首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pure rotational spectrum of homonuclear diatomic molecules in the interstellar medium is strongly forbidden, and no such spectrum has been detected. In regions of high excitation, vibrational emission may occur, as is widely detected in the case of H2 in interstellar shocks and photon-dominated regions. However, it is of considerable interest to know the abundance of homonuclear diatomics in quiescent regions. We propose that vibrational emission from homonuclear diatomic molecules in cold clouds may be detectable, where the excitation is mainly through collisions with non-thermal electrons arising from the cosmic-ray ionization of H2. As an example, we estimate the intensity of emission from N2 in cold, dark interstellar clouds. We show that such emission is at the limit of detectability with current technology. Other excitation mechanisms may also contribute and enhance this emission.  相似文献   

2.
Long-slit spectra of the molecular outflow Herbig–Haro (HH) 46/47 have been taken in the J and K near-infrared bands. The observed H2 line emission confirms the existence of a bright and extended redshifted counter-jet outflow south-west of HH 46. In contrast with the optical appearance of this object, we show that this outflow seems to be composed of two different emission regions characterized by distinct heliocentric velocities. This implies an acceleration of the counter-jet.
The observed [Fe  ii ] emission suggests an average extinction of 7–9 visual magnitudes for the region associated with the counter-jet.
Through position–velocity diagrams, we show the existence of different morphologies for the H2 and [Fe  ii ] emission regions in the northern part of the HH 46/47 outflow. We have detected for the first time high-velocity (−250 km s−1) [Fe  ii ] emission in the region bridging HH 46 to HH 47A. The two strong peaks detected can be identified with the optical positions B8 and HH 47B.
The H2 excitation diagrams for the counter-jet shock suggest an excitation temperature for the gas of T ex≈2600 K . The lack of emission from the higher energy H2 lines, such as the 4–3 S(3) transition, suggests a thermal excitation scenario for the origin of the observed emission. Comparison of the H2 line ratios with various shock models yielded useful constraints about the geometry and type of these shocks. Planar shocks can be ruled out whereas curved or bow shocks (both J- and C-type) can be parametrized to fit our data.  相似文献   

3.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

4.
Ammonia inversion lines are often used as probes of the physical conditions in the dense interstellar medium. The excitation temperature between the first two para-metastable (rotational) levels is an excellent probe of the gas kinetic temperature. However, the calibration of this ammonia thermometer depends on the accuracy of the collisional rates with H2. Here, we present new collisional rates for ortho- and para-NH3 colliding with  para-H2( J = 0)  , and investigate the effects of these new rates on the excitation of ammonia. Scattering calculations employ a new, high-accuracy, potential energy surface computed at the coupled-cluster CCSD(T) level with a basis set extrapolation procedure. Rates are obtained for all transitions involving ammonia levels with   J ≤ 3  and for kinetic temperatures in the range 5–100 K. We find that the calibration curve of the ammonia thermometer – which relates the observed excitation temperature between the first two para-metastable levels to the gas kinetic temperature – does not change significantly when these new rates are used. Thus, the calibration of ammonia thermometer appears to be robust. Effects of the new rates on the excitation temperature of inversion and rotation–inversion transitions are also found to be small.  相似文献   

5.
We present an in-depth analysis of molecular excitation in 11 H2-bright planetary and protoplanetary nebulae (PN and PPN). From newly acquired K -band observations, we extract a number of spectra at positions across each source. H2 line intensities are plotted on 'column density ratio' diagrams so that we may examine the excitation in and across each region. To achieve this, we combine the shock models of Smith, Khanzadyan & Davis with the photodissociation region (PDR) models of Black & van Dishoeck to yield a shock-plus-fluorescence fit to each data set.
Although the combined shock + fluorescence model is needed to explain the low- and high-energy H2 lines in most of the sources observed (fluorescence accounts for much of the emission from the higher-energy H2 lines), the relative importance of shocks over fluorescence does seem to change with evolutionary status. We find that shock excitation may well be the dominant excitation mechanism in the least evolved PPN (CRL 2688 – in both the bipolar lobes and in the equatorial plane) and in the most evolved PN considered (NGC 7048). Fluorescence, on the other hand, becomes more important at intermediate evolutionary stages (i.e. in 'young' PN), particularly in the inner core regions and along the inner edges of the expanding post-asymptotic giant branch (AGB) envelope. Since H2 line emission seems to be produced in almost all stages of post-AGB evolution, H2 excitation may prove to be a useful probe of the evolutionary status of PPN and PN alike. Moreover, shocks may play an important role in the molecular gas excitation in (P)PN, in addition to the low- and/or high-density fluorescence usually attributed to the excitation in these sources.  相似文献   

