首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
This paper describes a technique, which allows precise and accurate Sr isotope measurement combined with trace element analysis of individual melt inclusions, of sample sizes  1 ng of Sr. The technique involves sampling by micro-milling, chemical dissolution, micro Sr column chemistry, TIMS, and ICPMS analyses. A 10% aliquot of each sample solution is used for trace element analysis by double focusing magnetic sector field ICPMS, while Sr is chemically separated from the remaining 90% and used for 87Sr/86Sr determinations by TIMS.During the development of the technique outlined above, we documented in detail the potential sources of blank contributions and their magnitude. The average size and Sr isotope composition of our laboratory total procedural blank during this study was 5.4 pg ± 0.3 pg Sr (n = 21) with an 87Sr/86Sr of 0.7111 ± 0.0002 (2SE, n = 3). The total procedural Rb blank was 1.9 ± 0.7 pg (n = 21). The total procedural blank was found to have minimal effect (< 150 ppm shift) on the 87Sr/86Sr of sample material containing down to  250 pg Sr. Applying a blank correction allows ‘in house’ standards of this size to be corrected back to within 175 ppm of their accepted values. By applying blank corrections we can confidently measure the Sr isotope composition on sample sizes down to  25 pg Sr to an accuracy better than 400 ppm.The utility of the technique is illustrated by application to a suite of melt inclusions from NW Iceland and their host olivines. It is shown that the effect of a small amount of entrainment of the host olivine during sampling of 50 μm melt inclusions has a negligible effect on the measured Sr isotope and trace element composition. Furthermore, where melt inclusions are < 50 μm it is possible to obtain Sr isotope and trace element data on multiple melt inclusions hosted in a single olivine. This provides similar information to that of the single melt inclusions.  相似文献   

2.
We measured both mass-dependent isotope fractionation of δ88Sr (88Sr/86Sr) and radiogenic isotopic variation of Sr (87Sr/86Sr) for the Neoproterozoic Doushantuo Formation that deposited as a cap carbonate immediately above the Marinoan-related Nantuo Tillite. The δ88Sr and 87Sr/86Sr compositions showed three remarkable characteristics: (1) high radiogenic 87Sr/86Sr values and gradual decrease in the 87Sr/86Sr ratios, (2) anomalously low δ88Sr values at the lower part cap carbonate, and (3) a clear correlation between 87Sr/86Sr and δ88Sr values. These isotopic signatures can be explained by assuming an extreme greenhouse condition after the Marinoan glaciation. Surface seawater, mixed with a large amount of freshwater from continental crusts with high 87Sr/86Sr and lighter δ88Sr ratios, was formed during the extreme global warming after the glacial event. High atmospheric CO2 content caused sudden precipitation of cap carbonate from the surface seawater with high 87Sr/86Sr and lighter δ88Sr ratios. Subsequently, the mixing of the underlying seawater, with unradiogenic Sr isotope compositions and normal δ88Sr ratios, probably caused gradual decrease of the 87Sr/86Sr ratios of the seawater and deposition of carbonate with normal δ88Sr ratios. The combination of 87Sr/86Sr and δ88Sr isotope systematics gives us new insights on the surface evolution after the Snowball Earth.  相似文献   

