首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper we study the asymptotic solutions of the (N+1)-body ring planar problem, N of which are finite and ν=N−1 are moving in circular orbits around their center of masses, while the Nth+1 body is infinitesimal. ν of the primaries have equal masses m and the Nth most-massive primary, with m 0=β m, is located at the origin of the system. We found the invariant unstable and stable manifolds around hyperbolic Lyapunov periodic orbits, which emanate from the collinear equilibrium points L 1 and L 2. We construct numerically, from the intersection points of the appropriate Poincaré cuts, homoclinic symmetric asymptotic orbits around these Lyapunov periodic orbits. There are families of symmetric simple-periodic orbits which contain as terminal points asymptotic orbits which intersect the x-axis perpendicularly and tend asymptotically to equilibrium points of the problem spiraling into (and out of) these points. All these families, for a fixed value of the mass parameter β=2, are found and presented. The eighteen (more geometrically simple) families and the corresponding eighteen terminating homo- and heteroclinic symmetric asymptotic orbits are illustrated. The stability of these families is computed and also presented.  相似文献   

2.
We study numerically the asymptotic homoclinic and heteroclinic orbits around the hyperbolic Lyapunov periodic orbits which emanate from Euler's critical points L 1 and L 2, in the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these Lyapunov orbits, are also presented. Poincaré surface of sections of these manifolds on appropriate planes and several homoclinic and heteroclinic orbits for the gravitational case as well as for varying radiation factor q 1, are displayed. Homoclinic-homoclinic and homoclinic-heteroclinic-homoclinic chains which link the interior with the exterior Hill's regions, are illustrated. We adopt the Sun-Jupiter system and assume that only the larger primary radiates. It is found that for small deviations of its value from the gravitational case (q 1 = 1), the radiation pressure exerts a significant impact on the Hill's regions and on these asymptotic orbits.  相似文献   

3.
We study numerically the asymptotic homoclinic and heteroclinic orbits associated with the triangular equilibrium points L 4 and L 5, in the gravitational and the photogravitational restricted plane circular three-body problem. The invariant stable-unstable manifolds associated to these critical points, are also presented. Hundreds of asymptotic orbits for equal mass of the primaries and for various values of the radiation pressure are computed and the most interesting of them are illustrated. In the Copenhagen case, which the problem is symmetric with respect to the x- and y-axis, we found and present non-symmetric heteroclinic asymptotic orbits. So pairs of heteroclinic connections (from L 4 to L 5 and vice versa) form non-symmetric heteroclinic cycles. The termination orbits (a combination of two asymptotic orbits) of all the simple families of symmetric periodic orbits, in the Copenhagen case, are illustrated.  相似文献   

4.
Many physical systems can be modeled as scattering problems. For example, the motions of stars escaping from a galaxy can be described using a potential with two or more escape routes. Each escape route is crossed by an unstable Lyapunov orbit. The region between the two Lyapunov orbits is where the particle interacts with the system. We study a simple dynamical system with escapes using a suitably selected surface of section. The surface of section is partitioned in different escape regions which are defined by the intersections of the asymptotic manifolds of the Lyapunov orbits with the surface of section. The asymptotic curves of the other unstable periodic orbits form spirals around various escape regions. These manifolds, together with the manifolds of the Lyapunov orbits, govern the transport between different parts of the phase space. We study in detail the form of the asymptotic manifolds of a central unstable periodic orbit, the form of the escape regions and the infinite spirals of the asymptotic manifolds around the escape regions. We compute the escape rate for different values of the energy. In particular, we give the percentage of orbits that escape after a finite number of iterations. In a system with escapes one cannot define a Poincaré recurrence time, because the available phase space is infinite. However, for certain domains inside the lobes of the asymptotic manifolds there is a finite minimum recurrence time. We find the minimum recurrence time as a function of the energy.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

