首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IntroductionVelocityanditsattenuationinformationiscloselylinkedwiththeoreticalstudiesonthegroundmovementsduringearthquake.Therecentstudy(Malagnini,1996)showedthatthevelocitystructureofshearwaveinshallowsoilabove30mplaysanimpoftantroletoestimatestfonggroundmotionofsite.However,itishardtopreciselymeasurethesoilstructuresanddynamiccharacteristics.First,theloosesoilabsorbstheseismicwaveswithhighfrequencies;Second,theeffectsoffocusinganddispersioncausedbylocallyinhomogeneoussitecannotbeneglectedin…  相似文献   

2.
A genetic algorithm inversion of receiver functions derived from a dense seismic network around Iwate volcano, northeastern Japan, provides the fine S wave velocity structure of the crust and uppermost mantle. Since receiver functions are insensitive to an absolute velocity, travel times of P and S waves propagating vertically from earthquakes in the subducting slab beneath the volcano are involved in the inversion. The distribution of velocity perturbations in relation to the hypocenters of the low-frequency (LF) earthquakes helps our understanding of deep magmatism beneath Iwate volcano. A high-velocity region (dVS/VS=10%) exists around the volcano at depths of 2–15 km, with the bottom depth decreasing to 11 km beneath the volcano’s summit. Just beneath the thinning high-velocity region, a low-velocity region (dVS/VS=−10%) exists at depths of 11–20 km. Intermediate-depth LF (ILF) events are distributed vertically in the high-velocity region down to the top of the low-velocity region. This distribution suggests that a magma reservoir situated in the low-velocity region supplies magma to a narrow conduit that is detectable by the hypocenters of LF earthquakes. Another broad low-velocity region (dVS/VS=−5 to −10%) occurs at depths of 17–35 km. Additional clusters of deep LF (DLF) events exist at depths of 32–37 km in the broad low-velocity zone. The DLF and ILF events are the manifestations of magma movement near the Moho discontinuity and in the conduit just beneath the volcano, respectively.  相似文献   

3.
Receiver function study in northern Sumatra and the Malaysian peninsula   总被引:1,自引:0,他引:1  
In this receiver function study, we investigate the structure of the crust beneath six seismic broadband stations close to the Sunda Arc formed by subduction of the Indo-Australian under the Sunda plate. We apply three different methods to analyse receiver functions at single stations. A recently developed algorithm determines absolute shear-wave velocities from observed frequency-dependent apparent incidence angles of P waves. Using waveform inversion of receiver functions and a modified Zhu and Kanamori algorithm, properties of discontinuities such as depth, velocity contrast, and sharpness are determined. The combination of the methods leads to robust results. The approach is validated by synthetic tests. Stations located on Malaysia show high-shear-wave velocities (V S) near the surface in the range of 3.4–3.6 km s − 1 attributed to crystalline rocks and 3.6–4.0 km s − 1 in the lower crust. Upper and lower crust are clearly separated, the Moho is found at normal depths of 30–34 km where it forms a sharp discontinuity at station KUM or a gradient at stations IPM and KOM. For stations close to the subduction zone (BSI, GSI and PSI) complexity within the crust is high. Near the surface low V S of 2.6–2.9 km s − 1 indicate sediment layers. High V S of 4.2 km s − 1 are found at depth greater than 6 and 2 km at BSI and PSI, respectively. There, the Moho is located at 37 and 40 km depth. At station GSI, situated closest to the trench, the subducting slab is imaged as a north-east dipping structure separated from the sediment layer by a 10 km wide gradient in V S between 10 and 20 km depth. Within the subducting slab V S ≈ 4.7 km s − 1. At station BSI, the subducting slab is found at depth between 90 and 110 km dipping 20° ± 8° in approximately N 60° E. A velocity increase in similar depth is indicated at station PSI, however no evidence for a dipping layer is found.  相似文献   