3.
We report analyses of noble gases and Nd–Sr isotopes in mineral separates and whole rocks of late Pleistocene (< 0.2 Ma) monzonites from Ulleungdo, South Korea, a volcanic island within the back arc basin of the Japan island arc. A Rb–Sr mineral isochron age for the monzonites is 0.12 ± 0.01 Ma. K–Ar biotite ages from the same samples gave relatively concordant ages of 0.19 ± 0.01and 0.22 ± 0.01 Ma. 40Ar/39Ar yields a similar age of 0.29 ± 0.09 Ma. Geochemical characteristics of the felsic plutonic rocks, which are silica oversaturated alkali felsic rocks (av., 12.5 wt% in K2O + Na2O), are similar to those of 30 alkali volcanics from Ulleungdo in terms of concentrations of major, trace and REE elements. The initial Nd–Sr isotopic ratios of the monzonites (87Sr/86Sr = 0.70454–0.71264, 143Nd/144Nd = 0.512528–0.512577) are comparable with those of the alkali volcanics (87Sr/86Sr = 0.70466–0.70892, 143Nd/144Nd = 0.512521–0.512615) erupted in Stage 3 of Ulleungdo volcanism (0.24–0.47 Ma). The high initial 87Sr/86Sr values of the monzonites imply that seawater and crustally contaminated pre-existing trachytes may have been melted or assimilated during differentiation of the alkali basaltic magma.A mantle helium component (3He/4He ratio of up to 6.5 RA) associated with excess argon was found in the monzonites. Feldspar and biotite have preferentially lost helium during slow cooling at depth and/or during their transportation to the surface in a hot host magma. The source magma noble gas isotopic features are well preserved in fluid inclusions in hornblende, and indicate that the magma may be directly derived from subcontinental lithospheric mantle metasomatized by an ancient subduction process, or may have formed as a mixture of MORB-like mantle and crustal components. The radiometric ages, geochemical and Nd–Sr isotopic signatures of the Ulleungdo monzonites as well as the presence of mantle-derived helium and argon, suggests that these felsic plutonic rocks evolved from alkali basaltic magma that formed by partial melting of subcontinental lithospheric mantle beneath the back arc basin located along the active continental margin of the southeastern part of the Eurasian plate.  相似文献   

4.
A new method for the radiogenic isotope (U–Th–Pa–Ra, Sr, Nd, Hf) analysis of the soluble and insoluble components found within ice cores is presented. Melting experiments with rock standards in the presence of EDTA indicate that carbonates, as well as silicates, can be buffered sufficiently to preclude dissolution. The use of EDTA allows adsorbing species, such as Th and Hf, to remain in solution during melting thus fully separating the dust (insoluble) and sea salt (soluble) components of the ice after filtration. A new elemental separation scheme for low sample masses, less than 5 mg solid material, utilizes 4 primary ion exchange columns and two “clean-up” columns to fully isolate U, Th, Pa, Ra, Sr, Nd, and Hf while maintaining high yields. Elution schemes measured for USGS rock standards and a Chinese loess are presented to provide a comparison for variable matrix compositions. Mass spectrometer techniques were modified to measure small aliquots of the standards, equivalent to the amounts found in ice core samples, 10 ng and less. A MC-ICPMS was employed for the measurement of U, Th, Pa, Ra, and Hf; results of the experiments show that with ion yields up to 1%, rock standards have errors for 234U/238U of 1%, 230Th/232Th of 1.5%, [228Ra] of 9%, and 176Hf/177Hf of 100 ppm. MC-TIMS measurements of Sr and Nd show similar errors for small sample sizes: 87Sr/86Sr of 50 ppm and 143Nd/144Nd of 80 ppm. This new analytical method increases the number of possible tracers measured from a single sample, reducing separation times and sample consumption, as well as providing the addition of a radiometric clock, U-series, to the traditional suite of isotopic tracers, Sr, Nd, and Hf.  相似文献   

5.
Fortyfive new K-Ar ages and Sr isotope data on amphiboles, biotites, clinopyroxenes and whole rock samples from subvolcanic dykes south of the Tauern Window establish, that alkalibasaltic dykes were intruded 30 m.y. ago and shoshonitic volcanism occured between 30 and 24 m.y. ago. Two calc-alkaline rocks of high-potassium composition yielded ages of 40 and 26 m.y. resp., a spread which may or may not be real. Calc-alkaline dykes with medium and low potassium contain excess argon and are hence undatable. Alkalibasaltic dykes have 87Sr/86Sr ratios of 0.7056–0.7070, shoshonitic rocks 0.7075–0.7133, potassium rich calc-alkaline dykes 0.7077–0.7100. 87Sr/86Sr of all other calc-alkaline rocks scatter between 0.7074 and 0.7150. Sr data indicate that dykes studied do not represent closed Sr systems, but that Sr characteristics result from selective strontium assimilation en route to surface. Primary Sr isotopic ratios of alkalibasaltic dykes point to an origin of these rocks in enriched sub-continental upper mantle. The source region of shoshonitic and high-potassium calcalkaline rocks could have 87Sr/86Sr around 0.707, which is assigned to the input of a component rich in alkalies, LREE and LIL elements. Genetic relationships with other Tertiary magmatites of similar geotectonic position are explained in terms of plate tectonic models of the Eastern Alps.  相似文献   

