首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=?70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=?109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.  相似文献   

2.
Data were acquired from 143 whole rock samples from 20 late orogenic, post-metamorphic, Hercynian-age granitic plutons from the Piedmont of the southern Appalachians, principally in Georgia and South Carolina. These plutons exhibit a regional gradient in oxygen isotopic compositions in which the granites confined to the Inner Piedmont to the northwest are18O-enriched (11.4 to 7.9) whereas those toward the southeast within the Charlotte-Slate and portions of the Kiokee belts have distinctly lower18O/16O compositions (8.2 to 5.5); one body that lies along the southeastern edge of the Piedmont in South Carolina, however, appears to be anomalously18O-enriched (8.9). Most plutons display18O/16O variations of <1‰ although two vary by as much as 3–4‰. The regional oxygen isotopic pattern among plutons appears to correlate directly with: (1) regional Bouguer gravity patterns, in which the18O-enriched plutons occupy areas characterized by negative anomalies, whereas low-18O bodies are invariably restricted to regions of positive anomalies; (2)87Sr/86Sr data, where granites with δ18O values <8‰ have low initial strontium ratios of ~0.703 to 0.705, while18O-enriched plutons (>9‰) have ratios >0.710; (3) contrasting chemical and accessory mineral compositions, in which many18O-depleted granites have a number of I-type characteristics, whereas several of the most18O-enriched plutons exhibit a number of S-type features. It can be inferred from these data that the18O-enriched granites were formed from continental crustal protoliths that underlie much of the Inner Piedmont and portions of the Kiokee belt, whereas the low-18O plutons were derived from more mafic sources beneath the Charlotte-Slate and portions of the Kiokee belt. The overall correspondence between the regional18O/16O patterns exhibited by the granites and gravity data implies that these grantes may be essentially rooted to their protoliths, in turn suggesting that the large-scale translational movement recently proposed for the Southern Piedmont may have occurred prior to intrusion of these granites ~320 m.y. ago.  相似文献   

3.

The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=−70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=−109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.

  相似文献   

4.
The isotopic compositions of Sr, Nd and Pb in leucogranites which are intercorrelated (Bernard-Griffiths et al., 1985 [1]) may be explained by the mixing of ancient basement (1800 Ma) with juvenile crust (late Precambrian or early Palaeozoic). This hypothesis does not involve the existence of Mid-Proterozoic crust, as apparently indicated by theTDM model ages of the leucogranites (ranging between 1600 and 1100 Ma). The Nd isotopes reveal the crustal reworking while Sr isotopes mainly record juvenile crust formation. This paradox is explained by the geochemical heterogeneity of the sources involved.  相似文献   

5.
The Jacobina — Contendas Mirante belt represents a Transamazonian (2 Ga), N-S, 500-km long, elongated orogenic domain in the central part of the São Francisco craton, Bahia state. Numerous syntectonic to post-tectonic peraluminous leucogranites were emplaced along the major structures of the belt. Their mineralogical and geochemical and some of their metallogenetic characteristics are very similar to their Hercynian and Himalayan equivalents. However, their average peraluminous index varies from one granitic pluton to another and biotite is, on average, slightly more magnesian in the Transamazonian leucogranites. Higher oxygen fugacity is indicated by the general occurrence of magnetite, the stability of allanite and sometimes epidote in most of the plutons and by biotite chemistry. The peraluminous magmatism of the Jacobina-Contendas Mirante belt results from crustal partial melting during a continental collision event at 2 Ga.Trace-element geochemistry implies variable source composition and/or melting conditions for the different granitic plutons and some different facies within the same plutonic unit. The scarcity of ilmenite, the general occurrence of magnetite, and the relatively low peraluminous index of some of these granites suggest that graphite-beating sediments are not a significantly source material. From their mineralogical and geochemical characteristics, acid meta-igneous rocks such as the Sete Voltas TTG suite of presumed Archaean age, seem to represent a suitable source for these granites.Sn, W, Li, F and Be enrichment of most Transamazonian leucogranites is much weaker than in the mineralized Variscan equivalents. The Caetano-Aliança and Riacho das Pedras granites represent the most specialized granitic bodies. Beryl (emerald), molybdenite and scheelite mineralizations are related to some of these granites which intrude ultrabasic formations: the Campo Formoso and the Carnaiba granites. In many of these granites, uranium content is comparable to values measured in mineralized Hercynian leucogranites. The occurrence of hexavalent uranium minerals, mineralization and episyenitic alteration are favourable criteria for finding Variscan-type uranium ore deposits.  相似文献   

