首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study reports and discusses the differences in δ13C and δ18O values of shells between several species of freshwater snails. Shells were derived from sediment samples collected from depths of 0.5, 1, 2 and 3 m along transects in two shallow eutrophic lakes located in mid-western Poland. Mean δ13C values of the shells ranged between −7.5 and −3.8‰ in Lake Jarosławieckie and between −8.1 and −5.2‰ in Lake Rosnowskie Duże, whereas mean δ18O values ranged between −2.2 and −0.2‰ and between −2.2 and 0.4‰ respectively in the studied lakes. A similar order of species in terms of shell isotope values, from least to most 13C and 18O-depleted was observed in both lakes and seems to indicate constancy of the factors controlling the stable isotope compositions of snail shells. We postulate that the nearly 4‰ difference in the mean carbon stable isotope values between the species was primarily controlled by the amount of metabolic carbon incorporated into the shells and the δ13C values of the snail food. Different growth cessation temperatures and microhabitats of the species studied result in temporally and spatially varied DIC δ13C values, water δ18O values and water temperature of shell precipitation, and may thus differentiate the δ13C and δ18O values of shells. The range of δ13C and δ18O values of individual shells from a sediment sample (mean 2.35 and 2.15‰, respectively) is interpreted as reflecting an intraspecific variability of isotope compositions in shells from a population and changes of the ambient conditions during the accumulation of the sediment layer. The species-specificity and intraspecific variability in C and O isotopic compositions of shells allow concluding that in palaeolimnological studies, stable isotope analyses should be performed on a set of mono-specific shells representing mean isotope compositions of the species for the interval studied rather than single shells or multispecific bulk shell material.  相似文献   

2.
In 2013, the China Geological Survey and Guangzhou Marine Geological Survey conducted the second Chinese gas hydrate expedition in the northern South China Sea(SCS) and successfully obtained visible gas hydrate samples. Five of the thirteen drilling sites were cored for further research. In this work, Site GMGS2-08 is selected for the stable isotopic analysis of foraminifera present in the boreholes in order to reveal the carbon isotopic characteristics of the foraminifera and their response to methane release in the gas hydrate geological system. Our results show that the methane content at Site GMGS2-08 is extremely high, with headspace methane concentrations up to 39300 μmol L~(-1). The hydrocarbon δ~(13)C values, ranging from-69.4‰ to-72.3‰ PDB, distinctly indicate biogenic generation. Based on the δD analytical results(~(-1)83‰ to~(-1)85‰ SMOW), headspace methane is further discriminated to be microbial gas, derived from CO_2 reduction. By isotopic measurement, five light δ~(13)C events are found in the boreholes from Site GMGS2-08, with foraminiferal δ~(13)C values being apparently lower than the normal variation range found in the glacial-interglacial cycles of the SCS. The δ~(13)C values of benthic Uvigerina peregrina are extremely depleted(as low as~(-1)5.85‰ PDB), while those of planktonic Globigerinoides ruber reach-5.68‰ PDB. Scanning electron micrograph(SEM) studies show that foraminiferal tests have experienced post-depositional alteration, infilled with authigenic carbonate, and the diagenetic mineralization is unlikely to be related to the burial depths. The correlation calculation suggests that the anaerobic oxidation of organic matter has only weak influences on the δ~(13)C composition of benthic foraminifera. This means that the anomalous δ~(13)C depletions are predominantly attributed to the overprinting of secondary carbonates derived from the anaerobic oxidation of methane(AOM). Furthermore, the negative δ~(13)C anomalies, coupled with the positive δ18O anomalies observed at Site GMGS2-08, are most likely the critical pieces of evidence for gas hydrate dissociation in the geological history of the study area.  相似文献   