6.
We have computed cross-sections and rate coefficients for rovibrational transitions in HD, induced by collisions with atomic and molecular hydrogen. We employed fully quantum-mechanical methods and the potential of Boothroyd et al. for H–HD, and that of Schwenke for H2–HD. The rate coefficients for vibrational relaxation v =1→0 of HD are compared with the corresponding values for H2. The influence of vibrationally excited channels on the rate coefficients for rotational transitions within the v =0 vibrational ground state of HD is shown to be small at T =500 K, where T is the kinetic temperature. The rate coefficients, for 100 T 2000 K, are available from http://ccp7.dur.ac.uk/.  相似文献   

7.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

8.
The results of recent quantum mechanical calculations of cross-sections for rotational transitions within the vibrational ground state of HD are used to evaluate the rate of radiative energy loss from gas containing HD, in addition to H, He and H2. The cooling function for HD (i.e. the rate of cooling per HD molecule) is evaluated in steady state on a grid of values of the relevant parameters of the gas, namely the gas density and temperature, the atomic to molecular hydrogen abundance ratio and the ortho:para-H2 density ratio. The corresponding cooling function for H2, previously computed by Le Bourlot et al., is slightly revised to take account of transitions induced by collisions with ground-state ortho-H2 ( J =1). The cooling functions and the data required for their calculation are available from http://ccp7.dur.ac.uk/. We then make a study of the rate of cooling of the primordial gas through collisions with H2 and HD molecules. In this case, radiative transitions induced by the cosmic background radiation field and, in the case of H2, collisional transitions induced by H+ ions should additionally be included.  相似文献   

9.
We discuss wide-field near-infrared (near-IR) imaging of the NGC 1333, L1448, L1455 and B1 star-forming regions in Perseus. The observations have been extracted from a much larger narrow-band imaging survey of the Taurus–Auriga–Perseus complex. These H2 2.122-μm observations are complemented by broad-band K imaging, mid-IR imaging and photometry from the Spitzer Space Telescope , and published submillimetre CO   J = 3–2  maps of high-velocity molecular outflows. We detect and label 85 H2 features and associate these with 26 molecular outflows. Three are parsec-scale flows, with a mean flow lobe length exceeding 11.5 arcmin. 37 (44 per cent) of the detected H2 features are associated with a known Herbig–Haro object, while 72 (46 per cent) of catalogued HH objects are detected in H2 emission. Embedded Spitzer sources are identified for all but two of the 26 molecular outflows. These candidate outflow sources all have high near-to-mid-IR spectral indices (mean value of  α∼ 1.4  ) as well as red IRAC 3.6–4.5 μm and IRAC/MIPS 4.5–24.0 μm colours: 80 per cent have [3.6]–[4.5] > 1.0 and [4.5]–[24] > 1.5. These criteria – high α and red [4.5]–[24] and [3.6]–[4.5] colours – are powerful discriminants when searching for molecular outflow sources. However, we find no correlation between α and flow length or opening angle, and the outflows appear randomly orientated in each region. The more massive clouds are associated with a greater number of outflows, which suggests that the star formation efficiency is roughly the same in each region.  相似文献   

10.
We report the first detection of CO in the bulge of M31. The 12CO (1–0) and (2–1) lines are both detected in the dust complex D395A/393/384, at 1.3 arcmin (∼0.35 kpc) from the centre. From these data and from visual extinction data, we derive a CO luminosity to reddening ratio (and a CO luminosity to H2 column density ratio) quite similar to that observed in the local Galactic clouds. The (2–1) to (1–0) line intensity ratio points to a CO rotational temperature and a gas kinetic temperature of >10 K. The molecular mass of the complex, inside a 25-arcsec (100 pc) region, is 1.5×104 M.  相似文献   