6.
7.
The major advantage of the oxygen in phosphate isotope paleothermometry is that it is a system which records temperatures with great sensitivity while bone (and teeth) building organisms are alive, and the record is nearly perfectly preserved after death. Fish from seven water bodies of different temperatures (3–23°C) and different δ18O (values ?16 to +3) of the water were analysed. The δ18O values of the analysed PO4 vary from 6 to 25. The system passed the following tests: (a) the temperatures deduced from isotopic analyses of the sequence of fish from Lake Baikal are in good agreement with the temperatures measured in the thermally stratified lake; (b) the isotopic composition of fish bone phosphate is not influenced by the isotopic composition of the phosphate which is fed to the fish, but only by temperature and water composition.Isotopic analysis of fossil fish in combination with analysis of mammal bones should be a useful tool in deciphering continental paleoclimates.  相似文献   

8.
9.
The Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range have distinctly different mineralogical and geochemical signatures. The Cu-Pb-Zn-bearing granites are dominated by metaluminous amphibole-bearing granodiorites, which have higher CaO/(Na2O+K2O) ratios, light/heavy rare earth element(LREE/HREE) ratios, and δEu values,lower Rb/Sr ratios, and weak Ba, Sr, P, and Ti depletions, exhibiting low degrees of fractionation. The W-bearing granites are highly differentiated and peraluminous, and they have lower CaO/(Na2O+K2O) ratios, LREE/HREE ratios, and δEu values,higher Rb/Sr ratios, and strong Ba, Sr, P, and Ti depletions. The Cu-Pb-Zn-bearing granites were formed predominantly between155.2 and 167.0 Ma with a peak value of 160.6 Ma, whereas the W-bearing granites were formed mainly from 151.1 to 161.8Ma with a peak value of 155.5 Ma. There is a time gap of about 5 Ma between the two different types of ore-bearing granites.Based on detailed geochronological and geochemical studies of both the Tongshanling Cu-Pb-Zn-bearing and Weijia W-bearing granites in southern Hunan Province and combined with the other Middle-Late Jurassic Cu-Pb-Zn-bearing and W-bearing granites in the Nanling Range, a genetic model of the two different types of ore-bearing granites has been proposed. Asthenosphere upwelling and basaltic magma underplating were induced by the subduction of the palaeo-Pacific plate. The underplated basaltic magmas provided heat to cause a partial melting of the mafic amphibolitic basement in the lower crust, resulting in the formation of Cu-Pb-Zn mineralization related granodioritic magmas. With the development of basaltic magma underplating,the muscovite-rich metasedimentary basement in the upper-middle crust was partially melted to generate W-bearing granitic magmas. The compositional difference of granite sources accounted for the metallogenic specialization, and the non-simultaneous partial melting of one source followed by the other brought about a time gap of about 5 Ma between the Cu-Pb-Zn-bearing and W-bearing granites.  相似文献   

10.
High εNd(t)-εHf(t) granites are robust evidence for crustal growth. In this paper we report results of petrologic, geochronological and geochemical investigations on the Huashiban granites from the Ailaoshan tectonic zone in western Yunnan(SW China). Zircon grains separated from the two samples(10HH-119 A and 10HH-120A) yield the weighted mean 206Pb/238 U ages of 229.9 ± 2.0 Ma and 229.3 ± 2.3 Ma, respectively, interpreted as the crystallization ages of the granites. Based on our results, in combination with the existing U-Pb geochronological data for the Ailaoshan metamorphic rocks, we propose that the Ailaoshan Group might be a rock complex composed of the Mesoproterozoic, Neoproterozoic, Hercynian, Indosinian and Himalayan components, rather than a part of the crystalline basement of the Yangtze block. The zircon grains show highly depleted Lu-Hf isotope compositions, with positive εHf(t) values ranging from 8.4 to 13.1. The Huashiban granites have high SiO2(72.66 wt%–73.70 wt%), low Mg#(0.28–0.34) with A/CNK=1.01–1.05, and can be classified as peralumious high-K calc-alkaline I-type granites. A synthesis of these data indicates that the Ailaoshan tectonic zone had evolved into a post-collisional setting by the Late-Triassic(229 Ma). Genesis of the Huashiban high εNd(t)-εHf(t) granites involved into two processes:(1) underplating of the sub-arc mantle into the lower crust, and(2) remelting of the juvenile crustal materials in response to the upwelling of the asthenospheric mantle in the post-collisional setting.  相似文献   

