belt-Purcell Supergroup, along the western margin of Laurentia, during the breakup of the Columbia supercontinent.  相似文献   

8.
The western Kunlun orogen in the northwest Tibet Plateau is related to subduction and collision of Proto-and Paleo-Tethys from early Paleozoic to early Mesozoic. This paper presents new LA-ICPMS zircon U-Pb ages and Lu-Hf isotopes, whole-rock major and trace elements, and Sr–Nd isotopes of two Ordovician granitoid plutons(466–455 Ma) and their Silurian mafic dikes(~436 Ma) in the western Kunlun orogen. These granitoids show peraluminous high-K calcalkaline characteristics, with(87Sr/86Sr)_i value of 0.7129–0.7224, εNd(t) values of -9.3 to -7.0 and zircon εHf(t) values of -17.3 to -0.2, indicating that they were formed by partial melting of ancient lower-crust(metaigneous rocks mixed with metasedimentary rocks) with some mantle materials in response to subduction of the Proto-Tethyan Ocean and following collision. The Silurian mafic dikes were considered to have been derived from a low degree of partial melting of primary mafic magma. These mafic dikes show initial 87Sr/86Sr ratios of 0.7101–0.7152 and εNd(t) values of -3.8 to -3.4 and zircon εHf(t) values of -8.8 to -4.9, indicating that they were derived from enriched mantle in response to post-collisional slab break-off. Combined with regional geology, our new data provide valuable insight into late evolution of the Proto-Tethys.  相似文献   

9.
《地学前缘(英文版)》2020,11(5):1533-1548
The Chinese North Tianshan(CNTS) in the southern part of the Central Asian Orogenic Belt(CAOB) has undergone multistage accretion-collision processes during Paleozoic time,which remain controversial.This study addresses this issue by tracing the provenance of Late Paleozoic sedimentary successions from the Bogda Mountain in the eastern CNTS through U-Pb dating and Lu-Hf isotopic analyses of detrital zircons.New detrital zircon U-Pb ages(N=519) from seven samples range from 261±4 Ma to 2827±32 Ma.The most prominent age peak is at 313 Ma and subordinate ages vary from 441 Ma to 601 Ma,with some Precambrian detrital zircon ages(~7%) lasting from 694 Ma to 1024 Ma.The youngest age components in each sample yielded weighted mean ages ranging from 272±9 Ma to 288±5 Ma,representing the maximum depositional ages.These and literature data indicate that some previously-assumed "Carboniferous"strata in the Bogda area were deposited in the Early Permian,including the Qijiaojing,Julideneng,Shaleisaierke,Yangbulake,Shamaershayi,Liushugou,Qijiagou,and Aoertu formations.The low maturity of the sandstones,zircon morphology and provenance analyses indicate a proximal sedimentation probably sourced from the East Junggar Arc and the Harlik-Dananhu Arc in the CNTS.The minor Precambrian detrital zircons are interpreted as recycled materials from the older strata in the Harlik-Dananhu Arc.Zircon E_(Hf)(t) values have increased since ~408 Ma,probably reflecting a tectonic transition from regional compression to extension.This event might correspond to the opening of the Bogda intraarc/back arc rift basin,possibly resulting from a slab rollback during the northward subduction of the North Tianshan Ocean.A decrease of zircon ε_(Hf)(t) values at ~300 Ma was likely caused by the cessation of oceanic subduction and subsequent collision,which implies that the North Tianshan Ocean closed at the end of the Late Carboniferous.  相似文献   

10.
The meta-basic volcanic rocks in the Tengtiaohe Zone yield zircon U–Pb ages of 258.8±2.5 Ma and 259.2±1.8 Ma, respectively which agree with the ages of flood basalts of ELIP and are similar to the basaltic rocks and komatiites from the Song Da Zone in northern Vietnam. The results suggest that the age of meta-basic volcanic rocks is Late Permian, rather than the Early Permian or Early Carboniferous ages as previously inferred. Most meta-basic volcanic rocks are strongly enriched in LREEs relative to HREEs and display trace element patterns similar to the ELIP high-Ti basalts, and are enriched in LILEs with negative Sr anomalies. Their initial ~(87)Sr/~(86) Sr ratios range from 0.705974 to 0.706188 and εNd(t) from-0.82 to-2.11. Their magmas were derived from an enriched and deep mantle source without significant crustal contamination. These meta-basic volcanic rocks formed in ELIP. Therefore, the Tengtiaohe Zone is not an ophiolite zone and can link to the Song Da Zone in northern Vietnam.  相似文献   

