首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Solar activity is regulated by the solar dynamo. The dynamo is a non-linear interplay between the equatorial and polar magnetic field components. So far, in Sun–climate studies, only the equatorial component has been considered as a possible driver of tropospheric temperature variations. We show that, next to this, there is a significant contribution of the polar component. Based on direct observations of proxy data for the two main solar magnetic fields components since 1844, we derive an empirical relation between tropospheric temperature variation and those of the solar equatorial and polar activities. When applying that relation to the period 1610–1995, we find some quasi-regular episodes of residual temperature increases and decreases, with semi-amplitudes up to ~0.3 °C. The present period of global warming is one of them.  相似文献   

2.
Long-term trends in the tropospheric cosmic ray induced ionization on the multi-millennial time scale are studied using the newly released paleomagnetic reconstruction models. Spatial and temporal variations of the tropospheric ionization has been computed using the CRAC:CRII model and applying the paleomagnetic CALS7k.2 reconstruction. It has been shown that long-term variations of the tropospheric ionization are not spatially homogeneous, and they are defined not only by solar (i.e., covariant with solar irradiance) changes but also by the geomagnetic field. The dominance of the two effects is geographically separated, which makes it possible to distinguish between direct and indirect solar–terrestrial climate effects. Possible climate applications are considered.  相似文献   

3.
A variety of climate perturbations have the potential to alter the thermodynamic and dynamical characteristics of the middle atmosphere, which may then affect tropospheric climate. Increased thermal emission from rising stratospheric CO2 levels and scattering of solar radiation from stratospheric volcanic aerosols have a direct impact on surface temperatures, while variations in stratospheric water vapor and ozone can affect tropospheric temperatures. Observations and modeling experiments suggest that these perturbations, as well as solar irradiance variations operating through the stratosphere, may affect tropospheric dynamics, such as planetary wave amplitudes and Hadley cell intensity. In addition, climate changes will probably alter tropospheric/stratospheric exchange, with the potential for modifying trace gas distributions and climate forcing. These issues are reviewed in the light of the incorporation of middle atmosphere studies into IGBP.  相似文献   

4.
The spatial and temporal structure of the effects of solar activity (SA) and galactic cosmic ray (GCR) flux variations on the lower atmosphere circulation has been studied based on NCEP/NCAR reanalysis archive for 1948–2006 and MSLP (Climatic Research Unit, UK) data for 1873–2000. It has been shown that the GCR effects on pressure variations are characterized by a strong latitudinal and regional dependence, which is determined by specific features of the tropospheric circulation in the studied regions. The distribution of the correlation coefficients for mean yearly values of atmospheric pressure with the GCR flux intensity is closely related to the position of the main climatological fronts. The periodic (∼60 years) changes in the correlation sign of the pressure at high and middle latitudes with Wolf numbers have been revealed. It has been suggested that the changes of the sign of SA/GCR effects on atmospheric pressure are caused by the changes of the macrocirculation epochs, which, in turn, may be related to large-scale processes on the Sun.  相似文献   

5.
The linkage between multi-decadal climate variability and activity of the sun has been long debated based upon observational evidence from a large number of instrumental and proxy records. It is difficult to evaluate the exact role of each of solar parameters on climate change since instrumentally measured solar related parameters such as Total Solar irradiance (TSI), Ultra Violet (UV), solar wind and Galactic Cosmic Rays (GCRs) fluxes are more or less synchronized and only extend back for several decades. Here we report tree-ring carbon-14 based record of 11-year/22-year solar cycles during the Maunder Minimum (17th century) and the early Medieval Maximum Period (9–10th century) to reconstruct the state of the sun and the flux of incoming GCRs. The result strongly indicates that the influence of solar cycles on climate is persistent beyond the period after instrumental observations were initiated. We find that the actual lengths of solar cycles vary depending on the status of long-term solar activity, and that periodicity of the surface air temperatures are also changing synchronously. Temperature variations over the 22-year cycles seem, in general, to be more significant than those associated with the 11-year cycles and in particular around the grand solar minima such as the Maunder Minimum (1645–1715 AD). The polarity dependence of cooling events found in this study suggests that the GCRs can not be excluded from the possible drivers of decadal to multi-decadal climate change.  相似文献   

