首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The Almatti dam is the major engineering feature in the development of water resources in the Upper Krishna river forming a storage reservoir of 6425 million m3 at spillway crest level. In this paper, the design storm rainfalls for different return periods and also the Probable Maximum Precipitation (PMP) for the catchment above Almatti dam have been estimated to review the adequacy of the flood spillway design for the dam. The design storm rainfalls of various return periods have been computed from a statistical analysis of point and areal time series of annual maximum rainfall. In evaluating the PMP, the maximum observed rainfall obtained by Depth Duration method were maximized as the orography of the Western Ghats plays profound influence over the catchment. It was found that (area 35925 km2) the highest areal rainfalls over the catchment were 14.0 cm, 21.5 cm and 24.6 cm in 1, 2 and 3-day durations, respectively. These are scaled up by a factor of 1.23 to obtain the PMP rainfalls. The areal PMP estimates for the upper Krishna River (UKR) catchment above Almatti dam have been found to be 18.0 cm, 27.0 cm and 31.0 cm, respectively.With 6 Figures  相似文献   

2.
Summary For the purpose of providing information to hydrologists for designing costly and large hydraulic structures, estimates of probable maximum precipitation (PMP) for a 2-day duration for stations in the Indian Peninsula lying between 8° N to 20° N were calculated using the Hershfield statistical techniqe. Maximum annual 2-day rainfall data of 80 years from 1901 for 131 stations in the region were used. In order to obtain values of PMP, an enveloping frequency factor (k m ) curve based on the actual rainfall data of stations in the region was developed. The enveloping curve was then utilised to estimate 2-day PMP values of all the 131 stations. Based on these PMP estimates, a generalised chart showing the spatial distribution of 2-day PMP was prepared. It was found that 2-day PMP estimates over the Indian peninsula varied from 40 to 95 cm and the average ratio of 2-day PMP to the highest observed 2-day rainfall was found to be 1.76.With 2 Figures  相似文献   

3.
A hydrometeorological study is made of the September, 1900 severe rainstorm which led up to the record rain-falls over Gangetic West Bengal with subsequent disastrous flooding in the Damodar and the Hooghly rivers. The spatial extent of the rainstorm for different durations has been examined by constructing the isohyetal patterns based on rainfall records of stations affected by the storm. Areal rainfalls for 1,2 and 3-day periods are calculated and the values have been compared with similar values from other major rainstorms of the region. The comparison revealed that the September, 1900 rainstorm was the heaviest for 1,2 and 3-day durations for all the areas. The storm contrib-uted rainfalls of 33.0 cm, 52.0 cm and 62.0 cm over an area of 10,000 km2 in 1,2 and 3 days respectively. This rainstorm could, therefore, be considered as an important input in flood and design storm studies in the Gangetic West Bengal region. A relationship between point to areal rainfall has also been developed with a view to evaluate areal PMP estimates.  相似文献   

4.
Summary During the summer season, typhoons form in the western north Pacific Ocean and travel westward towards China. Some recurve northward off the coast, whereas others continue in over land. These typhoons bring heavy rainfall to the Huai river basin in eastern central China. In August 1975, the remnant of typhoon Nina caused exceptionally heavy rainfall in the Hongru river basin, in the mountainous upper reaches of the Huai river. The rainfall lasted five days from 4 to 8 August. This type of nearly stationary typhoon can cause rainfall of large intensity for a long duration, and is suitable for maximization to derive probable maximum precipitation (PMP) estimates. The PMP is transformed into a probable maximum flood hydrograph that is subsequently used to design spillways etc. In this study the PMP values have been estimated using a hydrometeorological method involving depth-area-duration analysis, moisture maximization, and altitude adjustment for typhoon Nina, for 1, 2, and 3 days duration. Areal PMP values were obtained for the entire Hongru river catchment, as well as for the subcatchments upstream the dams at Banqiao (762 km2), Shimantan (230 km2), Boshan (580 km2), and Suyahu (4 498 km2). For point values, the PMP was estimated to 1 200 mm/day, 1 460 mm/2 days, and 1 910 mm/3 days at altitudes about 100 m, which agrees well with previous studies. Received February 21, 1997 Revised May 27, 1997  相似文献   