4.
Delineation of the top sedimentary structure and its Qs vs. Qp relationship using the travel-time difference of direct S and converted Sp phase is key to understanding the seismic hazard of any sedimentary basin area. We constructed filtered displacement waveforms from local ETNA Episensor acceleration recordings as well as local velocity recordings of aftershocks of the 2001 Bhuj earthquake recorded by the Kachchh seismological network of the National Geophysical Research Institute (NGRI), Hyderabad, India during 2001–2004. Stations are within 15–70km of epicenters, and the resulting displacement waveforms are generally simple, displaying prominent P, Sp, and S wave pulses. Particle motion of P and S waves suggest near-vertical raypaths consistent with preliminary depth estimates. The direct S wave on the horizontal component is characterized by lower frequency content than the converted Sp phase on the vertical component. This difference in frequency content between S and Sp phases can be explained in terms of different attenuation effects for P and S waves in the unconsolidated sediments. The Sp phase is generated by S-to-P phase conversion at the base of Mesozoic sediments of the Kachchh basin. Travel-time inversion (VELEST) of 2565 P and 2380 S arrivals from 658 well located aftershocks recorded at 8–14 three-component local seismic stations led to 1 D velocity models indicated very slow sediments in the upper 0–2 km depth range (Vp: 2.92 km/s and Vs: 0.90 km/s) and an increasing trend of velocities with depth at 2–40 km depth. The estimated sediment thicknesses beneath 12 accelerograph and 6 seismograph sites from the estimated velocity model and the travel-time difference between S and converted Sp phases reaches a maximum of (1.534 ± 0.117) km beneath Bandri (near the location of 2001 Bhuj mainshock) and attains a minimum sediment thickness of (0.858 ± 0.104) km beneath Ramvav and Burudia. The spectral ratios between Sp and S from 159 three-component accelerograms have been used to study seismic wave attenuation in the Kachchh rift basin. The estimated Qs vs. Qp relations for 12 accelerograph sites vary from Qs = 0.184 Qp (at Chobari) to Qs = 0.505 Qp (at Dudhai). For stations Chobari, Chopdwa, Jahawarnagar, Vondh and Tapar, the spectral ratio slopes and hence the calculated Qs vs. Qp relations are effectively the same, and the correlation coefficients are quite high (0.91–0.93). Stations Adhoi, Manfara, New Dudhai, Dudhai and Sikara have similar Qs vs. Qp relationships to each other and also have high correlation coefficients (0.78–0.87). The spectral ratios for stations Anjar and Ramvav are small and poorly constrained, resulting in less reliable Qs vs. Qp relations. This could be due to noisy data, fewer available waveforms, or scattering due to velocity heterogeneities and/or interface irregularities.  相似文献   

5.
Body-wave Attenuation in the Region of Garda, Italy   总被引:1,自引:0,他引:1  
We analyzed the spectral amplitude decay with hypocentral distance of P and S waves generated by 76 small magnitude earthquakes (ML 0.9–3.8) located in the Garda region, Central-Eastern Alps, Italy. These events were recorded by 18 stations with velocity sensors, in a distance range between 8 and 120 km. We calculated nonparametric attenuation functions (NAF) and estimated the quality factor Q of both body waves at 17 different frequencies between 2 and 25 Hz. Assuming a homogeneous model we found that the Q frequency dependence of P and S can be approximated with the functions Q P = 65 f 0.9 and Q S = 160 f 0.6 , respectively. At 2 Hz the Q S /Q P ratio reaches the highest value of 2.8. At higher frequencies Q S /Q P varies between 0.7 and 1.7, suggesting that for this frequency band scattering may be an important attenuation mechanism in the region of Garda. To explore the variation of Q in depth, we estimated Q at short (r ≤ 30 km) and intermediate (35–90 km) distance paths. We found that in the shallow crust P waves attenuate more than S (1.3 < Q S /Q P < 2.5). Moreover, P waves traveling along paths in the lower crust (depths approximately greater than 30 km) attenuate more than S waves. To quantify the observed variability of Q in depth we considered a three-layer model and inverted the NAF to estimate Q in each layer. We found that in the crust Q increases with depth. However, in the upper mantle (~40–50 km depth) Q decreases and in particular the high frequency Q S (f > 9 Hz) has values similar to those estimated for the shallow layer of the crust.  相似文献   

