首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the lake water, and finally a Strombolian-type eruption. Recent observations indicate an increase in eruptive activity including a decrease in the level of the lake water, mud eruptions, and red hot glows on the crater wall. Temporal variations in the geomagnetic field observed around the craters of Naka-dake also indicate that thermal demagnetization of the subsurface rocks has been occurring in shallow subsurface areas around the 1st crater. Volcanic explosions act to release the energy transferred from magma or volcanic fluids. Measurement of the subsurface electrical resistivity is a promising method in investigating the shallow structure of the volcanic edifices, where energy from various sources accumulates, and in investigating the behaviors of magma and volcanic fluids. We carried out audio-frequency magnetotelluric surveys around the craters of Naka-dake in 2004 and 2005 to determine the detailed electrical structure down to a depth of around 1 km. The main objective of this study is to identify the specific subsurface structure that acts to store energy as a preparation zone for volcanic eruption. Two-dimensional inversions were applied to four profiles across the craters, revealing a strongly conductive zone at several hundred meters depth beneath the 1st crater and surrounding area. In contrast, we found no such remarkable conductor at shallow depths beneath the 4th crater, which has been inactive for 70 years, finding instead a relatively resistive body. The distribution of the rotational invariant of the magnetotelluric impedance tensor is consistent with the inversion results. This unusual shallow structure probably reflects the existence of a supply path of high-temperature volcanic gases to the crater bottom. We propose that the upper part of the conductor identified beneath the 1st crater is mainly composed of hydrothermally altered zone that acts both as a cap to upwelling fluids supplied from deep-level magma and as a floor to infiltrating fluid from the crater lake. The relatively resistive body found beneath the 4th crater represents consolidated magma. These results suggest that the shallow conductor beneath the active crater is closely related to a component of the mechanism that controls volcanic activity within Naka-dake.  相似文献   

2.
We report a compilation of data recorded at a distant tiltmeter station (RER) during recent episodes of dyke emplacement and eruption (2003–2007) at Piton de La Fournaise volcano (La Réunion Island). This sensitive station provides useful information for evaluating the extent of deformation. Distinct responses of this station were recorded based on the eruption type. Dykes feeding summit eruptions did not significantly influence the RER tiltmeter signals, whereas dykes feeding large distal eruptions (with vents located more than 4 km from the summit) generated up to 1.4 μrad of tilt, an amplitude 2 to 4 times greater than for proximal eruptions (0.3–0.7 μrad) on the flanks of the summit cone. The distinct tilt amplitude is directly linked to the location, depth, and volume of the dyke. Comparison with summit tiltmeters reveals that up to one-third to half of the RER tilt signal associated to dyke propagation is recorded when the dyke is still below the summit crater. Thus, before large distal eruptions, more than 0.5 μrad of tilt is recorded in less than 20 min when the dyke is below the summit crater (i.e. a few minutes/hours before the beginning of the eruption). We can thus propose for the RER station a threshold value of 0.5 μrad which, when reached as a dyke rises beneath the summit crater, suggests a high likelihood of a large distal eruption. The distant RER tiltmeter station thus appears to be a powerful tool for forecasting the type of eruption that is likely to occur, and can contribute to the early detection of large distal eruptions at Piton de La Fournaise, which are the most dangerous to inhabitants. For volcano monitoring, installation of high precision distant tiltmeters along the lower slopes of a volcano may provide warnings of large eruptions with enough lead time to allow for short-term hazards mitigation efforts.  相似文献   

3.
Continuous magnetotelluric (MT) measurements were conducted from May 2008 to July 2009 at Sakurajima, one of the most active volcanoes in Japan. Two observation sites were established at locations 3.3 km east and 3 km west–northwest of the summit crater. At both observation sites, the high-quality component of the impedance tensor (Zyx) showed variations in apparent resistivity of approximately ± 20% and phase change of ± 2°, which continued for 20–180 days in the frequency range between 320 and 4 Hz. The start of the period of changes in apparent resistivity approximately coincided with the start of uplift in the direction of the summit crater, as observed by a tiltmeter, which is one of the most reliable pieces of equipment with which to detect magma intrusion beneath a volcano. A 2D inversion of MT impedance suggests that the resistivity change occurred at a depth around sea level. One of the possible implications of the present finding is that the degassed volatiles migrated not only vertically through the conduit but also laterally through a fracture network, mixing with shallow groundwater beneath sea level and thereby causing the observed resistivity change.  相似文献   