5.
Summary In a previous study the authors have estimated the probable maximum precipitation (PMP) for a 2-day duration using Hershfield's formulaX PMP =X n +k m n for stations in the southern Indian region. In this paper, the study is extended to estimate the PMP for stations in the north Indian region, north of 20°N. Maximum annual 2-day rainfall data for an 80-year period, from 1901, were obtained for 286 stations in the region. A mathematical relationship between the frequency factor (k m ) and the mean annual extreme rainfall (X n ) was developed to bek m = 18.15 exp (–0.0448X n ). This equation was used to obtaink m for different values ofX n and, subsequently, to estimate 2-day PMP values for the 286 stations. Using these PMP estimates, a generalised chart was prepared, showing the spatial distribution of 2-day PMP. It was found that 2-day PMP over the north Indian region varied from 60 cm to 130 cm, and the average ratio of the 2-day PMP to the highest observed 2-day rainfall was found to be 1.91. The results show that there have been instances when almost 2-day point PMP have occurred at some of the stations in the region. These results indicate that the statistically estimated PMP rainall are not therefore, mere theoretical estimates, but they can occur under optimum meteorological conditions.With 4 Figures  相似文献   

6.
Summary The highest recorded 24-hour rainfall totals from 1875 to 1982 for about 300 stations were plotted and isohyets drawn to delineate the homogeneous zones of heavy rainfall. The isohyetal pattern indicated an unsteady increase from less than 20 cm in the far west and far north to over 50 cm on or near the coasts. At a few inland stations outstanding amounts have been recorded but these are randomly distributed in space and time. Besides these, there existed a densely gauged area in the Central Peninsula between latitudes 8 °N to 21 °N within which more than 20 cm of rain in 24 hours have never been recorded. The areas of heavy rainfall of one day duration include the entire Indian region except the far western extremity, the northern area bordered by the Himalayas and the central peninsula. The correlation coefficient between the highest rainfall and elevation indicated no significant relationship.With 2 Figures  相似文献   

7.
AStudyofHeavyRainfallof8-10June,1991overMaharashtra,IndiaA.K.Kulkarni,B.N.MandalandR.B.SangamAStudyofHeavyRainfallof8-10June,...  相似文献   

8.
Most, if not all forests in the Caribbean are subject to occasional disturbances from hurricanes. If current general circulation model (GCM) predictions are correct, with doubled atmospheric CO2 (2 × CO2), the tropical Atlantic will be between 1 °C and 4 °C warmer than it is today. With such a warming, more than twice as many hurricanes per year could be expected in the Caribbean. Furthermore, Emanuael (1987) indicates that in a warmed world the destructive potential of Atlantic hurricanes could be increased by 40% to 60%. While speculative, these increases would dramatically change the disturbance regimes affecting tropical forests in the region and might alter forest structure and composition. Global warming impacts through increased hurricane damage on Caribbean forests are presented.An individual tree, gap dynamics forest ecosystem model was used to simulate the range of possible hurricane disturbance regimes which could affect the Luquillo Experimental Forest in Puerto Rico. Model storm frequency ranged from no storms at all up to one storm per year; model storm intensity varied from no damage up to 100% mortality of trees. The model does not consider the effects of changing temperature and rainfall patterns on the forest. Simulation results indicate that with the different hurricane regimes a range of forest types are possible, ranging from mature forest with large trees, to an area in which forest trees are never allowed to reach maturity.  相似文献   

9.
The hydro-meteorological evaluation of a flood event in July 1997 (the Odra flood in Central Europe) demonstrated that new procedures to estimate design floods for the reservoir outflow structures in the Czech Republic (CR) were needed. Therefore, the techniques of the estimation of Probable Maximum Precipitation (PMP) were developed in a national research project (1998–2000), and the activity focused on the improvement of the area related PMP estimates was going on within a present national project. In the frame of the evaluation of the next extreme precipitation event in August 2002 (the Labe flood in the CR and Germany), we compared the catchments related precipitation with the PMP estimates. In this paper, an outline of the PMP estimation techniques is given and the use of data from the Czech gauges is described, the aim being the statistical derivation of the point and area PMP estimates for precipitation duration of 1 to 5 days. The use of radar data in assessing the maximized area reduction factor is discussed and the relationship resulting from the radar measurements over the CR territory is presented. An evaluation of the radar-based area rainfall enabled us to transform the point PMP to the area PMP estimate designed for the river basins in CR. In the last part of the paper, the results obtained by comparing the rainfalls in 1997 and 2002 flood events with the PMP estimates are presented. The comparison showed that the maximum area rainfalls over small Czech catchments (the 3rd order river basins) did not exceed 63% of the corresponding PMP values.  相似文献   