6.
We studied the applicability of two types of existing three-dimensional (3-D) basin velocity structure models of the Osaka basin, western Japan for long-period ground motion simulations. We synthesized long-period (3–20 s) ground motions in the Osaka basin during a M6.5 earthquake that occurred near the hypothetical Tonankai earthquake source area, approximately 200 km from Osaka. The simulations were performed using a 3-D finite-difference method with nonuniform staggered grids using the two basin velocity structure models. To study the ground motion characteristics inside the basin, we evaluated the wave field inside the basin using the transfer functions derived from the synthetics at the basin and a reference rock site outside the basin. The synthetic waveforms at the basin site were obtained by a convolution of the calculated transfer function and the observed waveform at the reference rock site. First, we estimated the appropriate Q values for the sediment layers. Assuming that the Q value depends on the S wave velocity V S and period T, it was set to Q = (1/3V S)(T 0/T) where V S is in m/s and the reference period T 0 is 3.0 s. Second, we compared the synthetics and the observations using waveforms and pseudovelocity response spectra, together with a comparison of the velocity structures of the two basin models. We also introduced a goodness-of-fit factor to the pseudovelocity response spectra as an objective index. The synthetics of both the models reproduced the observations reasonably well at most of the stations in the central part the basin. At some stations, however, especially where the bedrock depth varies sharply, there were noticeable discrepancies in the simulation results of the models, and the synthetics did not accurately reproduce the observation. Our results indicate that the superiority of one model over the other cannot be determined and that an improvement in the basin velocity structure models based on simulation studies is required, especially along the basin edges. We also conclude that our transfer function method can be used to examine the applicability of the basin velocity structure models for long-period ground motion simulations.  相似文献   

7.
The paper presents an analysis of the crust and upper mantle structure in the central Fennoscandian shield based on new P- and S-wave 2D velocity models of the BALTIC wide-angle reflection and refraction profiles. Using reprocessing of the old data, new P- and S-wave velocity models and V P /V S ratio distribution were developed. Moving from SW to NE, the thickness of the crust varies strongly, from ∼36 km to extremely thick, 58–64 km, crossing Wiborg rapakivi massif, Saimaa and Outokumpu areas, and Eastern Finland complex. Based on the lateral variations of V P , V P /V S and thickness of the crust, three main blocks of the crust and upper mantle were distinguished from SW to NE: southwestern, associated with Wiborg rapakivi massif; the central, having the highest thickness of the crust; and the northeastern, not well documented, with Archaean basement.  相似文献   

8.
The crustal structure in Myanmar can provide valuable information for the eastern margin of the ongoing Indo-Eurasian collision system. We successively performed H–k stacking of the receiver function and joint inversion of the receiver function and surface wave dispersion to invert the crustal thickness (H), shear wave velocity (VS), and the VP/VS ratio (k) beneath nine permanent seismic stations in Myanmar. H was found to increase from 26 ?km in the south and east of the study area to 51 ?km in the north and west, and the VP/VS ratio was complex and high. Striking differences in the crust were observed for different tectonic areas. In the Indo-Burma Range, the thick crust (H ?~ ?51 ?km) and lower velocities may be related to the accretionary wedge from the Indian Plate. In the Central Myanmar Basin, the thin crust (H ?= ?26.9–35.5 ?km) and complex VP/VS ratio and VS suggest extensional tectonics. In the Eastern Shan Plateau, the relatively thick crust and normal VP/VS ratio are consistent with its location along the western edge of the rigid Sunda Block.  相似文献   