3.
A mooring array with three automated sediment traps capable of collecting time series samples was deployed in the Panama Basin for one year beginning in December 1979. A series of six consecutive two-month long samples was collected at each of three depths (890, 2590 and 3560 m) in order to examine seasonal variation in the flux of planktonic foraminifera, and evaluate the contribution of foraminifera to the total carbonate flux.The flux of the larger planktonic foraminifera (250–500 μm and 500–1000 μm) is greatest during February–March when upwelling is most intense in the Panama Basin. In contrast, the maximum flux of the smaller foraminifera (125–250 μm) is associated with a phytoplankton bloom during the summer months (June through September). This size-dependent flux pattern appears to be a species specific effect. The flux of the larger foraminifera is dominated by non-spinose forms (i.e. Neogloboquadrina dutertrei and Globorotalia theyeri), while the flux of the smaller foraminifera consists predominantly of spinose species (i.e. Globigerinoides ruber, G. sacculifer and G. conglobatus). Although the magnitude of the flux varied throughout the year, the average weight of individual foraminiferal tests in different size fractions showed no seasonal variability.With the exception of the June–July period when there was a major coccolith bloom, planktonic foraminifera greater than 125 μm account for between 28 and 34% of the total carbonate flux at this location. During the coccolith bloom, planktonic foraminifera accounted for less than 2% of the total carbonate flux. Planktonic foraminifera in the 250–500 μm size range are the most significant contributors to the overall particulate flux, accounting for roughly 70–80% of the total foraminiferal fluxes measured at the three trap depths.  相似文献   

4.
Absolute chronologies in paleoceanographic records are often constructed using the 14C dating of coarse fraction foraminifera (>150 μm). However, due to processes such as changes in sediment sources or abundances, sedimentation rates, bioturbation, reworking, the adsorption of modern carbon, etc., several studies conducted in different environmental settings have shown time-lags between records obtained from various granulometric fractions. In this study, we examined temporal phasing between the coarse foraminifera and fine fractions by studying changes in the abundances of δ18O, the 14C ages of the planktonic foraminifera Globigerinoides ruber (G. ruber, 250–350 μm), and the sediment fine fraction (<63 μm) over the last 45 ka in a core obtained from the northern Caribbean Sea. All of the records were found to be in phase during part of the Holocene (at least for the last ≈6 ka). As determined from δ18O records and 14C ages, the fine fraction was younger than G. ruber during the Last Deglaciation (of 1.89 ka). The coupling between bioturbation and changes in the fine fraction, and G. ruber abundances, as tested using a numerical model of the bioturbation record within a mixed-layer depth of 8 cm, was sufficient to explain the results. 14C age discrepancies increased from 5.64 to 8.5 ka during Marine Isotopic Stages (MIS) 2 and 3, respectively. These chronological discrepancies could not be explained by only one process and seemed to result from the interplay between mechanisms: size-differentiated bioturbation (for 1.5 to 2.5 ka), the adsorption of modern atmospheric CO2 (for 3.04 to 5.92 ka), and variations in sedimentological processes that influenced the fine carbonate fraction. However, even if variations in the mineralogical composition of the fine carbonate fraction were identified using scanning-electron microscopy observations, X-ray diffraction measurements, and geochemical analyses (the mol % MgCO3 of magnesian calcite and the Sr/Ca ratio of the bulk fine fraction), they can not account for the observed age differences. The results presented for core MD03-2628 extend beyond this case study because they illustrate the need for a detailed characterization of the various size fractions prior to paleoclimate signal interpretations, especially for chronological studies.  相似文献   

5.
To constrain short-term changes of climate and oceanography in the northern South China Sea(SCS)over interglacial marine isotope stage(MIS)5.5,we studied planktic and benthic 18O records of seven marine sediment cores with a time resolution of70–700 yr.Using 6–8 tie points the planktic records were tuned to the U/Th chronology of speleothem 18O records in China and Europe.The last occurrence of pink Globigerinoides ruber marks the top of Heinrich stadial 11(HS-11)near 128.4 ka.HS-11 matches a 2300-yr long positive 18O excursion by 1.5/0.8‰both in planktic and benthic 18O records.Hence half of the planktic 18O signal was linked to increased upwelling of18O-and12C-enriched deep waters in the southwestern SCS.The increase was possibly linked to a strengthened inflow of Pacific deep waters through the Bashi Strait,that form a boundary current along the northern slope of the SCS,building a major sediment drift.At its lower margin near 2300–2400 m water depth(w.d.)Parasound records reveal a belt of modern erosion.At the end of glacial termination 2,stratigraphic gaps deleted HS-11 in core MD05-2904 and subsequent peak MIS 5.5 at ODP Site 1144.Likewise hiatuses probably earmarked all preceding glacial terminations at Site 1144 back to 650 ka.Accordingly,boundary current erosion then shifted~300 m upslope to~2040–2060 m w.d.These vertical shifts imply a rise in boundary current buoyancy,that in turn may be linked to transient events of North Pacific deepwater formation similar to that traced in SCS and North Pacific paleoceanographic records over glacial termination 1.  相似文献   

