首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Active Crater at Rincón de la Vieja volcano, Costa Rica, reaches an elevation of 1750 m and contains a warm, hyper-acidic crater lake that probably formed soon after the eruption of the Rio Blanco tephra deposit approximately 3500 years before present. The Active Crater is buttressed by volcanic ridges and older craters on all sides except the north, which dips steeply toward the Caribbean coastal plains. Acidic, above-ambient-temperature streams are found along the Active Crater's north flank at elevations between 800 and 1000 m. A geochemical survey of thermal and non-thermal waters at Rincón de la Vieja was done in 1989 to determine whether hyper-acidic fluids are leaking from the Active Crater through the north flank, affecting the composition of north-flank streams.Results of the water-chemistry survey reveal that three distinct thermal waters are found on the flanks of Rincón de la Vieja volcano: acid chloride–sulfate (ACS), acid sulfate (AS), and neutral chloride (NC) waters. The most extreme ACS water was collected from the crater lake that fills the Active Crater. Chemical analyses of the lake water reveal a hyper-acidic (pH0) chloride–sulfate brine with elevated concentrations of calcium, magnesium, aluminum, iron, manganese, copper, zinc, fluorine, and boron. The composition of the brine reflects the combined effects of magmatic degassing from a shallow magma body beneath the Active Crater, dissolution of andesitic volcanic rock, and evaporative concentration of dissolved constituents at above-ambient temperatures. Similar cation and anion enrichments are found in the above-ambient-temperature streams draining the north flank of the Active Crater. The pH of north-flank thermal waters range from 3.6 to 4.1 and chloride:sulfate ratios (1.2–1.4) that are a factor of two greater than that of the lake brine (0.60). The waters have an ACS composition that is quite different from the AS and NC thermal waters that occur along the southern flank of Rincón de la Vieja.The distribution of thermal water types at Rincón de la Vieja strongly indicates that formation of the north-flank ACS waters is not due to mixing of shallow, steam-heated AS water with deep-seated NC water. More likely, hyper-acidic brines formed in the Active Crater area are migrating through permeable zones in the volcanic strata that make up the Active Crater's north flank. Dissolution and shallow subsurface alteration of north-flank volcanoclastic material by interaction with acidic lake brine, particularly in the more permeable tephra units, could weaken the already oversteepened north flank of the Active Crater. Sector collapse of the Active Crater, with or without a volcanic eruption, represents a potential threat to human lives, property, and ecosystems at Rincón de la Vieja volcano.  相似文献   

2.
Since August 2000, we have recorded the total intensity of the geomagnetic field at the summit area of Kuchi-erabu-jima volcano, where phreatic eruptions have repeatedly occurred. A time series analysis has shown that the variations in the geomagnetic field since 2001 have a strong relationship to an increase in volcanic activity. These variations indicate thermal demagnetization of the subsurface around the presently active crater. The demagnetization source for the early variations, until summer 2002, was estimated at about 200 m below sea level. For the variations since 2003, the source was modeled on the basis of the expansion of a uniformly magnetized ellipsoid. The modeling result showed that the source is located at 300 m above sea level beneath the crater. We carried out an audio-frequency magnetotelluric survey with the aim of obtaining a relation between the demagnetization source and the shallow structure of the volcano. A two-dimensional inversion applied to the data detected two good conductors, a shallow thin one which is restricted to a region around the summit area, while the other extends over the edifice at depths between 200 and 800 m. These conductors are regarded as clay-rich layers with low permeability, which were assumed to be generated through hydrothermal alteration. The demagnetization source for the early variations was possibly located at the lower part of the deep conductor and the source after 2003 lies between the two conductors, where groundwater is considered to be abundant. Based on these results, as well as on seismological, geodetic, and geochemical information, we propose a heating process of the Kuchi-erabu-jima volcano. In the initial stage, high-temperature volcanic gases supplied from the deep-seated magma remained temporarily at the level around the lower part of the less permeable deep conductor since the ascent path had not yet been established. Then, when the pathway developed as a result of repeated earthquakes, it became possible for a massive flux of volcanic gases to ascend through the conductor. The high temperature gases reached the aquifer located above the conductor and the heat was efficiently transported to the surrounding rocks through the groundwater. As a consequence, an abrupt increase of the gas flux and diffusion of the heat through the aquifer occurred and the high-temperature zone expanded. Since the high-temperature zone is located beneath another conductor, which acts as caprock, we assume that the energy of the phreatic explosion is accumulated there.  相似文献   