4.
Comparison of the chemical characteristics of spring and river water draining the flanks of Poa´s Volcano, Costa Rica indicates that acid chloride sulfate springs of the northwestern flank of the volcano are derived by leakage and mixing of acid brines formed in the summit hydrothermal system with dilute flank groundwater. Acid chloride sulfate waters of the Rio Agrio drainage basin on the northwestern flank are the only waters on Poa´s that are affected by leakage of acid brines from the summit hydrothermal system. Acid sulfate waters found on the northwestern flank are produced by the interaction of surface and shallow groundwater with dry and wet acid deposition of SO2 and H2SO4 aerosols, respectively. The acid deposition is caused by a plume of acid gases that is released by a shallow magma body located beneath the active crater of Poa´s.No evidence for a deep reservoir of neutral pH sodium chloride brine is found at Poa´s. The lack of discharge of sodium chloride waters at Poa´s is attributed to two factors: (1) the presence of a relatively volatile-rich magma body degassing at shallow depths (< 1 km) into a high level summit groundwater system; and (2) the hydrologic structure of the volcano in which high rates of recharge combine with rapid lateral flow of shallow groundwater to prevent deep-seated sodium chloride fluids from ascending to the surface. The shallow depth of the volatile-rich magma results in the degassing of large quantities of SO2 and HCl. These gases are readily hydrolyzed and quickly mix with meteoric water to form a reservoir of acid chloride-sulfate brine in the summit hydrothermal system. High recharge rates and steep hydraulic gradients associated with elevated topographic features of the summit region promote lateral flow of acid brines generated in the summit hydrothermal system. However, the same high recharge rates and steep hydraulic gradients prevent lateral flow of deep-seated fluids, thereby masking the presence of any sodium chloride brines that may exist in deeper parts of the volcanic edifice.Structural, stratigraphic, and topographic features of Poa´s Volcano are critical in restricting flow of acid brines to the northwestern flank of the volcano. A permeable lava-lahar sequence that outcrops in the Rio Agrio drainage basin forms a hydraulic conduit between the crater lake and acid chloride sulfate springs. Spring water residence times are estimated from tritium data and indicate that flow of acid brines from the active crater to the Rio Agrio source springs is relatively rapid (3 to 17 years). Hydraulic conductivity values of the lava-lahar sequence calculated from residence time estimates range from 10−5 to 10−7 m/s. These values are consistent with hydraulic conductivity values determined by aquifer tests of fractured and porous lava/pyroclastic sequences at the base of the northwestern flank of the volcano.Fluxes of dissolved rock-forming elements in Rio Agrio indicate that approximately 4300 and 1650 m3 of rock are removed annually from the northwest flank aquifer and the active crater hydrothermal system, respectively. Over the lifetime of the hydrothermal system (100's to 1000's of years), significant increases in aquifer porosity and permeability should occur, in marked contrast to the reduction in permeability that often accompanies hydrothermal alteration in less acidic systems. Average fluxes of fluoride, chloride and sulfur calculated from discharge and compositional data collected in the Rio Agrio drainage basin over the period 1988–1990 are approximately 2, 38 and 30 metric tons/day. These fluxes should be representative of minimum volatile release rates at Poa´s in the last 10 to 20 years.  相似文献   

5.
An eruption on the eastern flank of Piton de la Fournaise volcano started on 16 November, 2002 after 10 months of quiescence. After a relatively constant level of activity during the first 13 days of the eruption, lava discharge, volcanic tremor and seismicity increased from 29 November to 3 December. Lava effusion suddenly ceased on 3 December while shallow earthquakes beneath the Dolomieu summit crater were still recorded at a rate of about one per minute. This unusual activity continued and increased in intensity over the next three weeks, ending with the formation of a pit crater within Dolomieu. Based on ground deformation, measured by rapid-static and continuous GPS and an extensometer, seismic data, and lava effusion patterns, the eruptive period is divided into five stages: 1) slow summit inflation and sporadic seismicity; 2) rapid summit inflation and a short seismic crisis; 3) rapid flank inflation, onset of summit deflation, sporadic seismicity, accompanied by stable effusion; 4) flank inflation, coupled with summit deflation, intense seismicity, and increased lava effusion; and finally 5) little deflation, intense shallow seismicity, and the end of lava effusion. We propose a model in which the pre-intrusive inflation of Stage 1 in the months preceding the eruption was caused by a magma body located near sea level. The magma reservoir was the source of an intrusion rising under the summit during Stage 2. In Stage 3, the magma ponded at a shallow level in the edifice while the lateral injection of a radial dike reached the surface on the eastern flank of the basaltic volcano, causing lava effusion. Pressure decrease in the magmatic plumbing system followed, resulting in upward migration of a collapse front, forming a subterranean column of debris by faulting and stoping. This caused intense shallow seismicity, increase in discharge of lava and volcanic tremor at the lateral vent in Stage 4 and, eventually the formation of a pit crater in Stage 5.  相似文献   