6.
Carbonate cement is the most abundant cement type in the Fourth Member of the Xujiahe Formation in the Xiaoquan-Fenggu area of the West Sichuan Depression. Here we use a systematic analysis of carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and enclosure homogenization temperatures to study the precipitation mechanism, pore fluid evolution, and distribution of different types of carbonate cement in reservoir sand in the study area. Crystalline calcite has relatively heavy carbon and oxygen isotope ratios(δ13C = 2.14‰, δ18O = -5.77‰), and was precipitated early. It was precipitated directly from supersaturated alkaline fluid under normal temperature and pressure conditions. At the time of precipitation, the fluid oxygen isotope ratio was very light, mainly showing the characteristics of a mixed meteoric water-seawater fluid(δ18O = -3‰), which shows that the fluid during precipitation was influenced by both meteoric water and seawater. The calcite cement that fills in the secondary pores has relatively lighter carbon and oxygen isotope ratios(δ13C = -2.36‰, δ18O = -15.68‰). This cement was precipitated late, mainly during the Middle and Late Jurassic. An important material source for this carbonate cement was the feldspar corrosion process that involved organic matter. The Ca2+, Fe3+ and Mg2+ ions released by the clay mineral transformation process were also important source materials. Because of water-rock interactions during the burial process, the oxygen isotope ratio of the fluid significantly increased during precipitation, by about 3‰. The dolomite cements in calcarenaceous sandstone that was precipitated during the Middle Jurassic have heavier carbon and oxygen isotope ratios, which are similar to those of carbonate debris in the sandstone(δ13C = 1.93‰, δ18O = -6.11‰), demonstrating that the two are from the same source that had a heavier oxygen isotope ratio(δ18O of about 2.2‰). The differences in fluid oxygen isotope ratios during cement precipitation reflect the influences of different water-rock interaction systems or different water-rock interaction strengths. This is the main reason why the sandstone containing many rigid particles(lithic quartz sandstone) has a relatively negative carbon isotope ratio and why the precipitation fluid in calcarenaceous sandstone has a relatively heavier oxygen isotope ratio.  相似文献   

7.
Stable isotope data on humid tropical hydrology are scarce and, at present, no such data exist for Borneo. Delta18O, δ2H and δ13C were analysed on 22 water samples from different parts of the Sungai (river) Niah basin (rain, cave drip, rainforest pool, tributary stream, river, estuary, sea) in north‐central Sarawak, Malaysian Borneo. This was done to improve understanding of the modern stable isotope systematics of the Sungai Niah basin, essential for the palaeoenvironmental interpretation of the Late Quaternary stable isotope proxies preserved in the Great Cave of Niah. The Niah hydrology data are put into a regional context using the meteoric water line for Southeast Asia, as derived from International Atomic Energy Agency/World Meteorological Organization isotopes in precipitation network data. Although the Niah hydrological data‐set is relatively small, spatial isotopic variability was found for the different subenvironments of the Sungai Niah basin. A progressive enrichment occurs towards the South China Sea (δ18O ?4·6‰; δ2H ?29·3‰; δ13C ?4·8‰) from the tributary stream (δ18O ?8·4‰; δ2H ?54·7‰; δ13C ?14·5‰) to up‐river (δ18O c. ?8‰; δ2H c. ?51‰; δ13C c. ?12‰) and down‐river values (δ18O c. ?7·5‰; δ2H c. ?45‰; δ13C c. ?11‰). This is thought to reflect differential evaporation and mixing of different components of the water cycle and a combination of depleted biogenic δ13C (plant respiration and decay) with enriched δ13C values (due to photosynthesis, atmospheric exchange, mixing with limestone and marine waters) downstream. Cave drip waters are relatively enriched in δ13C as compared to the surface waters. This may indicate rapid degassing of the cave drips as they enter the cave atmosphere. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
In current palaeodietary research, gelatinization is the main method to extract insoluble collagen(ISC) from ancient bones. However, the degradation products of ISC, i.e., soluble collagen(SC), is often neglected and abandoned. In this work, we try to separate the extracts of ancient bones using gel chromatography and compare the contents of carbon and nitrogen, atomic C/N ratio, and stable carbon and nitrogen isotopic values of the extracts from three peaks to determine which peak can be attributed to SC. At last, the potential application of SC in palaeodietary research is discussed based on the comparison of stable isotopic values between ISC and SC. Among the three peaks, the second with the retention time between 17.5 min and 27.5 min had the most broad peak shape, indicating that the molecular weights of proteins collected were most variable. Besides, the contents of carbon and nitrogen and atomic C/N ratio of extracts in this peak were closest to the corresponding ISC. Based on the above, we conclude that the extract in second peak is SC. More important, the δ 13C and δ 15N values of ISC and SC are very similar. For ISC and SC with atomic C/N ratios within the normal range(2.9–3.6), the mean difference of δ 13C value was only(0.3±0.2)‰(n=2) while δ 15N value was(0.6±0.1)‰(n=2). Although the atomic C/N ratios of some SC are slightly beyond the normal range, the mean differences of δ 13C and δ 15N values were still only(0.4±0.1)‰ and(0.3±0)‰(n=2) respectively. These isotopic differences are quite below the isotope fractionation in one trophic level(δ 13C values of 1‰–1.5‰ and δ 15N values of 3‰–5‰), suggesting that SC had great application potentials in palaeodietary research.  相似文献   