6.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

7.
Ge/Si and 87Sr/86Sr data from primary and secondary minerals, soil waters, and stream waters in a tropical granitoid catchment quantitatively reflect mineral alteration reactions that occur at different levels within the bedrock–saprolite–soil zone. Near the bedrock–saprolite interface, plagioclase to kaolinite reaction yields low Ge/Si and 87Sr/86Sr. Higher in the regolith column, biotite weathering and kaolinite dissolution drive Ge/Si and 87Sr/86Sr to high values. Data from streams at base flow sample the bedrock–saprolite interface zone, while at high discharge solutes are derived from upper saprolite–soil zone. Coupled Ge/Si and 87Sr/86Sr can be effective tools for quantifying the importance of specific weathering reactions, and for geochemical hydrograph separation.  相似文献   

8.
Groundwaters and surface water in the Shihongtan sandstone-hosted U ore district, Xinjiang, NW China, were sampled and analyzed for their major-, and trace element concentrations and oxygen, hydrogen, boron and strontium isotope compositions in order to assess the possible origins of the waters and water–rock interactions that occurred in the deep aquifer system. The waters in the study district have been grouped into three hydrochemical facies: Facies 1, potable spring-water, is a pH neutral (7.0), Na–Ca–HCO3 type water with low total dissolved solids (TDS; 0.2 g/l, fresh) and has δ18O of − 8.3‰, δD of − 48.2‰,δ11B of 1.5‰, and 87Sr/86Sr of 0.70627. Facies 2 groundwaters are mildly acidic to mildly alkaline (pH of 6.5–8.0, mean 7.3), Na–Ca–Mg–Cl–SO4 type waters with moderate TDS (8.2 g/l–17.2 g/l, mean 9.3 g/l, brackish) and haveδ18O values in the − 5.8‰ to − 9.3‰ range (mean − 8.1‰), δD values in the − 20.8‰ to − 85.5‰ range (mean − 47.0‰),δ11B values in the + 9.5‰ to + 39.1‰ range (mean + 17.1‰), and 87Sr/86Sr values in the 0.70595 to 0.70975 range (mean 0.70826). Facies 3, Aiting Lake water, is a mildly alkaline (pH = 7.4), Na–Ca–Mg–Cl–SO4 type water with the highest TDS (249.1 g/l, brine) and has δ18O of − 2.8‰, δD of − 45.8‰,δ11B of 21.2‰, and 87Sr/86Sr of 0.70840. The waters from the study district show a systematic increase in major, trace element and TDS concentrations and δ11B values along the pathway of groundwater migration which can only be interpreted in terms of water–rock interaction at depth and strong surface evaporation. The hydrochemical and isotopic data presented here confirm that the groundwaters in the Shihongtan ore district are the combined result of migration, water–rock interaction and mixing of meteoric water with connate waters contained in sediments.  相似文献   

9.
Nd and Sr isotope data were obtained for three plutonic suites (595–505 Ma) and distinct young granitoid intrusions (503 Ma), from the southern part of the Neoproterozoic Araçuaí Orogen. The Sr and Nd isotopes (87Sr/86Sr, eNd) and TDM values from the plutons and distinct basement rocks are used to constrain the magma genesis of the granitoid plutons. These isotopic parameters, with eNd values ranging from −4 to −24 and TDM ages from 1.3 to 2.8 Ga, for the granitoid suites, and −5 to −40 and 3.5 to 1.5 Ga, for the distinct Archean and Proterozoic basement complexes, suggest that the Jequitinhonha Complex metasediments are the main crustal source for most of these plutons, except for the youngest granitoid intrusions, which may have a protolith similar to the Mantiqueira and Guanhães complexes. Furthermore, the isotope data indicate a minor, but important, participation of Neoproterozoic oceanic lithosphere in the granite genesis, which corroborates with a confined orogenic model and a narrow oceanic consumption (B-subduction) for the Araçuaí Orogen.  相似文献   

