首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

2.
During the 1971–1972 eruption of Soufrière volcano on St. Vincent Island, a lava mass was extruded subaqueously in the crater lake. An investigation of the chemistry of the lake indicates that over 50,000 tons of dissolved solids were taken into solution during the eruption, in addition to 9000 tons of iron precipitated as ferric oxide in syngenetic metalliferous sediments on the crater floor. Leaching of hot disintegrating lava and volcanic glass is the principal source of cations dissolved in the lake (Na, Ca, Mg, Si and K), whereas chlorine and sulfur were introduced during injection of acid volcanic gases from the submerged lava mass. Concentrations of the common cations in the lake are not affected by mineral solubility, except in the case of Fe3+, but rather by the rate of leaching, evaporation, and water-rock reactions. Variations in Cl/Na, total Cl and acidity have aided in identification of distinct fumarolic phases during the eruption, which may correlate with observed increase in frequency of minor volcanic tremors in the crater. Accumulation of ferric oxide in sediments on the crater floor is thought to be due to leaching of ferrous iron at high temperature from the lava mass, followed by oxidation and precipitation of hematite in the cooler lake.  相似文献   

3.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   

4.
A drastic change in lake water color from blue-green to brown was observed in the summit crater lake of Mt. Shinmoe-dake, Kirishima Volcano about 8 months after its 2008 eruption. The color change lasted for about 2 months (April–June 2009). The discoloration was attributed to a brownish color suspension that had formed in the lake water. X-ray fluorescence and Fourier transform infrared analyses of a sample of the suspension identified schwertmannite (Fe8O8(OH)6(SO4)). A cultivation test of iron-oxidizing bacteria for the sampled lake water with lakebed sediment revealed that the crater lake hosts iron-oxidizing bacteria, which likely participated in schwertmannite formation. We suggest that pyrite (FeS2) provided an energy source for the iron-oxidizing bacteria since the mineral was identified in hydrothermally altered tephra ejected by the August 2008 eruption. From consideration of these and other factors, the brownish discoloration of the summit crater lake of Mt. Shinmoe-dake was inferred to have resulted from a combined volcanic–microbial process.  相似文献   

5.
A two-channel or split-window algorithm designed to correct for atmospheric conditions was applied to thermal images taken by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) of Lake Yugama on Kusatsu–Shirane volcano in Japan in order to measure the temperature of its crater lake. These temperature calculations were validated using lake water temperatures that were collected on the ground. Overall, the agreement between the temperatures calculated using the split-window method and ground truth is quite good, typically ± 1.5 °C for cloud-free images. Data from fieldwork undertaken in the summer of 2004 at Kusatsu–Shirane allow a comparison of ground-truth data with the radiant temperatures measured using ASTER imagery. Further images were analyzed of Ruapehu, Poás, Kawah Ijen, and Copahué volcanoes to acquire time-series of lake temperatures. A total of 64 images of these 4 volcanoes covering a wide range of geographical locations and climates were analyzed. Results of the split-window algorithm applied to ASTER images are reliable for monitoring thermal changes in active volcanic lakes. These temperature data, when considered in conjunction with traditional volcano monitoring techniques, lead to a better understanding of whether and how thermal changes in crater lakes aid in eruption forecasting.  相似文献   

6.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

7.
We present results from a numerical investigation of subaqueous eruptions involving superheated steam released through a lake mimicking the volcanic setting at Mt. Ruapehu. The simulations were conducted using an adaptive mesh, multi-material, hydrodynamics code with thermal conduction SAGE, (Simple Adaptive Grid Eulerian). Parameters investigated include eruption pressure, lake level and mass of superheated vapor. The simulations produced a spectrum of eruption styles from vapor cavities to radial jets that resulted in hazards that ranged from small-scale waves to high amplitude surges that reached and cascaded over the edge of the crater rim. There was an overall tendency for lake surface activity to increase (including wave amplitude) with increasing mass of superheated vapor and eruption pressure. Surface waves were induced by the formation and collapse of a gas cavity. The collapse of the cavity is considered to play a major role in the characteristic features observed during a subaqueous eruption. The additional mass of superheated vapor produced a larger cavity that displaced a larger area of the lake surface resulting in fast moving surges upon the collapse of the cavity. High lake levels (>90 m) appear to suppress the development of explosive jetting activity when eruption pressures are <10 MPa. At very large eruption pressures (>10 MPa), vertical jets and radial ejections of steam and water can occur in water depths >90 m. Less explosive eruption styles can produce hazardous events such as lahars by the outward movement of surface waves over the crater rim.  相似文献   