9.
High-frequency metre-scale cycles are present within the Lower-Middle Ordovician carbonate successions in northern Tarim Basin, NW China. These metre-scale cycles were variably dolomitised from top to bottom. Three types of replacive dolomites were recognised, including dololaminite(very finely to finely crystalline, planar-s to nonplanar-a dolomite;type-1), patterned dolomite(finely crystalline, planar-s dolomite; type-2), and mottled dolomite(finely to medium crystalline,nonplanar-a(s) dolomite; type-3). Petrographic evidence indicate these dolomites were primarily deposited in supratidal to restricted subtidal environments, and formed in near-surface to shallow burial realms. Geochemically, all types of dolomites have similar δ13C and 87Sr/86 Sr ratios comparable to calcite precipitated in equilibrium with the Early-Middle Ordovician seawater. These geochemical attributes indicate that these dolomites were genetically associated and likely formed from connate seawater-derived brines. Of these, type-1 dolomite has δ18O values(.4.97‰ to.4.04‰ VPDB) slightly higher than those of normal seawater dolomite of the Early-Middle Ordovician age. Considering the absence of associated evaporites within type-1 dolomite, its parental fluids were likely represented by slightly evaporated(i.e., mesosaline to penesaline) seawater with salinity below that of gypsum precipitation. More depleted δ18O values(.7.74‰ to.5.20‰ VPDB) of type-2 dolomite and its stratigraphic position below type-1 dolomite indicate the generation of this dolomite from mesosaline to penesaline brines at higher temperatures in near-surface to shallow burial domains. Type-3 dolomite yields the most depleted δ18O values(–9.30‰to –7.28‰ VPDB), pointing to that it was most likely formed from coeval seawater-derived brines at highest temperatures in a shallow burial setting. There is a downward decreasing trend in δ18O values from type-1 through type-2 to type-3 dolomites, and in abundance of dolomites, indicating that the dolomitising fluids probably migrated downward from above and persisted into shallow burial conditions.  相似文献   