6.
Mount Cameroon is an active volcano located in the Gulf of Guinea, west of Central Africa. After the March–April 1999 eruption on the SW flank, another eruption of the volcano occurred in 2000. It took place from three sites on the southwest flank and near the summit. The first eruptive site was located 500 m to the southwest of the summit, at 3900 m altitude. Activity on this site was mainly explosive with no lava flow. The second site was located between 3220 and 3470 m altitude. Lava was emitted along NNE–SSE fissures from this site and flew towards Buea, the main city of the area, stopping ~ 4 km from the first houses. The last site was located in the south western flank at 2750 m altitude. The lava ejected from an old cone near the first 1999 eruptive site was divided into two branches, for a total length of around 1 km. The location of active volcanic cones in 1999 and 2000 seems to be linked to the local tectonics. The pre-eruptive period was characterized by a seismic swarm which may be a precursor recorded in March 2000 by an analogue seismic station. The main shock was a magnitude 3.2 event, and was felt by the population in Ekona town located on the eastern flank. It had a Modified Mercalli intensity of III–IV. When the eruption started, a temporary network of short period 3-component seismic stations was set up around the volcano to improve the monitoring of seismic activity. The co-eruptive period from late May to September was characterized by sequences of earthquake swarms, volcanic tremor and a family of earthquakes having similar waveform and appearing regularly in August and early September. Some of the earthquakes were felt by the population in Buea and its environments. The largest seismic event recorded had a magnitude of 4. During the post-eruptive period from mid-September to December, seismicity returned to its background level of 1–3 earthquakes per 3 days. Hypocenter locations reveal a linear narrow structure under the summit zone which could represent the magmatic conduit of the volcano. The frequency/magnitude relationship revealed a b-value of 1.43 higher than those previously determined, but more representative of volcanic media. Seismic energy release was gradual after the 2000 eruption started.  相似文献   

7.
In January 1989 we observed submarine eruptions on the summit of Macdonald volcano during a French-German diving programme with the IFREMER submersible Cyana. Gas-streaming of large amounts of CH4, CO2 and SO2 from summit vents, inferred from water column anomalies and observed by submersible, was accompanied on the sea surface by steam bursts, turbulence, red-glowing gases, and black bubbles comprising volcanic ash, sulphur and sulphides. Chloride depletion of water sampled on the floor of an actively degassing summit crater suggests either boiling and phase separation or additions of magmatic water vapour. Submersible observations, in-situ sampling and shipboard geophysical and hydrographic measurements show that the hydrothermal system of this hotspot volcano is distinguished by the influence of magmatic gases released from its shallow summit.  相似文献   

8.
《Journal of Geodynamics》2007,43(2):320-329
A 2.5-month long gravity sequence, encompassing the starting period of the 2002–2003 Etna eruption and coming from a summit station only 1 km away from the new fractures, is presented and discussed. The sequence comprises four hours-long anomalies that have a great chance to reflect mass redistributions linked to the ensuing activity. In particular, the start of the eruptive activity on the northeastern flank was marked by a gravity decrease as strong as about 400 μGal, which reverted soon afterwards. This strong decrease/increase anomaly is interpreted as the opening, by tectonic forces, of a fracture system along the Northeastern Rift of Mt. Etna, followed by an intrusion of magma from the central conduit to the new fractures. They were used by the intruding magma as a path to the eruptive vents at lower elevations.Afterwards, on three occasions, in November and December 2002, 6–12 h-lasting gravity decreases, with amplitude ranging between 10 and 30 μGal, were observed simultaneously with increases in the amplitude of the volcanic tremor from four seismic stations. A correlation analysis, between the gravity signal and the overall spectral amplitude of each tremor sequence is performed over the 7 November–9 December period. A marked anti-correlation is found over each contemporaneous gravity decrease/tremor increase, while, over the rest of the investigated period, the correlation is negligible. Accordingly, a joint source is inferred to have acted during the occurrence of the three common anomalies. On the grounds of some volcanological observations spanning the period covered by our analysis, we propose the temporary accumulation of a gas cloud at some level within the plumbing system of the volcano to have acted as a joint source.The present work is a further evidence of the potential of continuous gravity observations as a tool to monitor and study active volcanoes and encourages their employment in spite of the difficulty of running spring gravimeters in a continuous fashion under the adverse conditions normally encountered on the summit zone of an active volcano.  相似文献   