3.
We report chemical compositions (major and trace components including light hydrocarbons), hydrogen, oxygen, helium and nitrogen isotope ratios of volcanic and geothermal fluids of Mutnovsky volcano, Kamchatka. Several aspects of the geochemistry of fluids are discussed: chemical equilibria, mixing of fluids from different sources, evaluation of the parent magmatic gas composition and contributions to magmatic vapors of fluids from different reservoirs of the Kamchatkan subduction zone. Among reactive species, hydrogen and carbon monoxide in volcanic vapors are chemically equilibrated at temperatures >300°C with the SO2-H2S redox-pair. A metastable equilibrium between saturated and unsaturated light hydrocarbons is attained at close to discharge temperatures. Methane is disequilibrated. Three different sources of fluids from three fumarolic fields in the Mutnovsky craters can be distinguished: (1) magmatic gas from a large convecting magma body discharging through Active Funnel, a young crater with the hottest fumaroles (up to 620°C) contributing ~80% to the total volcanic gas output; (2) volcanic fluid from a separate shallow magma body beneath the Bottom Field of the main crater (96–280°C fumaroles); and (3) hydrothermal fluid with a high relative and absolute concentrations of CH4 from the Upper Field in the main crater (96–285°C fumaroles). The composition of the parent magmatic gas is estimated using water isotopes and correlations between He and other components in the Active Funnel gases. The He-Ar-N2 systematics of volcanic and hydrothermal fluids of Mutnovsky are consistent with a large slab-derived sedimentary nitrogen input for the nitrogen inventory, and we calculate that only ~1% of the magmatic N2 has a mantle origin and <<1% is derived from the arc crust.  相似文献   

4.
The northeastern Hainan Province is one of the areas subjected to the strongest, most frequent and longest-lasting volcanic activities in China since the Cenozoic era. Under the influence of magma and fault activities, northeastern Hainan Island has experienced many moderate and strong earthquakes in history. The Qiongshan M7.5 earthquake occurred in this region in 1605. The deformation measurement and InSAR data found a subsidence area in the south of the Qiongshan M7.5 earthquake. Small earthquakes frequently occur in this area. It has been inferred by some studies on this subsidence area, namely the Puqianwan-Fengjiawan seismic belt, that the subsidence and frequent seismic activity are related to the development of deep magma systems. Magnetotelluric methods are very sensitive to subsurface fluid, different temperature conditions, and resistivity property of the medium in the molten state. With the development of magnetotelluric three-dimensional inversion technique, using dense array magnetotelluric data in three-dimensional inversion can image the medium resistivity occurrence state and position in the volcanic area. To study the deep structure of the magma system and its relationship with seismic activity, we conducted MT observations on two profiles that cross Leihuling and Ma'anling volcanoes. Phase tensor decomposition was used to analyze the electrical structure. This paper investigates the two MT profiles using three-dimensional electromagnetic imaging technology and obtains the electrical structure of the two profiles. The result reveals the media properties and high conductivity bodies' occurrence range beneath the volcanic area in the northeastern Hainan. There are obvious differences in the electrical structure of the northeastern Hainan. The resistivity values are high in the east and low in the west. In addition, there are two high conductivity bodies in the northeast of Hainan. The high conductivity body C1 inclines to the west and locates beneath the Chengmai County area in the northwestern Hainan Island(west of the Leihuling-Ma'anling volcanoes). Its resistivity value is less than several Ωm. This low resistive body is 40km long in WE direction and 30km wide in SN direction. Its burial depth is about 2km near the HNL1 profile and 6km near the NHNL1 profile. Its bottom reaches the depth of about 25~30km, which may be close to or through the Moho surface depth of 25~26km in this area. It is speculated that the magma eruption of Leihuling-Ma'anling volcanoes did not migrate vertically from its deep part to the surface. The high conductivity body C2 locates beneath Longquan. The buried depth of C2 tends to be shallower from north to south, but there is no exposed surface in the study area, nor is it connected with the shallow low-resistivity layer. It is speculated that the C2 may be a magmatic sac trapped in the crust, but may have nothing to do with the eruption of Ma'anling-Leihuling volcanoes. The recent volcanic magma in this area comes from the lower crust and upper mantle of the ocean area to the west of Hainan Island. As magma enters the upper and middle crust, it continues to move shallowly and eastward. In this process, it should be blocked by the high resistance structure on the east side of the Changliu-Xiangou Fault and then erupt around this fault, thus forming numerous craters in this area. After the repeated eruption, deep magma channels gradually closed and volcanic activity weakened. The magma in the mid-upper crust cooled consolidated gradually, but the speed was uneven in different areas, resulting in the channels having closed down gradually in some places, and some are in the process of closing. Our results show an uneven rise and fall depth of the low resistivity body in the middle and lower crust. There is no high conductivity body in the deep part of the Puqianwan-Fengjiawan seismic belt and the subsidence area in the northeastern Hainan, which rules out the possibility that the small earthquakes are related to deep magma systems.  相似文献   