10.
A long‐term study of O, H and C stable isotopes has been undertaken on river waters across the 7000‐km2 upper Thames lowland river basin in the southern UK. During the period, flow conditions ranged from drought to flood. A 10‐year monthly record (2003–2012) of the main River Thames showed a maximum variation of 3‰ (δ18O) and 20‰ (δ2H), although interannual average values varied little around a mean of –6.5‰ (δ18O) and –44‰ (δ2H). A δ2H/δ18O slope of 5.3 suggested a degree of evaporative enrichment, consistent with derivation from local rainfall with a weighted mean of –7.2‰ (δ18O) and –48‰ (δ2H) for the period. A tendency towards isotopic depletion of the river with increasing flow rate was noted, but at very high flows (>100 m3/s), a reversion to the mean was interpreted as the displacement of bank storage by rising groundwater levels (corroborated by measurements of specific electrical conductivity). A shorter quarterly study (October 2011–April 2013) of isotope variations in 15 tributaries with varying geology revealed different responses to evaporation, with a well‐correlated inverse relationship between Δ18O and baseflow index for most of the rivers. A comparison with aquifer waters in the basin showed that even at low flow, rivers rarely consist solely of isotopically unmodified groundwater. Long‐term monitoring (2003–2007) of carbon stable isotopes in dissolved inorganic carbon (DIC) in the Thames revealed a complex interplay between respiration, photosynthesis and evasion, but with a mean interannual δ13C‐DIC value of –14.8 ± 0.5‰, exchange with atmospheric carbon could be ruled out. Quarterly monitoring of the tributaries (October 2011–April 2013) indicated that in addition to the aforementioned factors, river flow variations and catchment characteristics were likely to affect δ13C‐DIC. Comparison with basin groundwaters of different alkalinity and δ13C‐DIC values showed that the origin of river baseflow is usually obscured. The findings show that long‐term monitoring of environmental tracers can help to improve the understanding of how lowland river catchments function. Copyright © NERC 2015. Hydrological Processes © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
High-resolution δ13C records are presented for the Miocene benthic foraminifersCibicidoides wuellerstorfi andC. kullenbergi (24-5 Ma) and the planktonic foraminiferGlobigerinoides sacculifer (18-5 Ma) from ODP Site 1148A (18° 50.17’N, 116° 33.93’E, water depth 3308.3 m), northern South China Sea. The general pattern of parallel benthic and planktonic δ13C shows a decrease trend of δ13C values from the early-middle Miocene to the middle-late Miocene. Two distinct δ13C positive excursions at 23.1-22.2 and 17.3-13.6 Ma, and two negative excursions at 10.2-9.4 and 6.9-6.2 Ma have been recognized. All these events are cosmopolitan, providing the good data for the stratigraphic correlation of the South China Sea with the global oceans as well as for studying the changes of the global carbon reservoir and its corresponding climate.  相似文献   

12.
Abstract Isotopic analyses of organic carbon from the mid-Cretaceous sequence in Hokkaido, Japan, revealed a 2‰ positive excursion of δ13C values at the biostratigraphically defined Cenomanian/Turonian (C/T) boundary recognized in the Yezo Group. The planktonic foraminiferal Whiteinella archaeocretacea Zone, which is known to bracket the Cenomanian/Turonian boundary elsewhere in the world, was recognized in the Oyubari area of central Hokkaido based on the distribution of commonly occurring planktonic foraminifera. In the Tappu area of northwestern Hokkaido, where diagnostic planktonic foraminifera are rare but calcareous nannoplankton occur commonly, the interval coeval with the W. archaeocretacea Zone can also be established by recognizing the conjoined last appearance levels of Corollithion kennedyi and Axopodorhabdus albianus, both calcareous nannoplankton species. Carbon isotope profiles exhibit a similar pattern with comparable peaks and troughs occurring in the same stratigraphic position in the sequences. A prominent, positive 2‰ shift of δ13C values, here called ‘δ13C spike’ occurs in the middle of the W. archaeocretacea Zone in the Oyubari area and just above the conjoined last appearances of the two above-mentioned nannoplankton taxa in the Tappu area. The Cenomanian/Turonian boundary can be drawn just above the peak position of the spike in both sections. The Rock Eval analyses and biomarker analyses of organic carbon indicate that organic carbon subjected to our isotope analyses is of terrestrial origin. Therefore, the observed 2%o shift should reflect changes in the isotopic composition of the atmospheric CO2. A unique layer composed predominantly of sand-grain sized spumellarian Radiolaria is present immediately above the δ13C spike both in the Oyubari and Tappu areas, suggesting an increasing availability of both nutrients and silica in surface waters.  相似文献   

13.
《Marine pollution bulletin》2014,87(1-2):238-243
We analyzed δ13C, δ15N and δ18O in the muscle and liver from killer whales stranded on the coast of Japan. The δ15N values in the muscle samples from calves were apparently higher than those in their lactating mothers, suggesting that nursing may result in the higher δ15N values in the muscle samples of calves. The δ15N value in the muscle samples of male and female whales, except for the calves, were positively correlated with the δ13C values and body length, suggesting that the increases in δ15N were due to the growth of the whales and increase in their trophic level. In contrast, the δ18O values in the muscle samples of female whales except for the calves were negatively correlated with the δ13C and δ15N values. The δ18O may be lower in whales occupying higher trophic positions (δ15N), although it might also be affected by geographic and climatic conditions.  相似文献   