9.
We implement an infrasound semblance technique to identify acoustic sources originating from volcanic vents and apply the technique to the generally low-amplitude infrasound (< 3 Pa at 1 km) signals produced by Santiaguito dome in Guatemala. Semblance detection is demonstrated with data collected from two-element miniature arrays with ~ 30 m spacing between elements. The semblance technique is effective at identifying a range of eruptive phenomena, including pyroclastic-laden eruptions, vigorous degassing events, and rockfalls, even during periods of high wind contamination Many of the detected events are low in amplitude (tens of mPa) such that they are observed only by select arrays positioned with proximity and line-of-sight to the source. Larger events, such as the pyroclastic-laden eruptions, which occurred bi-hourly in 2009, were detected by all five arrays and produced an infrasonic signal that was correlated across the network. Network correlated events can be roughly located and map to the summit of the Caliente Vent where pyroclastic-laden eruptions originate. In general, the degree of Santiaguito infrasound event correlation is poor across the network, suggesting that complex source geometry contributes to asymmetric sound radiation.  相似文献   

10.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

11.
The densely populated metropolitan area of Quito is located on the slopes of the active Guagua Pichincha volcano at only 10 km from the crater. Recently, the Italian Ministry of Foreign Affairs sponsored a project for the mitigation of volcanic hazard in this area. The geochemical study carried out as part of this project was aimed at constructing a geochemical model of the zone for use in volcanic surveillance.According to this geochemical model, a hydrothermal aquifer (T = 200–240°C), fed both by meteoric waters and by fluids released by a magma body, lies at shallow levels beneath Guagua Pichincha crater. The crater fumaroles are essentially fed by steam boiled off from the hydrothermal aquifer. The high flow rate fumaroles located in the dome area show significant SO2 contents, which suggest a relatively high contribution of magmatic fluids in the zone of the aquifer feeding them. The absence of SO2 in the fumarolic discharges near the southern crater wall indicates instead that the magmatic fluids dissolve entirely into the aquifer here. The hot springs located at the western end of the crater represent the lateral discharge of the hydrothermal aquifer.On the basis of this model, it is likely that an increment in the flux of both the magmatic fluids and the heat from a magma body produces an increase, albeit small, of the pressure-temperature conditions of the hydrothermal system and consequent changes in flow rate and fluid chemistry of the fumarolic vents. In particular, total sulphur and possibly hydrochloric acid may increase in all the vents and sulphur dioxide may appear in other fumarolic discharges. The varying thermodynamic conditions in the hydrothermal aquifer can be evaluated on the basis of the equilibria among carbon species and hydrogen. Only minor delayed changes are expected in the physical-chemical characteristics of the springs located at the western end of the crater.  相似文献   

12.
Tangkuban Parahu is an active stratovolcano located 17 km north of the city of Bandung in the province west Java, Indonesia. All historical eruptive activity at this volcano has been confined to a complex of explosive summit craters. About a dozen eruptions-mostly phreatic events- and 15 other periods of unrest, indicated by earthquakes or increased thermal activity, have been noted since 1829. The last magmatic eruption occurred in 1910. In late 1983, several small phreatic explosions originated from one of the summit craters. More recently, increased hydrothermal and earthquake activity occurred from late 1985 through 1986. Tilt measurements, using a spirit-level technique, have been made every few months since February 1981 in the summit region and along the south and east flanks of the volcano. Measurements made in the summit region indicated uplift since the start of these measurements through at least 1986. From 1981 to 1983, the average tilt rate at the edges of the summit craters was 40–50 microradians per year. After the 1983 phreatic activity, the tilt rate decreased by about a factor of five. Trilateration surveys across the summit craters and on the east flank of the volcano were conducted in 1983 and 1986. Most line length changes measured during this three-year period did not exceed the expected uncertainty of the technique (4 ppm). The lack of measurable horizontal strain across the summit craters seems to contradict the several years of tilt measurements. Using a point source of dilation in an elastic half-space to model tilt measurements, the pressure center at Tangkuban Parahu is located about 1.5 km beneath the southern part of the summit craters. This is beneath the epicentral area of an earthquake swarm that occurred in late 1983. The average rate in the volume of uplift from 1981 to 1983 was 3 million m3 per year; from 1983 to 1986 it averaged about 0.4 million m3 per year. Possible causes for this uplift are increased pressure within a very shallow magma body or heating and expansion of a confined aquifier.  相似文献   