5.
Magnetotelluric (MT) measurements were conducted at Iwate volcano, across the entirety of the mountain, in 1997, 1999, 2003, 2006, and 2007. The survey line was 18 km in length and oriented E–W, comprising 38 measurements sites. Following 2D inversion, we obtained the resistivity structure to a depth of 4 km. The surface resistive layer (~ several hundreds of meters thick) is underlain by extensive highly conductive zones. Based on drilling data, the bottom of the highly conductive zone is interpreted to represent the 200 °C isotherm, below which (i.e., at higher temperatures) conductive clay minerals (smectite) are rare. The high conductivity is therefore mainly attributed to the presence of hydrothermally altered clay. The focus of this study is a resistive body beneath the Onigajo (West-Iwate) caldera at depths of 0.5–3 km. This body appears to have impeded magmatic fluid ascent during the 1998 volcanic unrest, as inferred from geodetic data. Both tectonic and low-frequency earthquakes are sparsely distributed throughout this resistive body. We interpret this resistive body as a zone of old, solidified intrusive magma with temperatures in excess of 200 °C. Given that a similar relationship between a resistive body and subsurface volcanic activity has been suggested for Asama volcano, structural controls on subsurface magmatic fluid movement may be a common phenomenon at shallow levels beneath volcanoes.  相似文献   

6.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

7.
The densely populated metropolitan area of Quito is located on the slopes of the active Guagua Pichincha volcano at only 10 km from the crater. Recently, the Italian Ministry of Foreign Affairs sponsored a project for the mitigation of volcanic hazard in this area. The geochemical study carried out as part of this project was aimed at constructing a geochemical model of the zone for use in volcanic surveillance.According to this geochemical model, a hydrothermal aquifer (T = 200–240°C), fed both by meteoric waters and by fluids released by a magma body, lies at shallow levels beneath Guagua Pichincha crater. The crater fumaroles are essentially fed by steam boiled off from the hydrothermal aquifer. The high flow rate fumaroles located in the dome area show significant SO2 contents, which suggest a relatively high contribution of magmatic fluids in the zone of the aquifer feeding them. The absence of SO2 in the fumarolic discharges near the southern crater wall indicates instead that the magmatic fluids dissolve entirely into the aquifer here. The hot springs located at the western end of the crater represent the lateral discharge of the hydrothermal aquifer.On the basis of this model, it is likely that an increment in the flux of both the magmatic fluids and the heat from a magma body produces an increase, albeit small, of the pressure-temperature conditions of the hydrothermal system and consequent changes in flow rate and fluid chemistry of the fumarolic vents. In particular, total sulphur and possibly hydrochloric acid may increase in all the vents and sulphur dioxide may appear in other fumarolic discharges. The varying thermodynamic conditions in the hydrothermal aquifer can be evaluated on the basis of the equilibria among carbon species and hydrogen. Only minor delayed changes are expected in the physical-chemical characteristics of the springs located at the western end of the crater.  相似文献   