6.
It is known that the solar component is difficult to find in a climatic signal due to its small size and significant internal random disturbances of the climatic system, such as variations in cloudiness, precipitation, winds, and oceanic currents. In the center of the polar cap, these disturbances are as minimal as possible; therefore, solving the inverse heat conduction problem, we can calculate the informative heat flux through the ice cover based on temperature data. Variations in the heat flux are quite significant in amplitude (0.2–0.3 W/m2) and coincide with the 11-year solar cycle in phase. Application of this approach to the indices of the global and sea surface temperatures cannot yield a solar signal, yet it can be traced for solar cycles with big amplitude (cycles 19 and 21). Thus, the found variation in the heat flux is most probably caused by a change in the solar constant (TSI); however, other mechanisms are also possible.  相似文献   

7.
In this study we investigate the effects of solar activity on the surface air temperature of Turkey. This enables us to understand existence of solar activity effects on the temperature. We used surface air temperature, pressure and tropospheric absorbing aerosol data as climate parameters and solar flare index data as solar activity indicator. We considered the parameters temperature and flare index data for the period data ranging from the beginning of January 1976 to the end of December 2006, which cover almost three solar cycles, 21st, 22nd and 23rd. However, only the period interval starting from January 1980 up to December 2005 includes the tropospheric absorbing aerosol data. We found a significant correlation between solar activity and surface air temperature for only cycle 23. We applied multitaper method to obtain the cyclic behavior of surface air temperature data sets. The most pronounced power peaks were found by this transform to be present at 1.2 and 2.5 years, which were reported earlier for some solar activity indicators. We concluded that solar activity effect exists on surface air temperature of Turkey; besides changes of greenhouse gases and tropospheric absorbing aerosols concentration have also a dominant effect on the surface air temperature of Turkey.  相似文献   

8.
Recent studies have shown that, in addition to the role of solar variability, past climate changes may have been connected with variations in the Earth??s magnetic field elements at various timescales. An analysis of variations in geomagnetic field elements, such as field intensity, reversals, and excursions, allowed us to establish a link between climate changes at various timescales over the last millennia. Of particular interest are sharp changes in the geomagnetic field intensity and short reversals of the magnetic poles (excursions). The beginning and termination of the examined geomagnetic excursions can be attributed to periods of climate change. In this study, we analyzed the possible link between short-term geomagnetic variability (jerks) and climate change, as well as the accelerated drift of the north magnetic pole and surface temperature variations. The results do not rule out the possibility that geomagnetic field variations which modulate the cosmic ray flux could have played a major role in climate change in addition to previously induced by solar radiation.  相似文献   

9.
The influence of helio/geophysical factors on the solar energy input to the lower atmosphere has been studied at the network of actinometric stations of Russia in different latitudinal belts. It was found that there are appreciable changes in the half-yearly values of total radiation associated with galactic cosmic ray (GCR) variations in the 11-yr solar cycle, the increase of GCR flux being accompanied by a decrease of the total radiation at higher latitudes and by its increase at lower latitudes. Auroral phenomena and solar flare activity are likely to affect the solar radiation input to the high-latitudinal belt together with GCR variations, the increase of both these factors resulting in the decrease of total radiation. The changes found in the total radiation fluxes in the lower atmosphere seem to be related to the cloud cover variations associated with the solar and geophysical phenomena under study. The variations of the solar radiation input in the 11-yr-cycle amounting to ±4–6% may be an important factor affecting tropospheric dynamics.  相似文献   

10.
The results of an analysis of the spatial-temporal variations in the tropospheric temperature regime in the Northern and Southern hemispheres in 1948–2006 are presented. The possible effect of solar activity on the tropospheric temperature regime is discussed in the scope of the proposed mechanism by which the heliogeophysical factors affect the climatic characteristics and atmospheric circulation in the high-latitude troposphere through atmospheric electricity.  相似文献   