5.
We demonstrate the remarkable effectiveness of boundary value formulations coupled to numerical continuation for the computation of stable and unstable manifolds in systems of ordinary differential equations. Specifically, we consider the circular restricted three-body problem (CR3BP), which models the motion of a satellite in an Earth–Moon-like system. The CR3BP has many well-known families of periodic orbits, such as the planar Lyapunov orbits and the non-planar vertical and halo orbits. We compute the unstable manifolds of selected vertical and halo orbits, which in several cases leads to the detection of heteroclinic connections from such a periodic orbit to invariant tori. Subsequent continuation of these connecting orbits with a suitable end point condition and allowing the energy level to vary leads to the further detection of apparent homoclinic connections from the base periodic orbit to itself, or the detection of heteroclinic connections from the base periodic orbit to other periodic orbits. Some of these connecting orbits are of potential interest in space mission design.  相似文献   

6.
Several families of periodic orbits close to heteroclinic points were computed, and their evolution, as a function of the energy, was followed. All appeared spontaneously at the occasion of the formation of the heteroclinic points, and had no genealogical links with other families. This behavior, which confirms a prediction by Dr. Contopoulos, is in contrast to the behavior of periodic orbits close to homoclinic points, some of which have genealogical links with periodic orbits existing in the ‘quasi-integrable’ phase of the system. The orbits found here appeared in regions where stochasticity was well established; so their appearance does not seem to be connected with the onset of stochasticity.  相似文献   

7.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

8.
We consider the particular case of the planar three body problem obtained when the masses form an isosceles triangle for all time. Various authors [1, 2, 12, 8, 9, 13, 10] have contributed in the knowledge of the triple collision and of several families of periodic orbits in this problem. We study the flow on a fixed level of negative energy. First we obtain a topological representation of the energy manifold including the triple collision and infinity as boundaries of that manifold. The existence of orbits connecting the triple collision and infinity gives some homoclinic and heteroclinic orbits. Using these orbits and the homothetic solutions of the problem we can characterize orbits which pass near triple collision and near infinity by pairs of sequences. One of the sequences describes the regions visited by the orbit, the other refers to the behaviour of the orbit between two consecutive passages by a suitable surface of section. This symbolic dynamics which has a topological character is given in an abstract form and after it is applied to the isosceles problem. We try to keep globality as far as possible. This strongly relies on the fact that the intersection of some invariant manifolds with an equatorial plane (v=0) have nice spiraling properties. This can be proved by analytical means in some local cases. Numerical simulations given in Appendix A make clear that these properties hold globally.  相似文献   

9.
Szebehely's equation for the inverse problem of Dynamics is used to obtain the equation of the characteristic curve of a familyf(x,y)=c of planar periodic orbits (crossing perpendicularly thex-axis) created by a certain potentialV(x,y). Analytic expressions for the characteristic curves are found both in sideral and synodic systems. Examples are offered for both cases. It is shown also that from a given characteristic curve, associated with a given potential, one can obtain an analytic expression for the slope of the orbit at any point.  相似文献   

10.
Asymptotic motion near the collinear equilibrium points of the photogravitational restricted three-body problem is considered. In particular, non-symmetric homoclinic solutions are numerically explored. These orbits are connected with periodic ones. We have computed numerically the families containing these orbits and have found that they terminate at both ends by asymptotically approaching simple periodic solutions belonging to the Lyapunov family emanating from L3.  相似文献   

11.
We studied systematically cases of the families of non-symmetric periodic orbits in the planar restricted three-body problem. We took interesting information about the evolution, stability and termination of bifurcating families of various multiplicities. We found that the main families of simple non-symmetric periodic orbits present a similar dynamical structure and bifurcation pattern. As the Jacobi constant changes each branch of the characteristic of a main family spirals around a focal point-terminating point in x- at which the Jacobi constant is C  = 3 and their periodic orbits terminate at the corotation (at the Lagrangian point L4 or L5). As the family approaches asymptotically its termination point infinite changes of stability to instability and vice versa occur along its characteristic. Thus, infinite bifurcation points appear and each one of them produces infinite inverse Feigenbaum sequences. That is, every bifurcating family of a Feigenbaum sequence produces the same phenomenon and so on. Therefore, infinite spiral characteristics appear and each one of them generates infinite new inner spirals and so on. Each member of these infinite sets of the spirals reproduces a basic bifurcation pattern. Therefore, we have in general large unstable regions that generate large chaotic regions near the corotation points L4, L5, which are unstable. As C varies along the spiral characteristic of every bifurcating family, which approaches its focal point, infinite loops, one inside the other, surrounding the unstable triangular points L4 or L5 are formed on their orbits. So, each terminating point corresponds to an asymptotic non-symmetric periodic orbit that spirals into the corotation points L4, L5 with infinite period. This is a new mechanism that produces very large degree of stochasticity. These conclusions help us to comprehend better the motions around the points L4 and L5 of Lagrange.  相似文献   