10.
《Applied Geochemistry》2006,21(10):1626-1634
Mineral waters in Britain show a wide range of 87Sr/86Sr isotope compositions ranging between 87Sr/86Sr = 0.7059 from Carboniferous volcanic rock sources in Dunbartonshire, Scotland to 87Sr/86Sr = 0.7207 in the Dalradian aquifer of Aberdeenshire, Scotland. The 87Sr/86Sr composition of the waters shows a general correlation with the aquifer rocks, resulting in the waters from older rocks having a more radiogenic signature than those from younger rocks. This wide range of values means that the Sr isotope composition of mineral water has applications in a number of types of studies. In the modern commercial context, it provides a way of fingerprinting the various mineral waters and hence provides a method for recognising and reducing fraud. From an environmental perspective, it provides the first spatial distribution of bio-available 87Sr/86Sr in Britain that can be used in modern, historical and archaeological studies.  相似文献   

11.
Alkalic and tholeiitic basalts were erupted in the central Arizona Transition Zone during Miocene-Pliocene time before and after regional faulting. The alkalic lava types differ from the subalkaline lavas in Sr, Nd and Pb isotopic ratios and trace element ratios and, despite close temporal and spatial relationships, the two types appear to be from discrete mantle sources. Pre-faulting lava types include: potassic trachybasalts (87Sr/86Sr = 0.7052 to 0.7055, Nd= –9.2 to –10.7); alkali olivine basalts (87Sr/ 86Sr = 0.7049 to 0.7054, Nd= –2 to 0.2); basanite and hawaiites (87Sr/86Sr = 0.7049 to 0.7053, Nd= –3.5 to –7.8); and quartz tholeiites (87Sr/86Sr = 0.7047, Nd= –1.4 to –2.6). Post-faulting lavas have lower 87Sr/86Sr (<0.7045) and Nd from –3.2 to 2.3. Pb isotopic data for both preand post-faulting lavas form coherent clusters by magma type with values higher than those associated with MORB but within the range of values found for crustal rocks and sulfide ores in Arizona and New Mexico. Pb isotopic systematics appear to be dominated by crustal contamination. Effects of assimilation and fractional crystallization are inadequate to produce the Sr isotopic variations unless very large amounts of assimilation occurred relative to fractionation. It is impossible to produce the Nd isotopic variations unless ancient very unradiogenic material exists beneath the region. Moreover the assumption that the alkalic lavas are cogenetic requires high degrees of fractionation inconsistent with major- and trace-element data. Metasomatism of the subcontinental lithosphere above a subduction zone by a slab-derived fluid enriched in Sr, Ba, P and K could have produced the isotopic and elemental patterns. The degree of metasomatism apparently decreased upward, with the alkalic lavas sampling more modified regions of the mantle than the tholeiitic lavas. Such metasomatism may have been a regional event associated with crustal formation at about 1.6 Ga. Disruption and weakening of the subcontinental lithosphere in the Transition Zone of the Colorado Plateau by volcanism probably made deformation possible.  相似文献   