14.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

15.
Abstract

The paper discusses aspects of the isotopic composition (tritium and stable isotopes) of precipitation, which was monitored from 2000 to 2003 at 12 stations in Syria. The seasonal variations in δ18O are smaller at the western stations than at the eastern ones due to low seasonal temperature variations. A good correlation between δ2H and δ18O was obtained for each station, and the slopes of the local meteoric water lines are significantly lower than the Global Meteoric Water Line. Values of d-excess decrease from 19‰ at the western stations to 13‰ at the eastern ones, indicating the influence of precipitation generated by air masses coming from the Mediterranean Sea. A reliable altitude effect represented by depletion of heavy stable isotopes (δ18O and δ2H), of about??0.21‰ and??1.47‰ per 100 m elevation, respectively, was observed. Monthly tritium contents in precipitation, and seasonal variations, are less at the western stations than at the eastern ones. The weighted mean tritium values are between 3 and 9 TU, and increase with distance from the Syrian coast by 1 TU/100 km.

Citation Al Charideh, A. R. & Abou Zakhem, B. (2010) Distribution of tritium and stable isotopes in precipitation in Syria. Hydrol. Sci. J. 55(5), 832–843.  相似文献   

16.
Silica alteration zones and cherts are a conspicuous feature of Archaean greenstone belts worldwide and provide evidence of extensive mobilisation of silica in the marine environment of the early Earth. In order to understand the process(es) of silicification we measured the silicon and oxygen isotope composition of sections of variably silicified basalts and overlying bedded cherts from the Theespruit, Hooggenoeg and Kromberg Formations of the Barberton Greenstone Belt, South Africa.The δ30Si and δ18O values of bulk rock increase with increasing amount of silicification from unsilicified basalts (?0.64‰ < δ30Si < ?0.01‰ and + 8.6‰ < δ18O < + 11.9‰) to silicified basalts (δ30Si and δ18O values as high as + 0.81‰ and + 15.6‰, respectively). Cherts generally have positive isotope ratios (+ 0.21‰ < δ30Si < + 1.05‰ and + 10.9 < δ18O < + 17.1), except two cherts, which have negative δ30Si values, but high δ18O (up to + 19.5‰).The pronounced positive correlations between δ30Si, δ18O and SiO2 imply that the isotope variation is driven by the silicification process which coevally introduced both 18O and 30Si into the basalts. The oxygen isotope variation in the basalts from about 8.6‰ to 15.6‰ is likely to represent temperature-dependent isotope fractionation during alteration. Our proposed model for the observed silicon isotope variation relies on a temperature-controlled basalt dissolution vs. silica deposition process.  相似文献   

17.
Non-dispersive infrared(NDIR) and cavity ring-down spectroscopy(CRDS) CO_2 analyzers use 12CO_2 isotopologue absorption lines and are insensitive to all or part of other CO_2-related isotopologues. This may produce biases in CO_2 mole fraction measurements of a sample if its carbon isotopic composition deviates from that of the standard gases being used. To evaluate and compare the effects of carbon isotopic composition on NDIR and CRDS CO_2 analyzers, we prepared three test sample air cylinders with varying carbon isotopic abundances and calibrated them against five standard cylinders with ambient carbon isotopic composition using CRDS and NDIR systems. We found that the CO_2 mole fractions of the sample cylinders measured by G1301(CRDS) were in good agreement with those measured by Lo Flo(NDIR). The CO_2 values measured by both instruments were higher than that of a CO_2 isotope measured by G2201i(CRDS) analyzer for a test cylinder with depleted carbon isotopic composition δ~(13)C =-36.828‰, whereas no obvious difference was found for other two test cylinders with δ~(13)C=-8.630‰ and δ~(13)C=-15.380‰, respectively. According to the theoretical and experimental results, we concluded that the total CO_2 mole fractions of samples with depleted isotopic compositions can be corrected on the basis of their 12CO_2 values calibrated by standard gases using Lo Flo and G1301 if the δ~(13)C and δ18O values are known.  相似文献   