11.
阿尔泰造山带变质岩系时代问题的讨论   总被引:26,自引:1,他引:26  
针对目前阿尔泰地区变质岩系时代划分中年龄数据应用的一些问题,提出如下认识:富蕴县城西的石榴石片麻岩中锆石UPb上交点年龄2349±226Ma(2σ),初步确证了该区古元古代大陆地壳岩石的存在;克木齐群和富蕴群变质岩全岩SmNd等时线年龄代表其母岩形成时代。变质岩系和显生宙花岗岩类的Nd模式年龄,以及各种类型岩石中长石Pb二阶段模式t1年龄仅指出存在前寒武纪大陆地壳的可能性,没有真正的年龄意义,不能作为划分地层时代的依据。阿尔泰造山带是否存在1400Ma和700~900Ma的变质岩系岩石,至今仍缺乏可靠年龄数据的佐证  相似文献   

12.

Laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) analysis of zircons confirm a Late Devonian to Early Carboniferous age (ca 360–350 Ma) for silicic volcanic rocks of the Campwyn Volcanics and Yarrol terrane of the northern New England Fold Belt (Queensland). These rocks are coeval with silicic volcanism recorded elsewhere in the fold belt at this time (Connors Arch, Drummond Basin). The new U–Pb zircon ages, in combination with those from previous studies, show that silicic magmatism was both widespread across the northern New England Fold Belt (>250 000 km2 and ≥500 km inboard of plate margin) and protracted, occurring over a period of ~15 million years. Zircon inheritance is commonplace in the Late Devonian — Early Carboniferous volcanics, reflecting anatectic melting and considerable reworking of continental crust. Inherited zircon components range from ca 370 to ca 2050 Ma, with Middle Devonian (385–370 Ma) zircons being common to almost all dated units. Precambrian zircon components record either Precambrian crystalline crust or sedimentary accumulations that were present above or within the zone of magma formation. This contrasts with a lack of significant zircon inheritance in younger Permo‐Carboniferous igneous rocks intruded through, and emplaced on top of, the Devonian‐Carboniferous successions. The inheritance data and location of these volcanic rocks at the eastern margins of the northern New England Fold Belt, coupled with Sr–Nd, Pb isotopic data and depleted mantle model ages for Late Palaeozoic and Mesozoic magmatism, imply that Precambrian mafic and felsic crustal materials (potentially as old as 2050 Ma), or at the very least Lower Palaeozoic rocks derived from the reworking of Precambrian rocks, comprise basement to the eastern parts of the fold belt. This crustal basement architecture may be a relict from the Late Proterozoic breakup of the Rodinian supercontinent.  相似文献   

13.
The Archaean Peninsular Gneiss of southern India is considered by a number of workers to be the basement upon which the Dharwar supracrustal rocks were deposited. However, the Peninsular Gneiss in its present state is a composite gneiss formed by synkinematic migmatization during successive episodes of folding (DhF1, DhF1a and DhF2) that affected the Dharwar supracrustal rocks. An even earlier phase of migmatization and deformation (DhF*) is evident from relict fabrics in small enclaves of gneissic tonalites and amphibolites within the Peninsular Gneiss. We consider these enclaves to represent the original basement for the Dharwar supracrustal rocks. Tonalitic pebbles in conglomerates of the Dharwar Supergroup confirm the inference that the supracrustal rocks were deposited on a gneissic basement. Whole rock Rb-Sr ages of gneisses showing only the DhF1 structures fall in the range of 3100–3200 Ma. Where the later deformation (DhF2) has been associated with considerable recrystallization, the Rb-Sr ages are between 2500 Ma and 2700 Ma. Significantly, a new Rb-Sr analysis of tonalitic gneiss pebbles in the Kaldurga conglomerate of the Dharwar sequence is consistent with an age of ~2500 Ma and not that of 3300 Ma reported earlier by Venkatasubramanian and Narayanaswamy (1974). Pb-Pb ages based on direct evaporation of detrital zircon grains from the metasedimentary rocks of the Dharwar sequence fall into two groups, 3300–3100 Ma, and 2800–3000 Ma. Stratigraphic, structural, textural and geochronologic data, therefore, indicate that the Peninsular Gneiss of the Dharwar craton evolved over a protracted period of time ranging from > 3300 Ma to 2500 Ma.  相似文献   