12.
Shoshonitic series volcanic rocks (SSVR) and adakites are widely distributed in the Permian terrestrial volcanic strata of the Yishijilike–Awulale range of west Tianshan, north Xinjiang, China. Isotopic dating yields Permian ages of 280–250 Ma. The SSVR include absarokite, shoshonite and banakite which are characterized by enrichment of alkalis, particularly in K, combined with lower Ti, higher Al (A/NKC = 0.70–0.99, metaluminous) and Fe2O3 > FeO. The SSVR that are rich in LILE with high REE contents and Eu/Eu range from 0.59 to 1.30. They are rich in LREE ((La/Yb)N 2.15–11.97) and depleted in Nb, Ta and Ti (TNT negative anomalies). The adakites are metaluminous to weakly peraluminous (A/NKC = 0.85-1.16) and belong to the high-SiO2 type of adakite (HSA, SiO2 = 62%–71%). They are characterized by lower ΣREE with strong LREE enrichment ((La/Yb)N 13–35). Pronounced positive Eu anomalies (Eu/Eu = 1.02–1.27), very low Yb contents and distinct TNT-negative anomalies are evident. The SSVR have εNd(t) (+ 1.28 to + 4.92) and (87Sr/86Sr)i (0.7041–0.7057) that are similar to adakites in the regions which are characterized by εNd(t) = 0.95 to + 5.69 and (87Sr/86Sr)i = 0.7050–0.7053. Trace element, REE and Sr/Nd isotopic compositions suggest that both SSVR and adakites possess similar source regions associated with underplated mantle-derived basaltic materials. Lithosphere extension driven by magmatic underplating was responsible for the generation of both the SSVR and adakites. This magmatism serves as a petrological indicator of underplating during the Permian. Obviously thickened crust (62–52 km), a complex Moho discontinuity, high heat flow (~ 100 mw·m− 2), widespread contemporary alkali-rich granites, basic dike swarms (K–Ar ages of 187–271 Ma, Ar–Ar ages of 174–270 Ma and Rb–Sr ages of 255 ± 28 Ma; εNd(t) + 1.84 to + 10.1; (87Sr/86Sr)i 0.7035 and 0.7065), and basic granulites (SHRIMP U–Pb age of 268–279 ± 5.6 Ma) provide additional evidences for the underplating event in this area during Permian.  相似文献   

13.
The Mesozoic diabase dikes of Liberia are tholeiites whose 87Sr/86Sr and 87Rb/86Sr ratios scatter widely on the Rb-Sr isochron diagram. The problem is attributed to differences in the initial 87Sr/86Sr ratios of these rocks which range from 0.70311 to 0.70792, assuming a uniform age of 186 Ma for the dikes and using (87Rb)=1.42 × 10–11y–1. The range of values is similar to that observed in the Mesozoic basalt flows and dikes of other Gondwana continents.New whole-rock K-Ar dates confirm previous conclusions that the diabase dikes in the Liberian and Pan-African age provinces of Liberia absorbed extraneous 40Ar after intrusion. Only the dikes in the Paynesville Sandstone have K-Ar dates that range from 117 Ma to 201 Ma and may not contain extraneous 40Ar. However, dikes from all three age provinces of Liberia have elevated initial 87Sr/86Sr ratios. These results indicate that contamination with radiogenic 87Sr occurred primarily before intrusion of the magma whereas the addition of extraneous 40Ar occurred after emplacement and reflects the age and mineral composition of the country rock.The 18O values of the Liberian diabase range from +5.6/% to +9.10/% and correlate positively with initial 87Sr/86Sr ratios. The data can be modeled by fractional crystallization and simultaneous assimilation of crustal rocks by the magma. However, samples containing amphibole and biotite replacing pyroxene deviate from the Sr-O isotope trajectories of the model and appear to have been depleted in 18O and enriched in 87Sr by interactions with groundwater at high temperature.Laboratory for Isotope Geology and Geochemistry Contribution No. 76  相似文献   

14.
The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198±3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330±0.00016 (±2 sigma; =1.42× 10–11y–1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give 18O values which range from+6.2 to+9.3 Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series.  相似文献   

15.
We used analyses of the strontium isotope (87Sr/86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/86Sr ratios. Some individuals in each taxon displayed low 87Sr/86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.  相似文献   