11.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   

12.
Stable isotopic compositions of precipitation (δ18Op, δ2Hp and d-excessp) and atmospheric vapour (δ18Ov, δ2Hv and d-excessv) with high spatial–temporal resolution are crucial in revealing hydrologic cycle. Based on the variation characteristics of δ18Op18Ov, δ2Hp2Hv and d-excessp/d-excessv in the headwaters of the Shule River (HSR) on hourly and daily scales from June to September 2018, this study analysed the relationships between δ18Op2Hp and δ18Ov2Hv combined with the equilibrium fractionation model, as well as δ18Op18Ov and meteorological factors. The slopes of local meteoric water line (LMWL) and the δ2Hv18Ov fitting equation were similar (7.96 and 7.94) with both intercepts exceeding 10, reflecting the great contribution of recycling moisture. The values of δ18Ov2Hv were lower than δ18Op2Hp but with consistent variation patterns throughout the period. The equilibrium simulation results suggested that precipitation and atmospheric vapour almost approached isotopic equilibrium state, especially during monsoon intrusion period. Affected by monsoon intrusion, the slopes and intercepts of the LMWLs and the δ2Hv18Ov fitting equations were smaller than those during non-monsoon period and d-excess and δ18O were negatively correlated. Relative humidity had significant negative correlations with δ18Op and δ18Ov in the whole period, however, the positive correlations between δ18Op18Ov and temperature were observed during non-monsoon and monsoon intrusion period, respectively. Our results demonstrated that precipitation and atmospheric vapour isotopic compositions exhibited consistency under the influence of diverse moisture sources, while more complex relationships were found between δ18Op18Ov and meteorological factors. This research provided evidence for using the isotopic compositions of atmospheric vapour to indicate moisture sources, and can improve understanding of the water cycle and eco-hydrological process from the perspective of the interaction between water and gas phases of the inland river basin in northwest China.  相似文献   

13.
14.
Aromatic hydrocarbons are generally main distillation of crude oil and organic extract of source rocks. Bicyclic and tricyclic aromatic hydrocarbons can be purified by two-step method of chromatography on alumina. Carbon isotopic composition of individual aromatic hydrocarbons is affected not only by thermal maturity, but also by organic matter input, depositional environment, and hydrocarbon generation process based on the GC-IRMS analysis of Upper Ordovician, Lower Ordovician, and Cambrian source rocks in different areas in the Tarim Basin, western China. The subgroups of aromatic hydrocarbons as well as individual aromatic compound, such as 1-MP, 9-MP, and 2,6-DMP from Cambrian-Lower Ordovician section show more depleted 13 C distribution. The 13 C value difference between Cambrian-Lower Ordovician section and Upper Ordovician source rocks is up to 16.1‰ for subgroups and 14‰ for individual compounds. It can provide strong evidence for oil source correlation by combing the 13 C value and biomarker distribution of different oil and source rocks from different strata in the Tarim Basin. Most oils from Tazhong area have geochemical characteristics such as more negative 13C9-MP value, poor gammacerane, and abundant homohopanes, which indicate that Upper Ordovician source rock is the main source rock. In contrast, oils from Tadong area and some oils from Tazhong area have geochemical characteristics such as high 13C9-MP value, abundant gammacerane, and poor homohopanes, which suggest that the major contributor is Cambrian-Lower Ordovician source rock.  相似文献   

15.
Rainwater, groundwater and soil-water samples were analysed to assess groundwater geochemistry and the origin of salinity in the Ochi-Narkwa basin of the Central Region of Ghana. The samples were measured for major ions and stable isotopes (δ18O, δ2H and δ13C). The Cl? content in rainwater decreased with distance from the coast. The major hydrochemical facies were Na-Cl for the shallow groundwaters and Ca-Mg-HCO3, Na-Cl and Ca-Mg-Cl-SO4 for the deep groundwaters. Groundwater salinization is caused largely by halite dissolution and to a minor extent by silicate weathering and seawater intrusion. Stable isotope composition of the groundwaters followed a slope of 3.44, suggesting a mixing line. Chloride profiles in the soil zone revealed the existence of salt crusts, which support halite dissolution in the study area. A conceptual flow model developed to explain the mechanism of salinization showed principal groundwater flow in the NW–SE direction.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR K. Heal  相似文献   