14.
Palaeoproterozoic intermediate to potassic felsic volcanism in volcano‐sedimentary sequences could either have occurred in continental rift or at convergent magmatic arc tectonic settings. The Vinjamuru domain of the Krishna Province in Andhra Pradesh, SE India, contains such felsic and intermediate metavolcanic rocks, whose geochemistry constrains their probable tectonic setting and which were dated by the zircon Pb evaporation method in order to constrain their time of formation. These rocks consist of interlayered quartz–garnet–biotite schist, quartz–hematite–baryte–sericite schist as well as cherty quartzite, and represent a calc‐alkaline volcanic sequence of andesitic to rhyolitic rocks that underwent amphibolite‐facies metamorphism at ~1.61 Ga. Zircons from four felsic metavolcanic rock samples yielded youngest mean 207Pb/206Pb ages between 1771 and 1791 Ma, whereas the youngest zircon age for a meta‐andesite is 1868 Ma. A ~2.43 Ga zircon xenocryst reflects incorporation of Neoarchaean basement gneisses. Their calc‐alkaline trends, higher LILE, enriched chondrite‐normalized LREE pattern and negative Nb and Ti anomalies on primitive mantle‐normalized diagrams, suggest formation in a continental magmatic arc tectonic setting. Whereas the intermediate rocks may have been derived from mantle‐source parental arc magmas by fractionation and crustal contamination, the rhyolitic rocks had crustal parental magmas. The Vinjamuru Palaeoproterozoic volcanic eruption implies an event of convergent tectonism at the southeastern margin of the Eastern Dharwar Craton at ~1.78 Ga forming one of the major crustal domains of the Krishna Province. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Laser Raman spectroscopy and cathodoluminescence (CL) images reveal that most zircon separated from paragneiss and orthogneiss in drillhole CCSD‐PP2 at Donghai, south‐western Sulu terrane, retain low‐P mineral‐bearing inherited cores, ultrahigh‐pressure (UHP) mineral‐bearing mantles and low‐P mineral‐bearing (e.g. quartz) rims. SHRIMP U–Pb analyses of these zoned zircon identify three discrete and meaningful age groups: Proterozoic protolith ages (> 680 Ma) are recorded in the inherited cores, the UHP metamorphic event in the coesite‐bearing mantles occurred at 231 ± 4 Ma, and the late amphibolite facies retrogressive overprint in the quartz‐bearing rims was at 211 ± 4 Ma. Thus, Neoproterozoic supracrustal protoliths of the Sulu UHP rocks were subducted to mantle depths in the Middle Triassic, and exhumed to mid‐crustal levels in the Late Triassic. The exhumation rate deduced from the SHRIMP data and metamorphic P–T conditions is 5.0 km Ma?1. Exhumation of the Sulu UHP terrane may have resulted from buoyancy forces after slab break‐off at mantle depths.  相似文献   