11.
The contraction of matter in the primordial medium, to form the first gravitationally bound structures, was mediated by radiative cooling of the gas by H2 and HD. We have computed the initial phases of free-fall collapse, incorporating the results of quantum mechanical calculations of rate coefficients for collisional excitation of H2 and HD by the principal perturbers, H, He, H2 and H+. The structure of shock waves produced when the collapse speed exceeds the local sound speed is determined. In the post-shock gas, radiative cooling by H2 exceeds that by HD, but by a factor of only 4. The intensities of the strongest emission lines of H2– rotational transitions within the vibrational ground state – are calculated. Even with coarse spectral and angular resolution, these transitions might be observable as inhomogeneities in the cosmic background radiation.  相似文献   

12.
Near-infrared images in H2 line emission and submillimetre maps in CO J  = 3–2 emission illustrate the remarkable association between a molecular bow shock and the redshifted molecular outflow lobe in W75N. The flow lobe fits perfectly into the wake of the bow, as one would expect if the lobe represented swept-up gas. Indeed, these observations strongly support the 'bow shock' entrainment scenario for molecular outflows driven by young stars.   The characteristics of the bow shock and CO outflow lobe are compared with those of numerical simulations of jet-driven flows. These models successfully reproduce the bulge and limb-brightening in the CO outflow, although the model H2 bow exhibits more structure extending back along the flow axis. We also find that the size of the flow, the high mass fraction in the flow at low outflow velocities (low γ values) and the high CO/H2 luminosity ratio indicate that the system is evolved. We also predict a correlation, in evolved systems, between outflow age and the CO/H2 luminosity ratio.  相似文献   

13.
We report the discovery of H2 line emission associated with 6.67-GHz methanol maser emission in massive star-forming regions. In our UNSWIRF/AAT observations, H2 1–0 S(1) line emission was found associated with an ultracompact H  ii region IRAS 14567–5846 and isolated methanol maser sites in G318.95–0.20 , IRAS 15278–5620 and IRAS 16076–5134 . Owing to the lack of radio continuum in the latter three sources, we argue that their H2 emission is shock excited, while it is UV-fluorescently excited in IRAS 14567–5846 . Within the positional uncertainties of 3 arcsec, the maser sites correspond to the location of infrared sources. We suggest that 6.67-GHz methanol maser emission is associated with hot molecular cores, and propose an evolutionary sequence of events for the process of massive star formation.  相似文献   

14.
We present the results of modelling of the H2 emission from molecular outflow sources, induced by shock waves propagating in the gas. We emphasize the importance of proper allowance for departures from equilibrium owing to the finite flow velocity of the hot, compressed gas, with special reference to the excitation, dissociation and reformation of H2. The salient features of our computer code are described. The code is applied to interpreting the spectra of the outflow sources Cepheus A West and HH43. Particular attention is paid to determining the cooling times in shocks whose speeds are sufficient for collisional dissociation of H2 to take place; the possible observational consequences of the subsequent reformation of H2 are also examined. Because molecular outflow sources are intrinsically young objects, J-type shocks may be present in conjunction with magnetic precursors, which have a C-type structure. We note that very different physical and dynamical conditions are implied by models of C- and J-type shocks which may appear to fit the same H2 excitation diagram.  相似文献   

15.
We present VLA observations of the ( J , K )=(1, 1), (2, 2), (3, 3) and (4, 4) inversion transitions of NH3 toward the HW 2 object in Cepheus A, with 1-arcsec angular resolution. Emission is detected in the main hyperfine line of the first three transitions. The NH3(2, 2) emission shows a non-uniform 'ring' structure, which is more extended (3 arcsec) and intense than the emission seen in the (1, 1) and (3, 3) lines. A rotational temperature of ∼ 30–50 K and a lower limit to the mass of ∼ 1 ( X NH3/10−8)−1 M are derived for the ring structure. The spatio-kinematical distribution of the NH3 emission does not seem to be consistent with a simple circumstellar disc around the HW 2 thermal biconical radio jet. We suggest that it represents the remnant of the parental core from which both the inner 300-au (0.4 arcsec) disc, traced by the water maser spots previously found in the region, and the central object have formed. The complex velocity field of this core is probably produced from bound motions (similar to those of the inner disc) and from interaction with outflowing material.  相似文献   