8.
The pattern of volcanic tremor accompanying the 1989 September eruption at the south-east summit crater of Mount Etna is studied. In specific, sixteen episodes of lava fountaining, which occurred in the first phase of the eruption, are analysed. Their periodic behaviour, also evidenced by autocorrelation, allows us to define the related tremor amplitude increases as intermittent volcanic tremor episodes. Focusing on the regular intermittent behaviour found for both lava fountains and intermittent volcanic tremors, we tried an a posteriori forecast using simple statistical methods based on linear regression and the Student’ t-test. We performed the retrospective statistical forecast, and found that several eruptions would have been successfully forecast. In order to focus on the source mechanism of tremor linked to lava fountains, we investigated the relationship between volcanic and seismic parameters. A mechanism based on a shallow magma batch ‘regularly’ refilled from depth is suggested.  相似文献   

9.
An understanding of the mechanisms responsible for persistent volcanism can be acquired through the integration of geophysical and geochemical data sets. By interpreting data on micro-gravity, ground deformation and SO2 flux collected at Masaya Volcano since 1993, it is now clear that the characteristically cyclical nature of the activity is not driven by intrusion of additional magma into the system. Rather, it may be due in large part to the blocking and accumulation of gas by restrictions in the volcano substructure. The history of crater collapse and formation of caverns beneath the crater floor would greatly facilitate the trapping and storage of gas in a zone immediately beneath San Pedro and the other craters. Another mechanism that may explain the observed gravity and gas flux variations is the convective overturn of shallow, pre-existing, degassed, cooled, dense magma that is replaced periodically by lower density, hot, gas-rich magma from depth. Buoyant gas-rich magma rises from depth and is emplaced near the surface, resulting in the formation and fluctuation of a low-density gas-rich layer centred beneath Nindirí and Santiago craters. As this magma vigorously degasses, it must cool, increase in density and eventually sink. Five stages of activity have been identified at Masaya since 1853 and the most recent data suggest that the system may have been entering another period of reduced degassing in 2000. This type of analysis has important implications for hazard mitigation because periods of intense degassing are associated with poor agricultural yields and reduced quality of life. A better understanding of persistent cyclically active volcanoes will allow for more effective planning of urban development and agricultural land use.  相似文献   

10.
Concentrations of chloride and sulfate and pH in the hot crater lake (Laguna Caliente) at Poás volcano and in acid rain varied over the period 1993–1997. These parameters are related to changes in lake volume and temperature, and changes in summit seismicity and fumarole activity beneath the active crater. During this period, lake level increased from near zero to its highest level since 1953, lake temperature declined from a maximum value of 70°C to a minimum value of 25°C, and pH of the lake water increased from near zero to 1.8. In May 1993 when the lake was nearly dry, chloride and sulfate concentrations in the lake water reached 85,400 and 91,000 mg l−1, respectively. Minimum concentrations of chloride and sulfate after the lake refilled to its maximum volume were 2630 and 4060 mg l−1, respectively. Between January 1993 and May 1995, most fumarolic activity was focused through the bottom of the lake. After May 1995, fumarolic discharge through the bottom of the lake declined and reappeared outside the lake within the main crater area. The appearance of new fumaroles on the composite pyroclastic cone coincided with a dramatic decrease in type B seismicity after January 1996. Between May 1995 and December 1997, enhanced periods of type A seismicity and episodes of harmonic tremor were associated with an increase in the number of fumaroles and the intensity of degassing on the composite pyroclastic cone adjacent to the crater lake. Increases in summit seismic activity (type A, B and harmonic tremor) and in the height of eruption plumes through the lake bottom are associated with a period of enhanced volcanic activity during April–September 1994. At this time, visual observations and remote fumarole temperature measurements suggest an increase in the flux of heat and gases discharged through the bottom of the crater lake, possibly related to renewed magma ascent beneath the active crater. A similar period of enhanced seismic activity that occurred between August 1995 and January 1996, apparently caused fracturing of sealed fumarole conduits beneath the composite pyroclastic cone allowing the focus of fumarolic degassing to migrate from beneath the lake back to the 1953–1955 cone. Changes in the chemistry of summit acid rain are correlated changes in volcanic activity regardless of whether fumaroles are discharging into the lake or are discharging directly into the atmosphere.  相似文献   