9.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

10.
We investigate the elastic properties of the crust in the Gargano promontory, located in the northern part of the Apulia region (Southeastern Italy). Starting on April, 2013, a local-scale seismic network, composed of 12 short-period (1 Hz) seismic stations, was deployed on the Gargano promontory. Starting on October, 2013, the network was integrated with the recordings of nine seismic stations managed by the Italian Institute of Geophysics and Volcanology (INGV). The network recorded more than 1200 seismic events in about 15 months of data acquisition, with more than 700 small magnitude events localized in the Gargano promontory and surrounding areas. A Wadati-modified method allowed us to infer VP/VS = 1.73 for the area. A subset of about 400 events having a relatively smaller azimuthal gap (<200°) was selected to calibrate a 1D P-wave velocity model of the area, using the VELEST inversion code. The preferred model was obtained from the average of ten velocity models, each of them representing the inversion result from given initial velocity models, calibrated on previous geological and geophysical studies in the area. The results obtained under the assumption that VP could decrease with depth are unstable, with very different depths of the top of low-velocity layers. Therefore, the velocity model was obtained from the average of the results obtained under the assumption that VP cannot decrease with depth. A strong reduction of both RMS (about 58%) and errors on the location of the events was obtained with respect to the starting model. The final velocity model shows a strong velocity gradient in the upper 5 km of the crust and a small increase (from 6.7 to 7 km) at 30 km of depth. The epicenters of relocated events do not show clear correlations with the surface projection of known seismic faults. A cluster of the epicenters of the relocated events intersects almost perpendicularly the Candelaro fault trace at the surface.  相似文献   

11.
Preliminary reference Earth model   总被引:29,自引:0,他引:29  
A large data set consisting of about 1000 normal mode periods, 500 summary travel time observations, 100 normal mode Q values, mass and moment of inertia have been inverted to obtain the radial distribution of elastic properties, Q values and density in the Earth's interior. The data set was supplemented with a special study of 12 years of ISC phase data which yielded an additional 1.75 × 106 travel time observations for P and S waves. In order to obtain satisfactory agreement with the entire data set we were required to take into account anelastic dispersion. The introduction of transverse isotropy into the outer 220 km of the mantle was required in order to satisfy the shorter period fundamental toroidal and spheroidal modes. This anisotropy also improved the fit of the larger data set. The horizontal and vertical velocities in the upper mantle differ by 2–4%, both for P and S waves. The mantle below 220 km is not required to be anisotropic. Mantle Rayleigh waves are surprisingly sensitive to compressional velocity in the upper mantle. High Sn velocities, low Pn velocities and a pronounced low-velocity zone are features of most global inversion models that are suppressed when anisotropy is allowed for in the inversion.The Preliminary Reference Earth Model, PREM, and auxiliary tables showing fits to the data are presented.  相似文献   

12.
High-frequency (≥2 Hz) Rayleigh wave phase velocities can be inverted to shear (S)-wave velocities for a layered earth model up to 30 m below the ground surface in many settings. Given S-wave velocity (VS), compressional (P)-wave velocity (VP), and Rayleigh wave phase velocities, it is feasible to solve for P-wave quality factor QP and S-wave quality factor QS in a layered earth model by inverting Rayleigh wave attenuation coefficients. Model results demonstrate the plausibility of inverting QS from Rayleigh wave attenuation coefficients. Contributions to the Rayleigh wave attenuation coefficients from QP cannot be ignored when Vs/VP reaches 0.45, which is not uncommon in near-surface settings. It is possible to invert QP from Rayleigh wave attenuation coefficients in some geological setting, a concept that differs from the common perception that Rayleigh wave attenuation coefficients are always far less sensitive to QP than to QS. Sixty-channel surface wave data were acquired in an Arizona desert. For a 10-layer model with a thickness of over 20 m, the data were first inverted to obtain S-wave velocities by the multichannel analysis of surface waves (MASW) method and then quality factors were determined by inverting attenuation coefficients.  相似文献   