16.
We study the prospects for observing H2 emission during the assembly of primordial molecular cloud kernels. The primordial molecular cloud cores, which resemble those at the present epoch, can emerge around  1+ z ∼20  according to recent numerical simulations. The kernels form inside the cores, and the first stars will appear inside the kernels. A kernel typically contracts to form one of the first generation stars with an accretion rate that is as large as ∼0.01 M yr−1. This occurs owing to the primordial abundances, which result in a kernel temperature of order 1000 K, and the collapsing kernel emits H2 line radiation at a rate ∼1035 erg s−1. Predominantly   J =5-3   ( v =0)  rotational emission of H2 is expected. At redshift  1+ z ∼20  , the expected flux is ∼0.01 μJy for a single kernel. While an individual object is not observable by any facilities available in the near future, the expected assembly of primordial star clusters on subgalactic scales can result in fluxes at the sub-mJy level. This is marginally observable with ASTRO-F and ALMA. We also examine the rotational   J =2-0   ( v =0)  and vibrational   δv =1  emission lines. The former may possibly be detectable with ALMA.  相似文献   

17.
We have found a bar of shocked molecular hydrogen (H2) towards the OH(1720 MHz) maser located at the projected intersection of supernova remnant (SNR)  G359.1–0.5  and the non-thermal radio filament known as the Snake. The H2 bar is well aligned with the SNR shell and almost perpendicular to the Snake. The OH(1720 MHz) maser is located inside the sharp western edge of the H2 emission, which is consistent with the scenario in which the SNR drives a shock into a molecular cloud at that location. The spectral line profiles of 12CO, HCO+ and CS towards the maser show broad-line absorption, which is absent in the 13CO spectra and most probably originates from the pre-shock gas. A density gradient is present across the region and is consistent with the passage of the SNR shock, while the H2 filament is located at the boundary between the pre-shock and post-shock regions.  相似文献   

18.
We have computed the time dependence of the H2 rovibrational emission spectrum from molecular outflows. This emission arises in shock waves generated by the impact of jets, associated with low-mass star formation, on molecular gas. The shocks are unlikely to have attained a state of equilibrium, and so their structure will exhibit both C- and J-type characteristics. The rotational excitation diagram is found to provide a measure of the age of the shock; in the case of the outflow observed in Cepheus A West by the ISO satellite, the shock age is found to be approximately 1.5×103 yr. Emission by other species, such as NH3 and SiO, is also considered, as are the intensities of the fine-structure transitions of atoms and ions.  相似文献   

19.
The results of a survey searching for outflows using near-infrared imaging are presented. Targets were chosen from a compiled list of massive young stellar objects associated with methanol masers in linear distributions. Presently, it is a widely held belief that these methanol masers are found in (and delineate) circumstellar accretion discs around massive stars. If this scenario is correct, one way to test the disc hypothesis is to search for outflows perpendicular to the methanol maser distributions. The main objective of the survey was to obtain wide-field near-infrared images of the sites of linearly distributed methanol masers using a narrow-band 2.12-μm filter. This filter is centred on the  H2 v = 1–0 S(1)  line; a shock diagnostic that has been shown to successfully trace CO outflows from young stellar objects. 28 sources in total were imaged of which 18 sources display H2 emission. Of these, only two sources showed emission found to be dominantly perpendicular to the methanol maser distribution. Surprisingly, the H2 emission in these fields is not distributed randomly, but instead the majority of sources are found to have H2 emission dominantly parallel to their distribution of methanol masers. These results seriously question the hypothesis that methanol masers exist in circumstellar discs. The possibility that linearly distributed methanol masers are instead directly associated with outflows is discussed.  相似文献   

20.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号