12.
We present families of periodic orbits of the restricted three-body problem terminating with homoclinic orbits asymptotic to equilibrium points or to periodic orbits, as opposed to heteroclinic orbits presented in part I. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
In this paper we consider a restricted equilateral four-body problem where a particle of negligible mass is moving under the Newtonian gravitational attraction of three masses (called primaries) which move on circular orbits around their center of masses such that their configuration is always an equilateral triangle (Lagrangian configuration). We consider the case of two bodies of equal masses, which in adimensional units is the parameter of the problem. We study numerically the existence of families of unstable periodic orbits, whose invariant stable and unstable manifolds are responsible for the existence of homoclinic and heteroclinic connections, as well as of transit orbits traveling from and to different regions. We explore, for three different values of the mass parameter, what kind of transits and energy levels exist for which there are orbits with prescribed itineraries visiting the neighborhood of different primaries.  相似文献   

14.
The model of the circular restricted problem of three bodies is used to investigate the sensitivity of the third body motion when it is given a positional or velocity deviation away from the L4 triangular libration point. The x-axis is used as a criteria for defining the stability of the third body motion. Poincaré's surfaces of section are used to compare the regions of periodic, quasi-periodic and stochastic motion to the trajectories found using the definition of stability (not crossing the x-axis) defined in this study. Values of the primary/secondary mass ratios () ranging from 0 to the linear critical value 0.038521... are investigated. Using this new form of stability measure, it is determined that certain values of are more stable than others. The results of this study are compared, and found, to give agreeable results to other studies which investigate commensurabilities of the long and short period terms of periodic orbits.  相似文献   

15.
We study the existence, linear stability and bifurcations of what we call the Sitnikov family of straight line periodic orbits in the case of the restricted four-body problem, where the three equal mass primary bodies are rotating on a circle and the fourth (small body) is moving in the direction vertical to the center mass of the other three. In contrast to the restricted three-body Sitnikov problem, where the Sitnikov family has infinitely many stability intervals (hence infinitely many Sitnikov critical orbits), as the “family parameter” ż0 varies within a finite interval (while z 0 tends to infinity), in the four-body problem this family has only one stability interval and only twelve 3-dimensional (3D) families of symmetric periodic orbits exist which bifurcate from twelve corresponding critical Sitnikov periodic orbits. We also calculate the evolution of the characteristic curves of these 3D branch-families and determine their stability. More importantly, we study the phase space dynamics in the vicinity of these orbits in two ways: First, we use the SALI index to investigate the extent of bounded motion of the small particle off the z-axis along its interval of stable Sitnikov orbits, and secondly, through suitably chosen Poincaré maps, we chart the motion near one of the 3D families of plane-symmetric periodic orbits. Our study reveals in both cases a fascinating structure of ordered motion surrounded by “sticky” and chaotic orbits as well as orbits which rapidly escape to infinity.  相似文献   