13.
The fundamental mode Love and Rayleigh waves generated by earthquakes occurring in Kashmir, Nepal Himalaya, northeast India and Burma and recorded at Hyderabad, New Delhi and Kodaikanal seismic stations are analysed. Love and Rayleigh wave attenuation coefficients are obtained at time periods of 15–100 seconds, using the spectral amplitude of these waves for 23 different paths along northern (across Burma to New Delhi) and central (across Kashmir, Nepal Himalaya and northeast India to Hyderabad and Kodaikanal) India. Love wave attenuation coefficients are found to vary from 0.0003 to 0.0022 km–1 for northern India and 0.00003 km–1 to 0.00016 km–1 for central India. Similarly, Rayleigh wave attenuation coefficients vary from 0.0002 km–1 to 0.0016 km–1 for northern India and 0.00001 km–1 to 0.0009 km–1 for central India. Backus and Gilbert inversion theory is applied to these surface wave attenuation data to obtainQ –1 models for the crust and uppermost mantle beneath northern and central India. Inversion of Love and Rayleigh wave attenuation data shows a highly attenuating zone centred at a depth of 20–80 km with lowQ for northern India. Similarly, inversion of Love and Rayleigh wave attenuation data shows a high attenuation zone below a depth of 100 km. The inferred lowQ value at mid-crustal depth (high attenuating zone) in the model for northern India can be by underthrusting of the Indian plate beneath the Eurasian plate which has caused a low velocity zone at this shallow depth. The gradual increase ofQ –1 from shallow to deeper depth shows that the lithosphere-asthenosphere boundary is not sharply defined beneath central India, but rather it represents a gradual transformation, which starts beneath the uppermost mantle. The lithospheric thickness is 100 km beneath central India and below that the asthenosphere shows higher attenuation, a factor of about two greater than that in the lithosphere. The very lowQ can be explained by changes in the chemical constitution taking place in the uppermost mantle.  相似文献   

14.
A practical method is presented for determining three‐dimensional S‐wave velocity (VS) profile from microtremor measurements. Frequency–wave number (fk) spectral analyses of microtremor array records are combined, for this purpose, with microtremor horizontal‐to‐vertical (H/V) spectral ratio techniques. To demonstrate the effectiveness of the proposed method, microtremor measurements using arrays of sensors were conducted at six sites in the city of Kushiro, Japan. The spectral analyses of the array records yield dispersion characteristics of Rayleigh waves and H/V spectra of surface waves, and joint inversion of these data results in VS profiles down to bedrock at the sites. Conventional microtremor measurements were performed at 230 stations within Kushiro city, resulting in the H/V spectra within the city. Three‐dimensional VS structure is then estimated from inversion of the H/V spectra with the VS values determined from the microtremor array data. This reveals three‐dimensional VS profile of Kushiro city, together with an unknown hidden valley that crosses the central part of the city. The estimated VS profile is consistent with available velocity logs and results of subsequent borings, indicating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1D anisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets - travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm - isometric algorithm - was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P- and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought. Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the VP/VS ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters.  相似文献   

16.
基于一维单侧有限移动震源模式,根据地震波传播过程中的多普勒效应,分别利用P波和S波拐角频率的方位变化,反演2012年7月20日江苏高邮、宝应交界MS4.9地震的发震断层面参数。P波和S波拐角频率的反演结果一致显示:本次地震的断层面破裂方向为232°左右,破裂面呈NE-SW向;地震马赫数v/c为0.2左右,平均破裂速度小于S波速度,破裂长度较短,为0.2~0.3km左右。破裂面方位与震源机制解、宏观烈度调查和余震精定位的研究结果具有一致性,结合震区周边的地质构造背景,分析认为滁河断裂很可能是高邮、宝应交界MS4.9地震的发震构造。  相似文献   

17.
    
Based on the long period surface wave data recorded by the China Digital Seismograph Network (CDSN), theQ R of fundamental mode Rayleigh wave with periods from 10 s to 146 s is determined for the eastern Sino-Korean paraplatform in this paper. TheQ β models of the crust and upper mantle are respectively obtained for the 4 paths, with the aid of stochastic inverse method. It shows that in the eastern Sino-Korean paraplatform, the average crustalQ β is about 200, and that there exists a weak attenuation layer in the middle crust (about 10–20 km deep) which is possibly related to earthquake-prone layer. A strong attenuation layer (lowQ) of 70 km thick extensively exists in the uppermost mantle, with the buried depth about 80 km. The averageQ R of fundamental mode Rayleigh wave is between the value of stable tectonic region and that of active tectonic region, and much close to the latter. Contribution No. 96A0001, Institute of Geophysics, SSB, China. Funded by the Chinese Joint Seismological Science Foundation.  相似文献   