8.
The results of a hydroacoustic monitoring experiment in the Kelut Crater lake, Indonesia, prior to its 1990 eruption, are presented, with the benefit of hindsight. Indeed, the underwater noise levels in three widely separated frequency bands, together with the lake water temperature, was radio-transmitted and almost continuously recorded from a period of quiescence of the volcano till the onset of its 10 February 1990, eruption, which destroyed the monitoring buoy. The comparative analysis of the noise variations in the three bands, together with seismic and temperature data, have shed light on the mechanisms underlying the pre-eruptive activity. The three acoustic levels had shown conspicuous, yet distinctive, changes prior to the eruption. Acoustic level in the low-frequency (1–50 Hz) band, which increased one year before the resumption of seismic activity and the lake warming up, is interpreted as the result of boiling at depth. The source of high-acoustic level in the audiometric (500–5000 Hz) range is clearly the bubbling of volcanic gases, occurring as a strong convective column in the middle of the lake. From the variations of this audiometric level, we have estimated that the degassing rate in the lake increased by a hundred-fold during the pre-eruptive period. Variations of ultrasonic (20–100 kHz) frequency acoustic level seem to be related with pressure and thermal changes within the hydrothermal system and its rock matrix beneath the lake. In conclusion, this experiment demonstrates the potential of hydroacoustic monitoring as an early warning system at crater lake volcanoes.  相似文献   

9.
The tunnel system of Hettinga Tromp proved that the Kelut dangers can be controlled to such an extend that no great lahars were formed during the eruption of 1951. This eruption, however, destroyed these tunnels. In 1954, a drainage tunnel system was built based on the seepage principle. But till now it has failed to drain the lake completely. The 23.5 million cb.m of water still stored up in its crater lake will form a potential danger during an eventual eruption.  相似文献   

10.
Variations of polythionates (sulfane disulfonates) and sulfate in the Yugama crater lake, Japan, have been monitored for more than 25 years. Just before the 1982 eruption at the crater lake, polythionate ions decreased to zero from the normal level of about 2000 ppm and sulfate ions increased from 2500 to 5000 ppm. During the 1982 eruption polythionate and sulfate ions varied inversely in concentration and the variations exactly coincided with the frequency of volcanic earthquakes and subsequent explosions. These observations are interpreted in terms of aqueous reactions of fumarolic SO2-H2S gases, resulting in precipitation of alunite. The behavior of polythionate and sulfate ions strongly suggests that they are useful indicator for prediction of impending volcanic hazards from active crater lakes.  相似文献   

11.
El Chichón crater lake appeared immediately after the 1982 catastrophic eruption in a newly formed, 1-km wide, explosive crater. During the first 2 years after the eruption the lake transformed from hot and ultra-acidic caused by dissolution of magmatic gases, to a warm and less acidic lake due to a rapid “magmatic-to-hydrothermal transition” — input of hydrothermal fluids and oxidation of H2S to sulfate. Chemical composition of the lake water and other thermal fluids discharging in the crater, stable isotope composition (δD and δ18O) of lake water, gas condensates and thermal waters collected in 1995–2006 were used for the mass-balance calculations (Cl, SO4 and isotopic composition) of the thermal flux from the crater floor. The calculated fluxes of thermal fluid by different mass-balance approaches become of the same order of magnitude as those derived from the energy-budget model if values of 1.9 and 2 mmol/mol are taken for the catchment coefficient and the average H2S concentration in the hydrothermal vapors, respectively. The total heat power from the crater is estimated to be between 35 and 60 MW and the CO2 flux is not higher than 150 t/day or ~ 200 gm− 2 day− 1.  相似文献   