10.
Tropical cyclone (TC) rainfall asymmetry is often influenced by vertical wind shear and storm motion. This study examined the effects of environmental vertical wind shear (200-850 hPa) and storm motion on TC rainfall asymmetry over the North Indian Ocean (NIO): the Bay of Bengal (BoB) and the Arabian Sea (AS). Four TC groups were used in this study: Cyclonic Storm (CS), Severe Cyclonic Storm (SCS), Very Severe Cyclonic Storm (VSCS) and Extreme Severe Cyclonic Storm (ESCS). The Fourier coefficients for wave number-1 was used to analyze the structure of TC rainfall asymmetry. Results show that the maximum TC rainfall asymmetry was predominantly in the downshear left quadrant in the BoB, while it placed to downshear right quadrant in the AS, likely due to the different primary circulation strength of the TC vortex. For the most intense cyclone (ESCS), the maximum TC rainfall asymmetry was in the upshear left quadrant in the BoB, whereas it was downshear right quadrant in the AS. It is evident for both basins that the magnitude of TC rainfall asymmetry declined (increased) with TC intensity (shear strength). This study also examined the collective effects of vertical wind shear and storm motion on TC rainfall asymmetry. Here, the analysis in case of the strong shear environment (>7 m s-1) omitted for the AS because the maximum value for this basin was about 7 m s-1. The result showed that the downshear left quadrant was dominant in the BoB for the maximum TC rainfall asymmetry. In a weak shear environment (<5 m s-1), on the other hand, downshear right quadrant is evident for the maximum TC rainfall asymmetry in the BoB, while it placed dominantly downshear left quadrant in the AS. In the case of motion-relative wavenumber-1, the maximum TC rainfall asymmetry was dominantly downshear for both basins.  相似文献   

11.
黄河中下游地区一次暴雨过程的数值模拟和诊断   总被引:1,自引:0,他引:1  
利用非静力中尺度模式WRF V3.2.1及其输出的高时空分辨率资料,对2007年7月29~30日发生在黄河中下游地区的暴雨天气过程进行了数值模拟和诊断分析。结果表明:(1)广义位温的大值中心区与相对湿度90%的高湿区相一致,暴雨区上空的广义位温等值线呈漏斗状从对流层中高层向低层伸展,在漏斗的底部,其垂直梯度也相应增大,暴雨中心位于广义位温的大梯度区;(2)P坐标下,对流涡度矢量垂直分量(Cz)与降水量随时间演变二者呈现反位相,且Cz极值的出现滞后降水峰值1 h左右;对流涡度矢量垂直分量的垂直积分的发展演变与降水落区、强度的发展变化相对应,对强降水落区、强度的发展变化具有指示意义。  相似文献   

12.
Paralleling the Southern Himalayan Province, the Indo-GangeticPlains region (IGPR) of India (geographical area 6,00,000 km2) is veryimportant for the food security of South Asia. Due to numerous factors inoperation there is widespread apprehension regarding sustainability offragile ecosystems of the region. Literature provides detailed documentation of environmental changes due to different factors except climatic. The present study is intended to document the instrumental-period fluctuations of important climatic parameters like rainfall amounts (1829–1999), severe rainstorms (1880–1996) and temperature (1876–1997) exclusively for the IGPR. The summer monsoon rainfall over western IGPR shows increasing trend(170 mm/100-yr, significant at 1% level) from 1900 while over central IGPR it shows decreasing trend (5 mm/100-yr, not significant) from 1939 and over eastern IGPR decreasing trend (50 mm/100-yr, not significant) during 1900–1984 and insignificant increasing trend (480 mm/100-yr, not significant) during 1984–1999. Broadly it is inferred that there has been a westward shift in rainfall activities over the IGPR. Analysis suggests westward shift in the occurrence of severe rainstorms also. These spatial changes in rainfall activities are attributed to global warming and associated changes in the Indian summer monsoon circulation and the general atmosphericcirculation. The annual surface air temperature of the IGPR showed rising trend (0.53 ° C/100-yr, significant at 1% level) during 1875–1958 and decreasing trend (–0.93 ° C/100-yr, significant at 5% level) during 1958–1997. The post-1958 period cooling of the IGPR seems to be due to expansion and intensification of agricultural activities and spreading of irrigation network in the region. Lateral shift in the river courses is an environmental hazard of serious concern in the IGPR. In the present study it is suggested that meteorologic factors like strength and direction of low level winds and spatial shift in rainfall/climatic belt also play a significant role along with tectonic disturbances and local sedimentological adjustments in the vagrancy of the river courses over the IGPR.  相似文献   