11.
Field investigation and lab analysis on samples were carried out for Quaternary volcanoes, including Xiaoshan volcano, Dashan volcano and Bianzhuang hidden volcano, in Haixing area, east of North China. Results show that Xiaoshan volcano with the eruptive material of volcanic scoria, crystal fragments and volcanic ash is a maar volcano, the eruptive pattern is pheatomagmatic eruption, and the influence scope is near the crater. Dashan volcano exploded in the early stage, and then the magma intruded, forming the volcanic neck. The eruption strength and scale are limited, and the eruptive materials are scoria, volcanic agglomerate and dense lava neck. The volcanic rocks in Bianzhuang are porosity and dense volcanic rocks and volcanic breccia, reflecting the pattern of weak explosive eruption and lava flow, and the K-Ar age dating on volcanic rocks indicates that the eruption happened in early Pleistocene. Xiaoshan volcanic scoria and Bianzhuang hidden volcanic rocks are mainly basaltic, Dashan volcanic rocks with lower SiO2 content are nephelinite in composition. Their oxide contents have no linear relationship, indicating that there is no magma evolution relationship between these magmas from the three places. Three volcanic rocks all have enrichment of light rare earth. The Bianzhuang volcanic rocks are rich in large ion lithophile elements, and have no high field strength elements Zr and Hf, Ti losses. The volcanic materials from Xiaoshan and Dashan are intensively rich in Th, U, Nb and Ta, and significantly poor in K and Ti. Although the magmas from these three places in Haixing area may all come from asthenosphere, the volcanic materials have different petrological and geochemical features, and relatively independent volcanic structures, therefore, they experienced different magma processes.  相似文献   

12.
The 1995–1996 eruption of Mt. Ruapehu has provided a number of insights into the geochemical processes operating within the magmatic-hydrothermal system of this volcano. Both pre-eruption degassing of the rising magma and its eventual intrusion into the convective zone of the hydrothermal system beneath the lake were clearly reflected in lake water compositions. The eruptions of September–October 1995 expelled the lake, and provided the first-ever opportunity to characterise gas discharges from this volcano. The fumarolic discharges revealed compositions typical of andesite volcanoes and strong interaction with the enclosing meteoric and hydrothermal system fluids. Some 1.1 MT of SO2 gas was released from the volcano between September 1995 and December 1996, whereas ca. twice this amount (2.2 MT equivalent SO2) was erupted as soluble (i.e. leachable) oxyanions of sulphur. Significantly more sulphur was released from the volcano over this period than can be accounted for from the magma volume actually erupted. The evidence suggests that a sizable component of the evolved sulphur was remobilised from the long-lived hydrothermal system within the volcano during the 1995–1996 activity.  相似文献   