16.
This paper provides further evidence for the ongoing discussion as to whether the Dabie UHPM belt formed in Triassic or Palaeozoic time, and whether the Sulu UHPM belt formed in Triassic or Neoproterozoic time. Combined use of laser Raman spectrometer (LR), cathodoluminescence imaging (CL), and ion probe U–Pb in‐situ dating (SHRIMP) provided accurate ages of UHPM from rocks collected from Weihai, NE Sulu UHPM belt. LR was used to identify coesite and other UHP minerals as inclusions in zircon separates from an amphibolized peridotite and an eclogite. CL was used to examine the zoning structure of these zircon, and SHRIMP dating was performed on specific spots on zircon to obtain ages of different geological events. An age of 221 ± 12 Ma was obtained for coesite‐bearing zircon from the amphibolized peridotite; an age of 228 ± 29 Ma for eclogite was obtained from the lower intercept of a concordia plot. These ages are interpreted as the time of UHPM in the Weihai region. Ultramafic rocks to the east of Weihai yield a magmatic age at 581 ± 44 Ma. The zircon in the ultramafic rocks possibly also records a thermal event at c. 400 Ma, but no independent geological evidence for this event has been found. The eclogite protolith formed in the Middle Proterozoic (1821 ± 19 Ma), which is similar to the age of country rock gneisses of 1847–1744 Ma. The new geochronological data confirm that UHPM occurred in the Triassic in the Sulu area when subduction took the ultramafic body and the eclogite protolith, together with the adjacent supracrustal rocks, to mantle depths.  相似文献   

17.
《International Geology Review》2012,54(15):1902-1908
Prior to this work, the existence of crustal materials older than 4.0 Ga has not been reported from the North China Craton (NCC) – one of the few global terrains where crustal rocks from ~3.8 Ga have been identified. Here we report the first occurrence of a xenocrystic zircon with a 207Pb/206Pb age of 4174 ± 48 Ma, from the Anshan–Benxi Archaean supracrustal greenstone belt, based on laser ablation–inductively coupled plasma–mass spectrometry. The 4.17 Ga zircon xenocryst is hosted within ~2523 ± 12 Ma massive fine-grained amphibolites which were subsequently metamorphosed at ~2481 ± 19 Ma. The xenocryst age is ca. 350 million years, older than the oldest zircon previously identified in the NCC, and is consistent with prior zircon Lu–Hf isotopic studies. Documentation of 4.17 Ga xenocrystal zircon not only provided a geochronological record of the oldest known crustal materials in the NCC, but also identified the geologic environment for further search for the rocks that formed during Earth’s earliest recorded evolution.  相似文献   

18.
Henglingguan and Beiyu metamorphic granitoids, distributed in the northwest of the Zhongtiaoshan Precambrian complex, comprise trondhjemites and calc-alkaline monzogranites, displaying intrusive contacts with the Archean Zhaizi TTG gneisses. And the Beiyu metamorphic granitoids consist mainly of trondhjemites, distributed at the core of the Hujiayu anticline fold. New SHRIMP zircon U-Pb dating data show that the weighted mean ^207pb/^206pb ages are 2435.9 Ma and 2477 Ma for the Henglingguan metamorphic calc-alkaline monzogranites and Beiyu metamorphic trondhjemites, respectively, and reveal -2600 Ma inherited core in magmatic zircons. Whole-rock geochemical data indicate that all the Henglingguan and Beiyu metamorphic trondhjemites and calc- alkaline monzogranites belong to the metaluminous medium- and high-potassium calc-alkaline series. These rocks are characterized by relatively high total alkali contents (Na2O+K2O, up to 9.08%), depleted Nb, Ta, P and Ti, and right-declined REE patterns with moderate to high LREEs/HREEs fractionation (the mean ratio of (La/Yb)n = 25). The Henglingguan and Beiyu metamorphic trondhjemites display negative Rb, Th and K anomalies in the multi-dement spider diagrams normalized by primitive mantle. Sm-Nd isotopic data reveal that these granitoids have initial εNd(t) =-1.2 to +2.4 and Nd depleted mantle model ages of TMD = 2622 Ma-2939 Ma. All these geochemical features indicate that these granitoids were formed in an continent-marginal arc, and the trondhjemites mainly originated from partial melting of juvenile basaltic materials and, howbeit, the Henglingguan metamorphic calc-alkaline monzogranites derived from recycling of materials in the ancient crust under a continent-marginal arc. The granitic magma underwent contamination and fractional crystallization during their formation.  相似文献   