13.
Summary Tropical cyclones (TC) in the data-sparse SW Indian Ocean region are studied through climatological and statistical associations and case study structure. Differences between summers with more and less TC are identified with a view to the prediction of seasonal frequencies. In summers with more TC, upper easterlies and lower westerlies over the equatorial zone north of Madagascar form a Walker cell anomaly in conjunction with the east phase of the stratospheric quasi-biennial oscillation (QBO), while sea surface temperatures (SST) are above normal in the preceding spring (>28°C). In the sub-tropics, easterly trade winds strengthen while mid-latitude westerlies shift polewards and SST are below normal (<23°C). OLR departures in more TC summers are <–15 Wm–2 over region frequented by tropical cyclones.Two tropical cyclone events are selected for analysis which rank highest in terms of rainfall on Mauritius. Danielle formed near 13°S, 65°E and tracked southwest across Mauritius on 19 January 1964. A radiosonde time-height section is analysed for departures from climatology and thermodynamic structure. The profile of equivalent potential temperature is rather uniform near the center of the TC, decreasing from 350°K near the surface. Dry stable air is present in the 600hPa layer around the perimeter. TC Hyacinthe was quasistationary to the east of Madagascar causing rainfall in excess of 500 cm on Reunion Island from 15–27 January 1980. OLR anomaly plots and satellite imagery indicate that Hyacinthe was spawned in association with an eastward moving convective wave and reached maximum intensity (–92 Wm–2) and radius (>1000 km) from 21 to 26 January 1980.With 14 Figures  相似文献   

14.
Abstract

Precipitation production is investigated for 9 intense thunderstorms that developed over the Lowveld in South Africa. A C‐band radar is used to observe the 3‐dimensional reflectivity pattern. Using an empirical relation between reflectivity factor and precipitation content and integrating over the storm volume provides an estimate of the total precipitation content aloft. Likewise, an area integration of the instantaneous rain rate at cloud base yields an estimate of the rate of total outflow. At their maturing stage, the storms had precipitation contents of 0.2 to 5.0 Tg and rainfall rates of about 0.3 to 2.0 Gg s?1. The total accumulation of rain at the ground ranged from 1 to 10 Tg. The characteristic storm updraft, defined as the ratio of the area‐averaged rainfall rate to the volume‐averaged precipitation content, was about 5 ms?1 for all storms. The time evolution of integral storm parameters is also presented and related to the overall storm development. The precipitation production values observed in the Lowveld storms compares well with previous estimates reported for large thunderstorms observed in Alberta and New England.  相似文献   

15.
Higher variability in rainfall and river discharge could be of major importance in landslide generation in the northwestern Argentine Andes. Annual layered (varved) deposits of a landslide dammed lake in the Santa Maria Basin (26°S, 66°W) with an age of 30,000 14C years provide an archive of precipitation variability during this time. The comparison of these data with present-day rainfall observations tests the hypothesis that increased rainfall variability played a major role in landslide generation. A potential cause of such variability is the El Niño/Southern Oscillation (ENSO). The causal link between ENSO and local rainfall is quantified by using a new method of nonlinear data analysis, the quantitative analysis of cross recurrence plots (CRP). This method seeks similarities in the dynamics of two different processes, such as an ocean–atmosphere oscillation and local rainfall. Our analysis reveals significant similarities in the statistics of both modern and palaeo-precipitation data. The similarities in the data suggest that an ENSO-like influence on local rainfall was present at around 30,000 14C years ago. Increased rainfall, which was inferred from a lake balance modeling in a previous study, together with ENSO-like cyclicities could help to explain the clustering of landslides at around 30,000 14C years ago.  相似文献   

16.
Summary The relationship between the surface air pressure field during the pre-monsoon months and the Indian summer monsoon rainfall is analysed using climate data from 105 stations situated in Eurasia between 0°–60° N and 20°–100° E. Moreover, grid-point data for the whole northern hemisphere are used. Pressure during April over an area around 50° N and 35° E is found to show a significant negative correlation with the subsequent monsoon rainfall. During May the pressure over a large part of the study area south of 40° N shows a significant correlation with its highest value in the heat low region over Pakistan. It is assumed that monitoring of pressure variations over this region may be useful in predicting monsoon rainfall, particularly the rainfall during the first half of the season. Certain limitations of the climate data in this region are also discussed.With 5 Figures  相似文献   