13.
Taal Volcano, located in the southwestern part of Luzon Island, Philippines, has frequently experienced catastrophic eruptions from both the Main Crater on Volcano Island and flank eruptions. These eruptions have been magmatic, phreatomagmatic, and hydrothermal, with the latter implying the existence of a large-scale hydrothermal system beneath the volcano. We conducted an electrical resistivity survey using the magnetotelluric method in order to identify the location and geometry of the hydrothermal reservoir and sealing cap rock. Two-dimensional inversion using the observed data indicates four similar resistivity sections. The structure at shallow depths corresponds to volcanic deposits and an aquifer. Below 1 km, the structure features a relatively resistive zone beneath the main crater surrounded by a conductive shell. We interpreted these to be a large hydrothermal reservoir with an impermeable cap rock sealing it. Recent ground deformation detected by GPS measurements suggests that the hydrothermal reservoir is active. The interpreted cap rock thins just beneath the main crater and could easily be destroyed by an imbalance in the hydrothermal system. We conclude that this hydrothermal reservoir plays a significant role in driving catastrophic eruptions that begin with a hydrothermal explosion at the main crater.  相似文献   

14.
Phreatomagmatic deposits at Narbona Pass, a mid-Tertiary maar in the Navajo volcanic field (NVF), New Mexico (USA), were characterized in order to reconstruct the evolution and dynamic conditions of the eruption. Our findings shed light on the temporal evolution of the eruption, dominant depositional mechanisms, influence of liquid water on deposit characteristics, geometry and evolution of the vent, efficiency of fragmentation, and the relative importance of magmatic and external volatiles. The basal deposits form a thick (5–20 m), massive lapilli tuff to tuff-breccia deposit. This is overlain by alternating bedded sequences of symmetrical to antidune cross-stratified tuff and lapilli tuff; and diffusely-stratified, clast-supported, reversely-graded lapilli tuffs that pinch and swell laterally. This sequence is interpreted to reflect an initial vent-clearing phase that produced concentrated pyroclastic density currents, followed by a pulsating eruption that produced multiple density currents with varying particle concentrations and flow conditions to yield the well-stratified deposits. Only minor localized soft-sediment deformation was observed, no accretionary lapilli were found, and grain accretion occurs on the lee side of dunes. This suggests that little to no liquid water existed in the density currents during deposition. Juvenile material is dominantly present as blocky fine ash and finely vesiculated fine to coarse lapilli pumice. This indicates that phreatomagmatic fragmentation was predominant, but also that the magma was volatile-rich and vesiculating at the time of eruption. This is the first study to document a significant magmatic volatile component in an NVF maar-diatreme eruption. The top of the phreatomagmatic sequence abruptly contacts the overlying minette lava flows, indicating no gradual drying-out period between the explosive and effusive phases. The lithology of the accidental clasts is consistent throughout the vertical pyroclastic stratigraphy, suggesting that the diatreme eruption did not penetrate below the base of the uppermost country rock unit, a sandstone aquifer ∼360 m thick. By comparison, other NVF diatremes several tens of kilometers away were excavated to depths of ∼1,000 m beneath the paleosurface (e.g., Delaney PT. Ship Rock, New Mexico: the vent of a violent volcanic eruption. In: Beus SS (ed) Geological society of America Centennial Field Guide, Rocky Mountain Section 2:411–415 (1987)). This can be accounted for by structurally controlled variations in aquifer thickness beneath different regions of the volcanic field. Variations in accidental clast composition and bedding style around the edifice are indicative of a laterally migrating or widening vent that encountered lateral variations in subsurface geology. We offer reasonable evidence that this subsurface lithology controlled the availability of external water to the magma, which in turn controlled characteristics of deposits and their distribution around the vent. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Shallow volcano-tectonic (VT) earthquakes recorded at the Kuchinoerabujima island volcano in southwest Japan are analyzed in order to clarify the role of hydrothermal activity in the development of volcanic seismicity. From analysis of shallow VT earthquakes in 2006, two specific episodes of elevated seismicity are observed in April and November 2006. The VT earthquakes have hypocenters at depths of 0–0.4 km beneath the summit crater, and normal fault focal mechanisms with WNW–ESE extension consistent with the tensional stress field indicated by the alignment of craters and fissures. Although the hypocenters and focal mechanisms are found to be largely invariant during these episodes, the corner frequencies of the VT earthquakes underwent a pronounced increase and decrease accompanying the changes in seismicity rates. The corner frequencies increased to 20–25 Hz approximately one month prior to the onset of elevated seismicity, and then decreased to 10–15 Hz in the period of peak seismicity. The rupture length also decreased at the onset of seismicity, thereafter increasing as the seismicity continued. The peak seismicity in terms of the daily number of VT events was accompanied by inflation around the crater, suggestive of a pressure increase in the volcanic system. It is inferred that the increase in shallow VT seismicity and rupture length is related to the development of a fractured zone. The pressure increase in the volcanic system is attributed to the intrusion of hydrothermal fluids, which is supported by an observed increase in fumarolic temperature and activity. The preceding monochromatic events are thus considered to be generated by the effect of fluid-filled cracks. The shortening of rupture length is then inferred to be related to the closing of non-fluid-filled cracks in the fracture zone under the increasing pressure field, leading to a transition from monochromatic events to low-frequency and shallow VT seismicity.  相似文献   