16.
The Banda arc of eastern Indonesia manifests the collision of a continent and an intra-oceanic island arc. The presently active arc is located on what appears to be oceanic crust whereas the associated subduction trench is underlain by continental crust.Recent lavas from the Banda arc are predominantly andesitic and range from tholeiitic in the north through calc-alkaline to high-K calc-alkaline varieties in the southern islands. Defining this regular geochemical variation are significant increases in the abundances of K (2,600–21,000 ppm), Rb (10–90 ppm), Cs (0.5–7.0 ppm), and Ba (100–1,000 ppm) from tholeiitic to high-K calc-alkaline lavas. 87Sr/86Sr ratios in the tholeiites are relatively low, from 0.7045 to 0.7047. In the calc-alkaline lavas, 87Sr/86Sr ratios range from 0.7052 to 0.7095, and in the high-K calc-alkaline lavas from 0.7065 to 0.7080. There is no correlation between 87Sr/86Sr and major and trace element abundances, even among lavas from the same volcano. Late Cenozoic cordierite — bearing lavas from Ambon, north of the presently active arc, are highly enriched in K, Rb and Cs, which together with 87Sr/86Sr ratios of approximately 0.715 is consistent with their derivation from partial melting of pelitic material in the locally — thick crust.The high 87Sr/86Sr ratios in the Recent calc-alkaline lavas are interpreted to result from mixing of a sialic component with a mantle derived component. The most likely cause is subduction and subsequent melting of either sea-floor sediments or continental crust. However, it is probably unrealistic to model this type of deep contamination by simple two-component mixing. Such contamination implies that the volcanic rocks from the Banda arc are at least partly a manifestation of melting at or near the Benioff seismic zone. Temperatures of at least 750–800 ° C at the top of the subducted lithospheric slab at depths of approximately 150 km are also implied; temperatures very close to the solidus of hydrous basalt (eclogite) at such pressure. It is concluded that partial melting of the crustal component of the subducted lithospheric slab may play a significant role in island arc petrogenesis.This paper is the result of a cooperative project with the Geological Survey of Indonesia, Ministry of Mines and Energy  相似文献   

17.
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas.  相似文献   

18.
The determination of accurate Sr isotope ratios in calcium phosphate matrices by laser ablation multi-collector ICP-MS is demonstrated as possible even with low Sr concentration archaeological material. Multiple on-line interference correction routines for doubly-charged REE, Ca dimers and Rb with additional calibration against TIMS-characterised materials are required to achieve this. The calibration strategy proposed uses both inorganic and biogenic apatite matrices to monitor and correct for a 40Ca-31P-16O polyatomic present at levels of 0.3-1% of the non-oxide peak, which interferes on 87Sr causing inaccuracies of 0.03-0.4% in the 87Sr/86Sr isotope ratio. The possibility also exists for synthetic materials to be used in this calibration. After correction for interferences total combined uncertainties of 0.04-0.15% (2SD) are achieved for analyses of 13-24 μg of archaeological tooth enamel with Sr concentrations of ca. 100-500 ppm using MC-ICP-MS. In particular, for samples containing >300 ppm Sr, total uncertainties of ∼0.05% are possible utilising 7-12 ng Sr. Data quality is monitored by determination of 84Sr/86Sr ratios.When applied to an archaeological cattle tooth this approach shows Sr-isotope variations along the length of the tooth in agreement with independent TIMS data. The 40Ca-31P-16O polyatomic interference is the root cause of the bias at mass 87 during laser ablation ICP-MS analysis of inorganic and biogenic calcium phosphate (apatite) matrices. This results in inaccurate 87Sr/86Sr ratios even after correction of Ca dimers and doubly charged rare earth elements. This interference is essentially constant at specific ablation conditions and therefore the effect on 87Sr/86Sr data varies in proportion to changes in the Sr concentration of the ablated material. Complete elimination of this interference is unlikely through normal analytical mechanisms and therefore represents a limitation on the achievable accuracy of LA-(MC-)ICP-MS 87Sr/86Sr data without rigorous calibration to known reference materials.  相似文献   