12.
Soufrière volcano in St Vincent, West Indies, is one of the most active volcanoes in the Eastern Caribbean with at least six eruptions since 1718 AD, the latest of which occurred in 1979. Prior to the 1979 eruption, the active crater hosted deep-water lakes during periods of repose, which were always replenished within a few years after the eruptions. In 1979, the crater was filled with 108 m3 of fragmental material and, despite constant precipitation, has remained virtually dry ever since, with the exception of a small shallow pond. A resistivity survey was conducted in July 2006 to investigate groundwater occurrence in the crater. Results from the resistivity data inversion on several 2-D profiles show a shallow horizontal conductor across the crater floor, consistent with a water-saturated aquifer. They also show that the post-1979 pond, currently present in the crater lake is in fact an outcropping part of the groundwater water reservoir. The reservoir water table is ∼28 m above the pre-1979 lake level and reflects mass equilibrium in the system where constant seepage underground balances the meteoric recharge. We suggest that the groundwater body extends at depth to the bottom of the pre-1979 crater lake, either due to a significant structural discontinuity or because of a reduction of permeability at depth. The estimated maximum volume of water stored underground is 10–30 × 106 m3 and energy considerations indicate that 2.4–7.3 × 1010 kg of magma would potentially be sufficient to vaporise the whole groundwater body. This amount of magma represents only 13–41% of the mass erupted during the last eruption in 1979 which was the smallest of the past 3 eruptions (1902, 1971–72, 1979). Since explosive phreatic or phreatomagmatic eruptions at Soufrière seem to be linked to magma-water interaction within confined space, the results from this survey suggests that phreatic or phreatomagmatic activity is a distinct possibility during future magma intrusion in the summit area, despite the apparent disappearance of water in the summit crater.  相似文献   

13.
We report on the evaluation of in situ measurements of eruption velocities and relative mass flux, collected by Doppler radar, as well as acoustic and infrared data, that were recorded at Stromboli volcano. Doppler radar observations were made alongside thermal, acoustic and seismic measurements, to (1) further investigate the complex waveforms of the SW crater by combining infrasonic, infrared and Doppler radar measurements, (2) establish a relationship between infrared, acoustic and Doppler radar measurements and (3) verify that all instruments observe the same behavior in terms of relative mass eruption rate. We also explore the relationship between kinetic and acoustic energy released during an eruption. Comparing the different methods to each other we are able to show that the mass erupted can be estimated either from the total reflected Doppler radar energy or from infrared observations. However, neither thermal nor reflected energy can provide a value in terms of absolute mass in kg. The erupted masses of different eruptions can only be evaluated relative to each other. Using the combined three data sets we especially focus on the eruption dynamics of the SW crater of Stromboli, namely its fluctuations in eruption strength. These pulses in one eruptive event, so called ’pulsations’ dominate more than 40% of the eruptions of SW crater. Previous models that explain pulsations to be generated by multiple consecutively exploding bubbles are supported by our combined analysis of infrasound, thermal data, particle velocities, and the reflected energy.  相似文献   

14.
A bathymetric survey of Kawah Ijen crater lake was conducted by acoustic sounding in 1996 to compare the lake morphology with those measured in 1922, 1925 and 1938, and to calculate the present lake volume. Even though the lake experienced several hydrothermal eruptions, the maximum depth became shallower (182 m) than before (200 m), resulting in a reduced lake volume (3.0×107 m3).Fifty-two major and minor constituents including rare earth elements and polythionates (PT) of the lake waters at various depths were determined by ICP-AES, ICP-MS and HPLC, respectively. These ions except for several volatile elements are taken up by lake fringe through congruent dissolution of pyroclastics of Kawah Ijen volcano. Most ions are homogeneously distributed throughout the lake, although PT showed a considerable vertical variation. Rare earth elements (REE) in the Kawah Ijen water as well as those from other hyper-acidic crater lakes show distribution patterns likely due to the three rock dissolution (preferential, congruent and residual) types, and their logarithmic concentrations linearly depend upon the pH values of the lake waters.Using the PT degradation kinetics data, production rates of PT, injection rates of SO2 and H2S into the lake were estimated to be 114, 86 and 30 tons/day, respectively. Also travel time of the spring water at the Banyupahit Riverhead from Kawah Ijen was estimated to be 600–1000 days through the consideration of decreasing rates of PT. Molten sulfur stocks containing Sn, Cu, Bi sulfides and Pb-barite exposed on the inner crater slope were presumed to be extinct molten sulfur pools at the former lake bottom. This was strongly supported by the barite precipitation temperature estimated through the consideration of the temperature dependence of Pb-chlorocomplex formation.  相似文献   