18.
We explore the potential of tree-ring cellulose δ18O and δ13C records for reconstructing climate variability in the southeast Tibetan Plateau. Our sampling strategy was designed to investigate intra and inter-tree variability, and the effects of the age of tree on δ18O variation. We show that intra-tree δ13C and δ18O variability is negligible, and inter-tree coherence is sufficient to build robust tree-ring δ18O or δ13C chronologies based on only four trees. There is no evidence of an age effect regarding δ18O, in contrast with tree-ring width. In our warm and moist sampling site, young tree δ13C is not clearly correlated with monthly mean meteorological data. Tree-ring δ18O appears significantly anti-correlated with summer precipitation amount, regional cloud cover, and relative humidity. Simulations conducted with the ORCHIDEE land surface model confirm the observed contribution of relative humidity to tree cellulose δ18O, and explain the weak correlation of δ13C with climate by the non-linear integration linked with photosynthesis. Altogether, the tree-ring cellulose δ18O is shown to be a promising proxy to reconstruct regional summer moisture variability prior to the instrumental period.  相似文献   

19.
Organic carbon isotope(δ13Corg) data from two well-preserved sections across a shallow-to-deep water transect of the late Ediacaran-Early Cambrian Yangtze Platform in South China show significant temporal and spatial variations. In the shallow-water Jiulongwan-Jijiapo section, δ13Corg values of the late Ediacaran Dengying Formation range from -29‰ to -24‰. In the deep-water Longbizui section, δ13Corg values from time-equivalent strata of the Dengying Formation are mostly between –35‰ and -32‰. These new data, in combination with δ13Corg data reported from other sections in South China, reveal a 6‰–8‰ shallow-to-deep water δ13Corg gradient. High δ13Corg values(-30‰) occur mostly in shallow-water carbonate rocks, whereas low δ13Corg values(-32‰) dominate the deep-water black shale and chert. The large temporal and spatial δ13Corg variations imply limited buffering effect from a large dissolved organic carbon(DOC) reservoir that was inferred to have existed in Ediacaran-Early Cambrian oceans. Instead, δ13Corg variations between platform and basin sections are more likely caused by differential microbial biomass contribution to total organic matter. High δ13Corg values(-30‰) documented from shallow-water carbonates are within the range of typical Phanerozoic δ13Corg data and may record the isotope signature of organic matter from primary(photosynthetic) production. In contrast, low δ13Corg values(-32‰) from deep-water sections may have resulted from higher chemoautotrophic or methanotrophic biomass contribution to bulk organic matter in anoxic environments. The δ13Corg data provide indirect evidence for ocean stratification and episodic chemocline fluctuations in the Ediacaran-Early Cambrian Yangtze Platform.  相似文献   

20.
Rocks of the Miocene Macquarie Island ophiolite, south of New Zealand, have oxygen and carbon isotopic compositions comparable to those of seafloor rocks. Basalt glass and weathered basalts have δ18O values at 5.8–6.0‰ and 7.9–9.5‰, respectively, similar to drilled seafloor rocks including samples from the Leg 29 DSDP holes near Macquarie Island. Compared to the basalt glass, the greenschist to amphibolite facies metaintrusives are depleted in18O (δ18O=3.2–5.9‰) similar to dredged seafloor samples, whereas the metabasalts are enriched (δ18O=7.1–9.7‰). Although the gabbros are only slightly altered in thin-section they have exchanged oxygen with a hydrothermal fluid to a depth of at least 4.5 km. There is an approximate balance between18O depletion and enrichment in the exposed ophiolite section. The carbon isotopic composition of calcite in the weathered basalts (δ13C=1.0–2.0‰) is similar to those of drilled basalts, but the metamorphosed rocks have low δ13C values (?14.6 to 0.9‰).These data are compatible with two seawater circulation regimes. In the upper regime, basalts were weathered by cold seawater in a circulation system with high water/rock ratios (?1.0). Based on calcite compositions weathering temperatures were less than 20°C and the carbon was derived from a predominantly inorganic marine source. As previously suggested for the Samail ophiolite, it is postulated that the lower hydrothermal regime consisted of two coupled parts. At the deeper levels, seawater circulating at low water/rock ratios (0.2–0.3) and high temperatures (300–600°C) gave rise to18O-depleted gabbro and sheeted dikes via open system exchange reactions. During reaction the seawater underwent a shift in oxygen isotopic composition (δ18O=1.0–5.0‰) and subsequently caused18O enrichment of the overlying metabasalts. In the shallower part of the hydrothermal regime the metabasalts were altered at relatively high water/rock ratios (1.0–10.0) and temperatures in the range 200–300°C. The relatively low water/rock ratios in the hydrothermal regime are supported by the low δ13C values of calcite, interpreted as evidence of juvenile carbon in contrast to the inorganic marine carbon found in the weathered basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号