16.
Detailed gravity and aeromagnetic data over maars in the Auckland volcanic field reveal contrasting anomalies, even where surface geology is similar. Pukaki and Pukekiwiriki, almost identical maars marked by sediment-filled craters and tuff rings, have gravity and magnetic anomalies of − 6 g.u. and 20 nT, and 8 g.u. and 160 nT, respectively. The Domain and Waitomokia maars, with similar tuff rings but each with a small central scoria cone, have gravity and magnetic anomalies of 32 g.u. and 300 nT, and 21 g.u. and 310 nT, respectively. These differences in geophysical expression are attributed to varying volumes of dense, magnetic basalt in the form of shallow bowl-shaped bodies up to several hundreds of metres in diameter and up to 140 m thick beneath the maar centres. These bodies are interpreted as solidified magma that ponded into early-formed phreatomagmatic explosion craters. Where magma supply was limited relative to groundwater availability, no residual subsurface basalt occurs (as at Pukaki); continued magma supply, but limited groundwater, resulted in ponding (e.g. at Pukekiwiriki) and eventually the building of a scoria cone (as at Domain and Waitomokia). There is no evidence in these geophysical data for diatreme structures below the maars or for shallow and/or extensive feeder dykes associated with these maars. If diatreme structures do occur, their lack of geophysical signature must be a consequence of either their small geophysical contrast with host Miocene sediments and/or masking by the stronger anomalies associated with the subsurface basalt. In addition, any magma conduits appear to be confined centrally beneath the maars, at least to shallow depths (upper 100 m).  相似文献   

17.
Two explosive eruptions occurred on 2 January 1996 at Karymsky Volcanic Center (KVC) in Kamchatka, Russia: the first, dacitic, from the central vent of Karymsky volcano, and the second, several hours later, from Karymskoye lake in the caldera of Akademia Nauk volcano. The main significance of the 1996 volcanic events in KVC was the phreatomagmatic eruption in Karymskoye lake, which was the first eruption in this lake in historical time, and was a basaltic eruption at the acidic volcanic center. The volcanic events were associated with the 1 January Ms 6.7 (Mw 7.1) earthquake that occurred at a distance of about 9–17 km southeast from the volcanoes just before the eruptions. We study the long-term (1972–1995) and short-term (1–2 January 1996) characteristics of crustal deformations and seismicity before the double eruptive event in KVC. The 1972–1995 crustal deformation was homogeneous and characterized by a gradual extension with a steady velocity. The seismic activity in 1972–1995 developed at the depth interval from 0 to 20 km below the Akademia Nauk volcano and spread to the southeast along a regional fault. The seismic activity in January 1996 began with a short sequence of very shallow microearthquakes (M ~0) beneath Karymsky volcano. Then seismic events sharply increased in magnitude (up to mb 4.9) and moved along the regional fault to the southeast, culminating in the Ms 6.7 earthquake. Its aftershocks were located to the southeast and northwest from the main shock, filling the space between the two active volcanoes and the ancient basaltic volcano of Zhupanovsky Vostryaki. The eruption in Karymskoye lake began during the aftershock sequence. We consider that the Ms 6.7 earthquake opened the passageway for basic magma located below Zhupanovsky Vostryaki volcano that fed the eruption in Karymskoye lake.  相似文献   