19.
华北克拉通是否同华南克拉通一样保存有与Rodinia超大陆聚合和裂解有关的年龄记录是理解华北克拉通元古宙构造演化的重要科学问题.本文对位于华北克拉通燕辽裂陷槽的北京西山地区的寒武系和侏罗系碎屑岩进行锆石LA-ICP-MS U-Pb年代学研究,目的是通过碎屑锆石年龄揭示华北克拉通前寒武纪尤其是古元古代末-新元古代重要地质事件.定年结果显示,北京西山寒武系徐庄组的钙质细砂岩中碎屑锆石年龄峰值主要集中在~1.38Ga和~1.14Ga.此外,还有~ 1.56Ga、~912Ma、~814Ma、~740Ma、~630Ma和~507Ma的年龄组.侏罗系窑坡组长石质岩屑细砂岩和粉砂质泥岩中碎屑锆石年龄峰值主要集中在~2.5Ga、1.88~1.8Ga、~1.74Ga、~1.6Ga和186Ma.此外,还有~2.77Ga、~2.0Ga、~1.2Ga、~488Ma、~256Ma和~233 Ma的年龄组.这三个岩石具有较低的成分和结构成熟度,指示较近的物源区,其碎屑物质可能大部分来自华北克拉通内部和北缘,因此其碎屑锆石的年龄组可记录华北克拉通前寒武纪重要地质事件.~2.77Ga、~2.5Ga、2.1~ 2.0Ga和1.88~1.8Ga的年龄组分别对应华北克拉通早前寒武纪发生地壳生长、克拉通化、裂谷和造山等重要地质事件;~ 1.74Ga、~ 1.6Ga、~ 1.56Ga、~1.38Ga、~912Ma和~814Ma的年龄组记录了华北克拉通最终克拉通化后开始的古元古代末-新元古代的多期裂谷事件.与1.3~ 1.0Ga、~740Ma和~630Ma的年龄组相对应的岩石在华北克拉通出现甚少,而该时期的岩浆岩和变质岩在华南克拉通广泛发育,且可能与Rodinia超大陆汇聚和裂解的不同阶段相对应.华北克拉通显生宙碎屑岩中碎屑锆石保存的古元古代末-新元古代地质事件的记录对探讨华北克拉通在元古宙的地质演化及华北克拉通与华南克拉通的关系可提供重要的依据.  相似文献   

20.
We report zircon U–Pb geochronologic and geochemical data for the post-collisional volcanic rocks from the Batamayineishan (BS) Formation in the Shuangjingzi area, northwestern China. The zircon U–Pb ages of seven volcanic samples from the BS Formation show that the magmatic activity in the study area occurred during 342–304 Ma in the Carboniferous. The ages also indicate that the Palaeo-Karamaili Ocean had already closed by 342 Ma. Moreover, the volcanic rocks also contained 10 inherited zircons with ages ranging from 565 to 2626 Ma, indicating that Precambrian continental crust or microcontinents with accretionary arcs are two possible interpretations for the basement underlying the East Junggar terrane. The sampled mafic-intermediate rocks belong to the medium-K to high-K calc-alkaline and shoshonitic series, and the formation of these rocks involved fractional crystallization with little crustal contamination. These Carboniferous mafic-intermediate rocks show depletions in Nb and Ta and enrichments in large ion lithophile elements (e.g. Rb, Ba, U, and Th) and light rare earth elements. The low initial 87Sr/86Sr values (0.7034–0.7042) and positive εNd(t) values (+2.63 to +6.46) of these rocks suggest that they formed from depleted mantle material. The mafic-intermediate rocks were most likely generated by 5–10% partial melting of a mantle source composed primarily of spinel lherzolite with minor garnet lherzolite that had been metasomatized by slab-derived fluids and minor slab melts. In contrast, the felsic rocks in the BS Formation are A-type rhyolites with positive εNd(t) values and young model ages. These rocks are interpreted to be derived from the partial melting of juvenile basaltic lower crustal material. Taken together, the mafic-intermediate rocks formed in a post-collisional extensional setting generated by slap breakoff in the early Carboniferous (342–330 Ma) and the A-type rhyolites formed in a post-collisional extensional setting triggered by the upwelling asthenosphere in the late Carboniferous (330–304 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号