15.
We report the stratigraphic sequence of the 2005 eruption of Ilamatepec volcano together with sedimentological and chemical analyses of its products.Structural and textural characteristics of the deposits indicate that the eruption was driven by a small-volume rhyolitic intrusion at shallow levels, which resulted first in the collapse of the existing hydrothermally altered fan of previous deposits inside the crater lake, driving phreatic explosions with launching of blocks on ballistic trajectories; later the magma interacted with lake waters producing several hydromagmatic pyroclastic density currents (PDCs). These flows were energetic enough to knock down pine trees up to distances of 1.8 km from the crater in the E-NE sector of the volcano. Finally, ejection of ballistic blocks that landed on previously emplaced, wet pyroclastic density current deposits, caused the generation of a lahar that flowed down the steep eastern flank toward the El Jabillal gully. Subsequent lahars occurred as a result of intense rain caused by hurricane Stan.Radiocarbon ages on paleosols and charcoal fragments, separating previous volcanogenic sequences, indicate that similar eruptions have occurred more frequently in the past centuries, than previously thought.The new data confirms that Ilamatepec volcano is one of the most active volcanoes in El Salvador. Nevertheless, more detailed studies of the eruptive sequence of Ilamatepec volcano are mandatory to establish future eruptive patterns.  相似文献   

16.
Three major phases are distinguished during the growth of Nyiragongo, an active volcano at the western limit of the Virunga Range, Zaire. Lavas erupted during phase 1 are strongly undersaturated melilitites characterized by the presence of kalsilite phenocrysts, perovskite, and the abundance of calcite in the matrix. Such lavas crop out mainly on the inner crater wall and progressively evolve toward more aphyric melilite nephelinites well represented on the flanks of the volcano. Adventive vents lying at the base of the cone developed along radial fracture systems and erupted olivine and/or clinopyroxene – rich melilitites or nephelinites. Stage 2 lavas are melilite-free nephelinites. Clinopyroxene is the main phenocryst and feldspathoids are abundant in the lavas exposed on the crater wall. These flows result from periodic overflowing of a magma column from an open crater. Extensive fissure flows which erupted from the base of the cone at the end of this stage are related to widespread draining out of magma which in turn induces the formation of the summit pit crater. Magmas erupted during stage 3 are relatively aphyric melilite nephelinites and the main volcanological characteristic is the permanent lava lake observed into the pit crater until the 1977 eruption. Fluctuations of the level of the lava lake was responsible for the development of the inner terraces. Periodic overflowing of the lava lake from the central pit formed the nepheline aggregate lava flows. Petrography and major element geochemistry allow the determination of the principal petrogenetic processes. Melilitites and nephelinites erupted from the summit crater are lavas derived, via clinopyroxene fractionation, from a more primitive melt. The abundance of feldspathoids in these lavas is in keeping with nepheline flotation. Aphyric melilite nephelinites covering the flanks and the extensive fissure flows have a homogeneous chemical composition; rocks from the historical lava lake are slightly more evolved. All these lavas differentiated in a shallow reservoir. Lavas erupted from the parasitic vents are mainly olivine and/or clinopyroxene-phyric rocks. Rushayite and picrites from Muja cone are peculiar high-magnesium lavas resulting from the addition of olivine xenocrysts to melilitic or nephelinitic melts. Fluid and melt inclusions in olivine and clinopyroxene phenocrysts indicate a crystallization depth of 10–14 km. A model involving two reservoirs located at different depths and periodically connected is proposed to explain the petrography of the lavas; this hypothesis is in accordance with geophysical data. Received: July 8, 1993/Accepted: September 10, 1993  相似文献   

17.
The Soufriere of St. Vincent has been monitored for more than 25 years as part of a regional programme in the Lesser Antilles. In that time the volcano has erupted twice but our studies have shown no discernible change in regional seismicity before either event. However, very small seismic events were observed in the crater during the 1971–1972 eruption and were detected before the start of the 1979 explosive eruption; we believe that they were generated by thermally induced hydraulic fracturing within the lava mass inside the crater lake. We conclude that seismographic monitoring of Lesser Antillean volcanoes can give ambiguous results but that at least one instrument must be placed within 1 km of the vent if the earliest signs of activity are to be detected.  相似文献   