13.
Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235–270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220–240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N–S oriented normal faulting and E–W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5–10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal area where fumarolic temperatures are ≤ 123 °C. Lassen fumaroles discharge geothermal gases that indicate mixing between a N2-rich, arc-type component and gases derived from air-saturated meteoric recharge water. Most gases have relatively weak isotopic indicators of upper mantle or volcanic components, except for gas from Sulphur Works where δ13C–CO2, δ34S–H2S, and δ15N–N2 values indicate a contribution from the mantle and a subducted sediment source in an arc volcanic setting.  相似文献   

14.
In addition to rhythmic slug-driven Strombolian activity, Stromboli volcano occasionally produces discrete explosive paroxysms (2 per year on average for the most frequent ones) that constitute a major hazard and whose origin remains poorly elucidated. Partial extrusion of the volatile-rich feeding basalt as aphyric pumice during these events has led to consider their triggering by the fast ascent of primitive magma blobs from possibly great depth. Here I examine and discuss the alternative hypothesis that most of the paroxysms could be triggered and driven by the fast upraise of CO2-rich gas pockets generated by bubble foam growth and collapse in the sub-volcano plumbing system. Data for the SO2 and CO2 crater plume emissions are used to show that Stromboli's feeding magma may originally contain as much as 2 wt.% of carbon dioxide and early coexists with an abundant CO2-rich gas phase with high CO2/SO2 molar ratio (≥ 60 at 10 km depth below the vents, compared to ~ 7 in time-averaged crater emissions). Pressure-related modelling indicates that the time-averaged crater gas composition and output are well accounted for by closed system decompression of the basalt–gas mixture until the volcano–crust interface (~ 3 km depth), followed by open degassing and crystallization in the volcano conduits. However, both the low viscosity and high vesicularity of the basaltic magma permit bubble segregation and bubble foam growth at deep sill-like feeder discontinuities and at shallower physical boundaries (such as the volcano–crust interface) where the gas-rich aphyric basalt interacts with the unerupted crystal-rich and viscous magma drained back from the volcano conduits. Gas pressure build-up and bubble foam collapse at these boundaries will intermittently trigger the sudden upraise of CO2-rich gas blobs that constitute the main driving force of the paroxysms. Deeper-sourced gas blobs, driving the most powerful explosions, will be the richest in CO2 and have highest CO2/SO2 ratios. This mechanism is shown to account well for the dynamic, seismic and petrologic features of Stromboli's paroxysms and, hence, to provide a potential alternative interpretation for their genesis and their forecasting. Enhanced bubble foam leakage prior to a paroxysm, or foam emptying in several steps, should lead indeed to precursory upstream of CO2-rich gas and increasing CO2/SO2 ratio in crater plume emissions. The recent detection of such signals prior to two explosions in December 2006 and March 2007 strongly supports this expectation and the model proposed in this study.  相似文献   

15.
Magnetic and electric field variations associated with the 2000 eruption of Miyake-jima volcano are summarized. For about 1 week prior to the July 8 phreatic explosion, significant changes in the total intensity were observed at a few stations, which indicated uprising of a demagnetized area from a depth of 2 km towards the summit: this non-magnetic source can be regarded as a vacant space itself. Electric and magnetic field variations were observed simultaneously associated with the tilt-step event, which was the abrupt (∼50 s) inflation at a few km depth within the volcano followed by gradual recovery (∼several hours). The electric field is ascribed to the electrokinetic effect most probably due to forced injection of fluids from the source, while the magnetic field to the piezomagnetic effect due to increased pressure. Large magnetic variations amounting to a few tens of nT were observed at several stations since July 8, and they turned almost flat after the August 18 largest eruption. Magnetic changes are explained mostly by the vanishing of magnetic mass in the summit and additionally by the thermal demagnetization at a rather shallow depth. A large increase in the self-potential by 130 mV was also observed near the summit caldera associated with the August 18 eruption, which suggests that the hydrothermal circulation system sustained within the volcano for the past more than 10 years was destroyed by this eruption.  相似文献   