18.
云南腾冲火山区上部地壳三维地震速度层析成像   总被引:22,自引:3,他引:22  
根据1999年腾冲火山区人工地震探测资料,用层析成像方法反演了腾冲火山区上地壳三维P波速度结构.层析成像结果显示出,在腾冲火山区下方的上地壳内存在明显的P波低速区,该低速区在地下7~8km深度,可能与上地壳内的岩浆囊或部分熔融体有关.层析结果还显示出低速区主体在热海地区的东北侧.地表附近的低速区可能是构造破裂发育地区形成了有利于深部热流体上升的通道,因此,在热海形成最活跃的地热显示.   相似文献   

19.
Analysis of ground-deformation data obtained at and around Sakurajima volcano during the 1914 eruption indicates that the deformation may be interpreted by assuming a model with two pressure sources, one shallow (about 2 km deep) and vertically directive and the other deep (about 8 km deep) and obliquely, directly beneath the volcano. This model is reasonable from the viewpoint of the volcanic processes.The local upheaval near the centers of eruption has scarcely recovered because it surpassed the elastic limit. The recovery of the regional depression after the eruption can be interpreted as pressure accumulation beneath the volcano. It may be concluded that the center of pressure would remain at the deeper source beneath the volcano, but that the pressure would change, resulting in surface deformation. The depression and its recovery suggest the presence of a pressure focus or a ‘magma reservoir’ beneath the volcano.  相似文献   

20.
Lake Caviahue (northern Patagonia, Argentina) is a large glacial lake acidified by volcanic fluids from Copahue volcano. The lake and the feeding rivers were sampled annually from 1997 till early 2006, including the eruptive period of 2000. Lake Caviahue waters evolved over time, with the most concentrated waters in 2000 during the eruptive period, followed by gradual dilution that was interrupted by renewed acidification in 2003–2004. Inversion of the lake water data and application of a dynamic non-steady state model for the lake provides our best quantitative estimates for the variation in element fluxes over the 9-year period. The model flux results agree well with most of the measured fluxes. The Copahue hydrothermal system had gently declining element fluxes between 1997 and mid-1999, although the lake was still becoming more concentrated. About 2–3 months before the 2000 eruption, element fluxes increased strongly, but the hydrothermal fluxes almost shutoff directly after the main eruptive events. The fluxes of several elements recovered post-2001, with an increase in element fluxes in 2003–2004; the lake became more dilute between 2004 and 2006. The intrusion of new magma into the hydrothermal system just prior to the 2000 eruption led to enhanced water rock interaction, with higher concentrations of the rock forming elements in the fluids, and the hot spring flow rate increased as a result of the higher pressure in the reservoir. The fluids became saturated in alunite and jarosite, and they were already saturated with anhydrite. Precipitation of these minerals possibly led to a decreased permeability of the hydrothermal reservoir, leading to the strongly reduced element fluxes just after the eruption. In addition, K, Al and S were retained in the newly precipitated minerals as well, further diminishing their export. The acidification in 2003–2004 may have resulted from a new small intrusion of magma or resulted from seismic activity that created new permeability and fresh rock surfaces for water rock interaction. The volcano is a significant source of toxic trace elements such as F, As, B and Li as well as a nutrient (P) for the local watershed. Monitoring of the hydrothermal fluids in the river that drains Copahue, especially the S/Cl, Mg/Cl and Mg/K values as well as the magnitude of the element fluxes would provide the best information for eruption forecasting for this volcano.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号