18.
Lake Albano, located 20 km to the SE of Rome, is hosted within the most recent crater of the quiescent Alban Hills volcanic complex that produced hydromagmatic eruptions in Holocene times. Stratigraphic, archaeological and historical evidence indicates that the lake level underwent important variations in the Bronze Age. Before the IV century B.C. several lahars were generated by water overflows from the lake and in the IV century B.C. Romans excavated a drainage tunnel. The lake is located above a buried carbonate horst that contains a pressurized medium-enthalpy geothermal reservoir from which fluids escape to the surface to produce many important gas manifestations of mostly CO2. Previous studies recognized the presence of gas emissions also from the crater bottom. In 1997 the possibility of a Nyos-type event triggered by a lake rollover was considered very low, because the CO2 water concentration at depth was found to be far from saturation. However, considering the high population density nearby, the Italian Civil Protection Department recommended that periodical monitoring be carried out. To this scope we initiated in 2001 a systematic geochemical study of the lake. Thirteen vertical profiles have been repeatedly carried out in 2001–2006, especially in the deepest part of the lake (167 m in 2006), measuring T, pH, dissolved O2 and electrical conductivity. Water samples were collected from various depths and chemically and isotopically analysed. Two similar profiles have been measured also in the nearby Nemi crater lake. Results indicate that in the 4.5 years of monitoring the pressure of gas dissolved in the Lake Albano deep waters remained much lower than the hydrostatic pressure. A CO2 soil survey carried out on the borders of the two lakes, indicates the presence of some zones of anomalous degassing of likely magmatic origin. A water overturn or a heavy mixing of deep and shallow waters likely occurred in winter 2003–2004, when cold rainfall cooled the surface water below 8.5 °C. Such overturns cause only a limited gas exsolution from the lake when the deep water is brought to a few meters depth but can explain the observed decrease with time of dissolved CO2 at depth and related water pH increase. A gas hazard could occur in the case of a sudden injection through the lake bottom of a huge quantity of CO2-rich fluids, which might be caused by earthquake induced fracturing of the rock pile beneath the lake. A limnic gas eruption might also occur should CO2 concentration build up within the lake for a long time.  相似文献   

19.
On November 12, 1964, after a long swarm of preliminary earthquakes a gigantic directed blast took place at Shiveluch Volcano. The Crater top of the volcano with five large domes was completely destroyed. The deposits of the directed blast fell on an area of 98 sq. km, at a distance up to 10 km from the crater. The volume of the deposits is 1.5 km3 at least. A new crater was formed, its size is 1.5 × 3 km. Numerous pyroclastic flows were poured out the new crater. The eruption lasted only one hour, its thermal energy is 1,3 × 1025 ergs, kinetic energy of the blast ? 1 × 1024 ergs, air wave energy ? 1,8 × 1021 ergs. Initial velocity of the explosion: 280–310m/sec, pressure: 800–1000atm. The eruption of Shiveluch volcano belongs to the « Bezymianny type » eruption.  相似文献   

20.
El Chichón volcano (Chiapas, Mexico) erupted violently in March–April 1982, breaching through the former volcano–hydrothermal system. Since then, the 1982 crater has hosted a shallow (1–3.3 m, acidic (pH ∼ 2.2) and warm (∼ 30 °C) crater lake with a strongly varying chemistry (Cl/SO4 = 0–79 molar ratio). The changes in crater lake chemistry and volume are not systematically related to the seasonal variation of rainfall, but rather to the activity of near-neutral geyser-like springs in the crater (Soap Pool). These Soap Pool springs are the only sources of Cl for the lake. Their geyser-like behaviour with a long-term (months to years) periodicity is due to a specific geometry of the shallow boiling aquifer beneath the lake, which is the remnant of the 1983 Cl-rich (24,000 mg/l) crater lake water. The Soap Pool springs decreased in Cl content over time. The zero-time extrapolation (1982, year of the eruption) approaches the Cl content in the initial crater lake, meanwhile the extrapolation towards the future indicates a zero-Cl content by 2009 ± 1. This particular situation offers the opportunity to calculate mass balance and Cl budget to quantify the lake–spring system in the El Chichón crater. These calculations show that the water balance without the input of SP springs is negative, implying that the lake should disappear during the dry season. The isotopic composition of lake waters (δD and δ18O) coincide with this crater lake-SP dynamics, reflecting evaporation processes and mixing with SP geyser and meteoric water. Future dome growth, not observed yet in the post-1982 El Chichón crater, may be anticipated by changes in lake chemistry and dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号