16.
We describe and comment the results of a numerical exploration on the evolution of the families of periodic orbits associated with homoclinic orbits emanating from the equilateral equilibria of the restricted three body problem for values of the mass ratio larger than μ 1. This exploration is, in some sense, a continuation of the work reported in Henrard [Celes. Mech. Dyn. Astr. 2002, 83, 291]. Indeed it shows how, for values of μ. larger than μ 1, the Trojan web described there is transformed into families of periodic orbits associated with homoclinic orbits. Also we describe how families of periodic orbits associated with homoclinic orbits can attach (or detach) themselves to (or from) the best known families of symmetric periodic orbits. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
We study the chaotic motions in the field of two fixed black holes M1, M2 by calculating (a) the asymptotic curves from the main unstable periodic orbits, (b) the asymptotic orbits, with particular emphasis οn the homoclinic and heteroclinic orbits, and (c) the basins of attraction of the two black holes. The orbits falling on M1and M2form fractal sets. The asymptotic curves consist of many arcs, separated by gaps. Every gap contains orbits falling on a black hole. The sizes of various arcs decrease as the mass ofM1 increases. The basins of attraction of the black holes M1, M2consist of large compact regions and of thin filaments. The relative area of the basin M2 tends to 100 as M1 → 0, and it decreases as M1 increases. The total area of the basins is found analytically, while the relative area of the basin M2 is given by an empirical formula. Further empirical formulae give the exponential decrease of the number of asymptotic orbits that have not yet reached a black hole after n iterations.  相似文献   

18.
We consider families of periodic orbits in potentials symmetric with respect to thex-axis. The characteristics of triple-periodic orbits (i.e. orbits intersecting thex-axis three times) that bifurcate from the central characteristic do not have their maximum or minimum energy (or perturbation) at the point of intersection. We explain theoretically that this happens only for triple-periodic orbits and not for any other type of resonant periodic orbits and verify this fact by numerical calculations.  相似文献   

19.
We present results about the stability of vertical motion and its bifurcations into families of 3-dimensional (3D) periodic orbits in the Sitnikov restricted N-body problem. In particular, we consider ν = N ? 1 equal mass primary bodies which rotate on a circle, while the Nth body (of negligible mass) moves perpendicularly to the plane of the primaries. Thus, we extend previous work on the 4-body Sitnikov problem to the N-body case, with N = 5, 9, 15, 25 and beyond. We find, for all cases we have considered with N ≥ 4, that the Sitnikov family has only one stability interval (on the z-axis), unlike the N = 3 case where there is an infinity of such intervals. We also show that for N = 5, 9, 15, 25 there are, respectively, 14, 16, 18, 20 critical Sitnikov periodic orbits from which 3D families (no longer rectilinear) bifurcate. We have also studied the physically interesting question of the extent of bounded dynamics away from the z-axis, taking initial conditions on x, y planes, at constant z(0) = z 0 values, where z 0 lies within the interval of stable rectilinear motions. We performed a similar study of the dynamics near some members of 3D families of periodic solutions and found, on suitably chosen Poincaré surfaces of section, “islands” of ordered motion, while away from them most orbits become chaotic and eventually escape to infinity. Finally, we solve the equations of motion of a small mass in the presence of a uniform rotating ring. Studying the stability of the vertical orbits in that case, we again discover a single stability interval, which, as N grows, tends to coincide with the stability interval of the N-body problem, when the values of the density and radius of the ring equal those of the corresponding system of N ? 1 primary masses.  相似文献   

20.
We present results of a study of the so-called “stickiness” regions where orbits in mappings and dynamical systems stay for very long times near an island and then escape to the surrounding chaotic region. First we investigated the standard map in the form xi+1 = xi+yi+1 and yi+1 = yi+K/2π · sin(2πxi) with a stochasticity parameter K = 5, where only two islands of regular motion survive. We checked now many consecutive points—for special initial conditions of the mapping—stay within a certain region around the island. For an orbit on an invariant curve all the points remain forever inside this region, but outside the “last invariant curve” this number changes significantly even for very small changes in the initial conditions. In our study we found out that there exist two regions of “sticky” orbits around the invariant curves: A small region I confined by Cantori with small holes and an extended region II is outside these cantori which has an interesting fractal character. Investigating also the Sitnikov-Problem where two equally massive primary bodies move on elliptical Keplerian orbits, and a third massless body oscillates through the barycentre of the two primaries perpendicularly to the plane of the primaries—a similar behaviour of the stickiness region was found. Although no clearly defined border between the two stickiness regions was found in the latter problem the fractal character of the outer region was confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号