16.
Soufrière volcano in St Vincent, West Indies, is one of the most active volcanoes in the Eastern Caribbean with at least six eruptions since 1718 AD, the latest of which occurred in 1979. Prior to the 1979 eruption, the active crater hosted deep-water lakes during periods of repose, which were always replenished within a few years after the eruptions. In 1979, the crater was filled with 108 m3 of fragmental material and, despite constant precipitation, has remained virtually dry ever since, with the exception of a small shallow pond. A resistivity survey was conducted in July 2006 to investigate groundwater occurrence in the crater. Results from the resistivity data inversion on several 2-D profiles show a shallow horizontal conductor across the crater floor, consistent with a water-saturated aquifer. They also show that the post-1979 pond, currently present in the crater lake is in fact an outcropping part of the groundwater water reservoir. The reservoir water table is ∼28 m above the pre-1979 lake level and reflects mass equilibrium in the system where constant seepage underground balances the meteoric recharge. We suggest that the groundwater body extends at depth to the bottom of the pre-1979 crater lake, either due to a significant structural discontinuity or because of a reduction of permeability at depth. The estimated maximum volume of water stored underground is 10–30 × 106 m3 and energy considerations indicate that 2.4–7.3 × 1010 kg of magma would potentially be sufficient to vaporise the whole groundwater body. This amount of magma represents only 13–41% of the mass erupted during the last eruption in 1979 which was the smallest of the past 3 eruptions (1902, 1971–72, 1979). Since explosive phreatic or phreatomagmatic eruptions at Soufrière seem to be linked to magma-water interaction within confined space, the results from this survey suggests that phreatic or phreatomagmatic activity is a distinct possibility during future magma intrusion in the summit area, despite the apparent disappearance of water in the summit crater.  相似文献   

17.
Observations carried out systematically at Karymsky volcano have shown that the Rn content in the gases from the summit crater fumaroles and from hot springs at the foot of the volcano increased before and during the 1971 activity of the volcano.  相似文献   

18.
Pyroclastic-laden explosive eruptions from Santiaguito Volcano (Guatemala) are vented from the 200-m diameter Caliente Dome summit and result in a superposition of spatially extensive and temporally sustained (tens of seconds to minutes) acoustic sources. A network of infrasonic microphones distributed on various sides of the volcano record distinct waveforms, which are poorly correlated across the network and suggestive of acoustic interference from multiple sources. Presuming the infrasound wavefield is a linear superposition of spatially and temporally distinct sub-events, we introduce a semblance mapping technique to recover the time history of the spatially evolving sources during successive time windows. Coincident high-resolution video footage corroborates that both rapid dome uplift and individual explosive pulses are likely sources of high semblance infrasound that are identifiable during short (2 s) time windows. This study suggests that complex and network-variable infrasound waveforms are produced whenever a volcanic vent source dimension is large compared to the wavelength of the sound being produced. Non-compact infrasound radiators are probably commonplace at silicic volcanic systems, where venting often occurs across a dome surface.  相似文献   

19.
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995.  相似文献   

20.
The Miyake-jima volcano abruptly erupted on July 8, 2000 after 17 years of quiet and gave birth to a crater, 1 km in diameter and 250 m deep. This expected unrest was monitored during the years 1995–2000 by electromagnetic methods including DC resistivity measurements and self-potential (SP) surveys. Beneath the 2500 yr old Hatcho-Taira summit caldera audio-magnetotelluric soundings made in 1997–98 identified a conductive medium, 200–500 m thick (within the 50 Ω m isoline) located at a few hundred metres depth. It was associated with the active steady-state hydrothermal system centred close to the 1940 cone and extending southward. A DC resistivity meter set in a Schlumberger array with 600, 1000 and 1400 m long injection lines evidenced strong resistivity changes between September 1999 and July 3, 2000 in the vicinity of the newly formed crater. The apparent resistivity has reached about three times its initial values on the 1400 m long line and has lowered to about 20% on the 600 m line. Just prior to the July 8, 2000 eruption SP mapping made inside the summit Hatcho-Taira caldera revealed negative anomalies where positive ones had occurred during the previous tens of years. The largest negative anomaly, −225 mV in amplitude, mainly took place above the 1940 cone which collapsed in the crater formation. A permanent 1 km long SP line across the caldera suggests accelerating changes during the 3 months preceding the eruption. On a larger scale, the comparison between 1995 and 2000 surveys has shown a global increase of the hydrothermal activity beneath the volcano. Its source could have been 250 m to the south of the crater. These observations suggest that the hydrothermal system was slowly disturbed in the months preceding the eruption while drastic changes have occurred during the 2 weeks before the summit collapse when tectonic and volcanic swarms have appeared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号