17.
Fire is a dominant ecological factor in Mediterranean ecosystems, and changes in the fire regime can have important consequences for the stability of our landscapes. In this framework I asked firstly, what is the trend in fire number and area burned in the eastern Iberian Peninsula, and then, to what extent is the inter-annual variability of fires determined by climatic factors. To answer these questions I analysed the meteorological data (temperature and precipitation) from 350 stations covering the eastern Iberian Peninsula (1950–2000), and the fire records for the same area (historical data, 1874–1968, and data from recent decades, 1968–2000). The results suggested a slight tendency towards decreasing summer rainfall and a clear pattern of increasing annual and summer temperatures (on average, annual temperatures increased 0.35 °C per decade from 1950 to 2000). The analysis of fire records suggested a clear increase in the annual number of fires and area burned during the last century; however, in the last three decades the number of fires also increased but the area burned did not show a clear trend. For this period the inter-annual variability in area burned was significantly related to the summer rainfall, that is, in wet summers the area burned was lower that in dry summers. Furthermore, summer rainfall was significantly cross-correlated with summer area burned for a time-lag of 2 years, suggesting that high rainfall may increase fuel loads that burn 2 years later.  相似文献   

18.
This study is based on the premise that, in the Sahel/Sudanian belt of Africa, the main determinants of interannual variation in vegetation dynamics are rainfall and land cover type. We analyzed the spatio-temporal sensitivity of the NOAA-AVHRR 8 km-resolution vegetation index (NDVI) to (i) annual rainfall variability (0.5° × 0.5° resolution) acquired over a 25-year period (1982-2006); and (ii) land use changes in the different eco-climatic regions of the Bani catchment in Mali (130 000 km2). During the period 1982-2006, there was no clear trend in rainfall over the catchment, whereas there was a strong positive trend in the NDVI, both when the NDVI values were corrected using annual rainfall variability and when they were not. We divided the catchment into three eco-climatic regions based on the relationship between the annual NDVI and rainfall. In each region, we analyzed the observed greening in relation to changes in land use after correcting for the effect of annual rainfall on the NDVI. Results show that there is a mixed level of agreement between the land cover changes at the grid cell scale and the spatial pattern of the NDVI trend. Increased cropping does not explain the increase in the annual NDVI, except in the Sahelian part of the catchment. We hypothesize that the natural vegetation dynamics related to the non-linear rainfall patterns during the 25-year study period were responsible for these results.  相似文献   

19.
根据福建南部沿海气象站和水文站1961—2007年降水资料,分析其暴雨特征,应用概率论方法和水文气象法,推求福建南部沿海24 h可能最大降水。结果显示:①福建南部沿海的暴雨主要集中于春夏两季,冷暖空气交绥的锋面暴雨以及台风等热带天气系统所致的暴雨是福建南部沿海最主要的两种暴雨类型。即使同处暴雨一致区,暴雨强度及出现的区域也有一定的偶然性。②采用皮尔逊-Ⅲ型法计算不同重现期24 h的最大降水量时,如果不考虑降水的随机性,不做暴雨一致区的特大暴雨移置和特大值处理,将会影响概率论法计算结果的合理性。③暴雨模式的拟定是整个工作的基础,所选暴雨模式中地形对降水有显著的增幅作用,可认为是高效率暴雨模式,故选择水汽放大法计算,与概率论方法比较,计算结果是合理的。  相似文献   

20.
暴雨灾害风险及其对农业影响的评估   总被引:1,自引:0,他引:1  
王莹  张晓月  张琪  李琳琳  黄岩 《气象科学》2019,39(1):137-142
综合考虑降雨区域类型、发生强度和持续时间,确定了暴雨灾害致灾因子的综合强度分级标准;将地形高程、高程标准差、河网密度等环境脆弱性要素结合暴雨灾害致灾因子,建立暴雨灾害风险评估模型,并进行分级评估;应用GIS将农业易损性指标叠加到暴雨灾害风险区划中,得到不同等级风险下农业受影响的程度。以"7·21"暴雨为例,进行模型的应用及检验分析,结果表明:降雨量最大的葫芦岛大部、丹东宽甸县暴雨灾害风险等级为极高;致灾因子危险等级相同时,辽宁中部平原地区较辽西、辽东丘陵地区暴雨灾害风险等级高;农业易损性较高的沈阳大部、鞍山北部、丹东局部、锦州大部、铁岭部分、葫芦岛大部地区农业受灾较重。评估结果与事实灾情较一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号