16.
Stable isotopes in precipitation are useful tracers to strengthen understanding of climate change and hydrological processes. In this study, the moisture sources of 190 precipitation events in Beijing were analysed using the Hybrid Single‐particle Lagrangian Integrated Trajectory model, based on which we studied the relation between variations in precipitation δ18O and dynamics in moisture sources and atmospheric circulation in seasonal and interannual timescales. Categorization of 7 groups of moisture sources was performed, among which oceanic moisture sources presented lower δ18O in precipitation than continental moisture sources. The results show that seasonal variations of precipitation δ18O were caused by changes of moisture sources. In summer, moisture from proximal oceans dominated vapour transport to Beijing due to increasing monsoon strength and resulted in a relatively small variation of precipitation δ18O. At the interannual timescale, the variations of δ18O in summer precipitation were related to dynamics in oceanic moistures, showing depleted values when the contribution of oceanic moistures, especially the proportion of long‐distance oceanic moisture, was high. Further analysis indicated that changes of oceanic moisture sources were controlled by the strength of summer monsoons. These findings address the complexity of moisture sources in midlatitude monsoon areas and suggest that isotopic signals in precipitation have the potential to deduce changes in moisture sources and atmospheric circulation and can therefore serve for palaeoclimate reconstruction.  相似文献   

17.
Initial magnetic susceptibility (generally indicative of magnetite content) has been determined for 445 samples from 17 granites located in the southern Appalachian Piedmont of Georgia and South Carolina. These values have been correlated with whole rock δ18O data from the same plutons, yielding a pronounced inverse relationship. It has previously been shown for the southern Piedmont that low oxygen isotopic (18O-enriched) values usually occur in S-type granites (Wenner [1], this issue). It follows, then, that I-type granites are characterized by high susceptibilities (χ > 1 × 10?4 G/Oe), and S-type granites by low susceptibilities (χ < 1 × 10?4 G/Oe). An interesting result of this work has been the observation that some S-type granites exhibit good within-site clusters of remanent magnetic directions while I-type granites generally do not.  相似文献   

18.
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".  相似文献   

19.
Phosphorites from sedimentary sequences ranging in age from Archaean to Recent were analysed for δ18O in both the PO418Op) and CO318Oc) in the apatite lattice. The oxygen isotope record is considerably better preserved in phosphates than in either carbonates or cherts. The use of the Longinelli and Nuti [8] temperature equation yields temperatures for Recent phosphorites that are in good agreement with those measured in the field. The δ18Op values of ancient phosphorites decrease with increasing age. These changes with time are not likely to be due to post-depositional exchange. Changes in δ18O values of seawater and variations of temperature with time can account for the δ18Op time trend, but the latter explanation is preferred. In Ancient phosphorites δ18Oc in structurally bound carbonate in apatite is not a reliable geochemical indicator.  相似文献   

20.
We report a quantitative analysis of regional differences in the the oxygen isotope composition of river water and precipitation across the USA because data are now available to undertake a more geographically and temporally extensive analysis than was formerly possible. Maps of modern, mean annual δ18O values for both precipitation (δ18OPPT) and river water (δ18ORIV) across the 48 contiguous states of the USA have been generated using latitude and elevation as the primary predictors of stable isotope composition while also incorporating regional and local deviations based on available isotopic data. The difference between these two maps was calculated to determine regions where δ18ORIV is significantly offset from local δ18OPPT. Additional maps depicting seasonal and extreme values for δ18ORIV and δ18OPPT were also constructed. This exercise confirms the presence of regions characterized by differences in δ18ORIV and δ18OPPT and specifically identifies the magnitude and regional extent of these offsets. In particular, the Great Plains has δ18ORIV values that are more positive than precipitation, while much of the western USA is characterized by significantly lower δ18ORIV values in comparison with local δ18OPPT. The most salient feature that emerged from this comparison is the ‘catchment effect’ for the rivers. Because river water is largely derived from precipitation that fell upstream of the sample locality (i.e. at higher elevations) δ18ORIV values are often lower than local δ18OPPT values, particularly in catchments with high‐elevation gradients. Seasonal patterns in the isotopic data substantiate the generally accepted notion that amplitudes of δ18O variation are greatly dampened in river water relative to those of local precipitation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号