19.
The Rb-Sr and U-Pb systematics were studied for carbonate rocks of the Lower Riphean Bakal Formation of the southern Urals and related siderite ores of the Bakal iron deposit. The least-altered limestones taken at a significant distance from the Bakal ore field satisfy the strict geochemical criteria of retentivity: Mn/Sr < 0.2, Fe/Sr < 0.5, and 87Sr/86Sr (difference between the measured 87Sr/86Sr values in secondary and primary carbonate phases) < 0.001. The least-altered carbonate phases were extracted by the stepwise dissolution in 0.5 N HBr. The Pb-Pb date of limestones (1430 ± 30 Ma) defines the age of early diagenesis of carbonate sediments of the Bakal Formation. The 87Sr/86Sr ratio in the sedimentary environment of the Bakal carbonates (0.70457–0.70481) yields isotopic signature for the Early Riphean seawater. The Pb-Pb age of metasomatic siderites (1010 ± 100 Ma), which formed at the end of the main ore formation stage and did not undergo late epigenesis, corresponds to the final phases of the Grenville tectonogenesis. Siderites of the main ore formation stage are confined to central parts of the thickest carbonate units and have high ratios of 87Sr/86Sr (0.73482–0.73876) and 208Pb/204Pb (41.4–42.9). Iron-bearing solutions formed during the diagenesis of mainly Lower Riphean clayey rocks and migrated along low-density zones and faults. The solutions discharged at the interformational unconformity between the Bakal and Zigalga formations. At the contact with shales, carbonate rocks and siderites experienced the later epigenetic dolomitization (partial desideritization) caused by the circulation of solutions enriched in radiogenic 87Sr and low-radiogenic 206Pb. This dolomitization occurred simultaneously with the Cadomian tectonothermal activation of the region.__________Translated from Litologiya i Poleznye Iskopaemye, No. 3, 2005, pp. 227–249.Original Russian Text Copyright © 2005 by Kuznetsov, Krupenin, Ovchinnikova, Gorokhov, Maslov, Kaurova, Ellmies.  相似文献   

20.
Geochronological data, major and trace element abundances, Nd and Sr isotope ratios, δ18O whole rock values and Pb isotope ratios from leached feldspars are presented for garnet-bearing granites (locality at Oetmoed and outcrop 10 km north of Omaruru) from the Damara Belt (Namibia). For the granites from outcrop 10 km N′ Omaruru, reversely discordant U–Pb monazite data give 207Pb/235U ages of 511±2 Ma and 517±2 Ma, similar to previously published estimates for the time of regional high grade metamorphism in the Central Zone. Based on textural and compositional variations, garnets from these granites are inferred to be refractory residues from partial melting in the deep crust. Because PT estimates from these xenocrystic garnets are significantly higher (800°C/9–10 kbar) than regional estimates (700°C/5 kbar), the monazite ages are interpreted to date the peak of regional metamorphism in the source of the granites. Sm–Nd garnet–whole rock ages are between 500 and 490 Ma indicating the age of extraction of the granites from their deep crustal sources. For the granites from Oetmoed, both Sm–Nd and Pb–Pb ages obtained on igneous garnets range from 500 to 490 Ma. These ages are interpreted as emplacement ages and are significantly younger than the previously proposed age of 520 Ma for these granites based on Rb/Sr whole rock age determinations. Major and trace element compositions indicate that the granites are moderately to strongly peraluminous S-type granites. High initial 87Sr/86Sr ratios (>0.716), high δ18O values of >13.8‰, negative initial Nd values between −4 and −7 and evolved Pb isotope ratios indicate formation of the granites by anatexis of mid-crustal rocks similar to the exposed metapelites into which they intruded. The large range of Pb isotope ratios and the lack of correlation between Pb isotope ratios and Nd and Sr isotope ratios indicate heterogeneity of the involved crustal rocks. Evidence for the involvement of isotopically highly evolved lower crust is scarce and the influence of a depleted mantle component is unlikely. The crustal heating events that produced these granites might have been caused by crustal thickening and thrusting of crustal sheets enriched in heat-producing elements. Very limited fluxing of volatiles from underthrust low- to medium-grade metasedimentary rocks may have also been a factor in promoting partial melting. Furthermore, delamination of the lithospheric mantle and uprise of hot mantle could have caused localized high-T regions. The presence of coeval A-type granites at Oetmoed that have been derived at least in part from a mantle source supports this model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号