18.
Crustal seismic tomography in the Calabrian Arc region, south Italy   总被引:1,自引:0,他引:1  
27,646 P- and 15,025 S-wave readings obtained from 2238 earthquakes and 84 artificial sources were used to perform tomographic inversion of P velocity and VP/VS ratio in the crust of Calabrian Arc by Thurber’s inversion algorithm. For this investigation a seismic database with more than twelve-thousand events was built, including all local earthquake data recorded between 1978 and 2001 at all stations of the national and local networks in south Italy. Spread Function computations and checkerboard and restore tests proved higher accuracy of velocity estimates in the upper 40 km beneath Calabrian Arc compared to previous investigations in the same area. The obtained three-dimensional velocity model furnished remarkable improvement of hypocenter locations of the global earthquake dataset (RMS reduction of 38% respect to 1D locations) and greater accuracy in the definition of microplates and tectonic units in the study region. Velocity domains evidenced by our tomography correspond to tectonic units locally identified with geological methods by previous investigators and allow us to better detail their shape and geometry at depth. In particular, at a depth of about 20 km beneath Calabria we detected the deep contact between the overthrusting Tyrrhenian crust and the subducting Ionian slab, improving the accuracy of the current subduction model of the Calabrian Arc region.  相似文献   

19.
On the basis of S wave information from Tai’an-Xinzhou DSS profile and with reference to the results from P-wave interpretation, the 2-D structures, including S-wave velocity V s, ratio γ between V p and V s; and Poisson’ s ratio σ, are calculated; the structural configuration of the profile is presented and the relevant inferences are drawn from the above results. Upwarping mantle districts (V s≈4.30 km/s) and sloping mantle districts (V s≈4.50 km/s) of the profile with velocity difference about −4% at the top of upper mantle are divided according to the differences of V s, γ and σ in different media and structures, also with reference to the information of their neighbouring regions; the existence of Niujiaqiao-Dongwang high-angle ultra-crustal fault zone is reaffirmed; the properties of low and high velocity blocks (zones) including the crust-mantle transitionalzone and the boudary indicators of North China rift valley are discussed. A comprehensive study is conducted on the relation of the interpretation results with earthquakes. It is concluded that the mantle upwarps, thermal material upwells through the high-angle fault, the primary hypocenter was located at the crust-mantle juncture 30.0∼33.0 km deep, and additional stress excited the M S=6.8 and M S=7.2 earthquakes at specific locations around 9.0 km below Niujiaqiao-Dongwang, the earthquakes took place around the high-angle ultra-crustal fault and centered in the brittle media and rock strata with low γ and low σ values. This subject is part of the 85-907-02 key project during the “8th Five-Year Plan” from the State Science and Technology Commission.  相似文献   

20.
On the basis of data of long period Rayleigh surface wave, we select 43 two-station paths which cover the eastern China thoroughly. By using the improved method of multi-filtration, we obtain the group velocity and amplitude spectrum, and then get attenuation factor for each paths. We employ Talentola inversion method to get local attenuation factor, and further invert the three-dimension Q β image under the crust and upper mantle in the eastern Chinese continent. The Q β image shows the following basic characters. There is correlation between the seismic activity and Q β structure under the crust and upper mantle in North China region. The Yangtze block begins to collide with and subduct to the North China block from the southern border of the Qinling in the southern Shaanxi. In the large part of Yangtze quasi-platform appear an obvious high Q β area at 88 km deep. In the east of Sichuan depression platform, the juncture of Sichun and Guizhou, and the Jiangnan block near the juncture of Guizhou and Hunan, the lateral variation of Q β in the crust is little, and there is a high-Q β layer no thinner than 40 km in the top mantle. In the Dian-Qian fold and fracture region between Yunnan and Guizhou, the vertical variation of Q β at the region of the crust and upper mantle is little, there is a low-Q β layer in the top mantle, about 40 km thick, low-Q β layer of the upper mantle begins to appear at about 95 km deep. In the east of Yangtze quasi-platform and the central and eastern part of the South China fold system, the Moho is smooth, the lateral variation of Q β in the crust is also little, low-Q β layer of the upper mantle begins to appear at about 85 km deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号