11.
Based on observations of long-term variations in galactic cosmic rays (CRs) on Earth and in the near-Earth space, we have determined, using our own semiempirical model, modulation of galactic CRs during solar cycles 19–23. The modulation model relates CR variations to the characteristics of the solar magnetic field obtained for the surface of the solar wind source at distances of 2.50 and 3.25 solar radii. The main focus is CR behavior at the minimums of cycles 19–23 and specific features of CR modulation at a prolonged (as compared to previous cycles) minimum of cycle 23, which is still ongoing. CR modulation at minimums related to a change in the solar field dipole component during this period of the cycle has been considered. It is indicated that the long-term variations in CRs are better described if the last two years (2007 and 2008) of cycle 23 with anomalously low solar activity (SA) are included in the model. The role and value of the contribution of the cyclic variations in each index used in the proposed CR modulation model to the observed CR modulation have been estimated.  相似文献   

12.
利用1979~1992年卫星TOR对流层臭氧数据库资料,以及同期太阳辐照度数据序列,考察青藏高原对流层臭氧含量变化与太阳辐射周期变化之间的关系.分析表明,青藏高原对流层臭氧分布表现出与太阳辐照度相同的变化趋势,存在着明显的太阳周期变化特征.逐月线性回归分析表明,太阳辐照度增加导致青藏高原对流层臭氧增加的正效应.在太阳周期内,太阳辐射增加可使青藏高原对流层臭氧、平流层臭氧和臭氧总量分别增加1.31、4.97、6.628DU,或4.07%、2.04%、2.28%.该特征与赤道太平洋地区完全相反,分析产生差异的原因,至少应包括两方面因素:一是背景大气NOX和水汽含量的差异;二是青藏高原频繁发生的平流层-对流层大气物质交换和输送.  相似文献   

13.
It is proposed to determined minimums of the 11-year solar cycles based on a minimal flux of the large-scale open solar magnetic field. The minimal fluxes before the finished cycle 23 (Carrington rotation CR 1904) and the started cycle 24 (CR 2054, April 2007) were equal to 1.8 × 1022 and 1.2 × 1022 μs, respectively. The long-term tendency toward an approach to a deep minimum of solar activity is confirmed. On the assumption that magnetic flux variations from minimums to maximums are proportional to each other, the anticipated value of the maximal Wolf number during cycle 24 is estimated as W max = 80.  相似文献   

14.
Solar radiation (both total and in various wavelengths) varies at different time scales—from seconds to decades or centuries—as a consequence of solar activity. The energy received from the Sun is one of the natural driving forces of the Earth's atmosphere and since this energy is not constant, it has been argued that there must be some non-zero climate response to it. This response must be fully specified in order to improve our understanding of the climate system and the impact of anthropogenic activities on it. However, despite all the efforts, if and how subtle variations of solar radiation affect climate and weather still remains an unsolved puzzle. One key element that is very often taken as evidence of a response, is the similarity of periodicities between several solar activity indices and different meteorological parameters. The literature contains a long history of positive or negative correlations between weather and climate parameters like temperature, rainfall, droughts, etc. and solar activity cycles like the 27-day cycle, the prominent 11-year sunspot cycle, the 22-year Hale cycle and the Gleissberg cycle of 80–90 years. A review of these different cycles is provided as well as some of the correlative analyses between them and several stratospheric parameters (like stratospheric geopotential heights, temperature and ozone concentration) and tropospheric parameters (like temperature, rainfall, water level in lakes and river flooding, clouds) that point to a relationship of some kind. However, the suspicion on these relationships will remain as long as an indisputable physical mechanism, which might act to produce these correlations, is not available.  相似文献   

15.
Information about variations in solar activity and climate on the time intervals from 130 years to four–five last centuries, including results of instrumental measurements (Wolf numbers, actinometry, thermometry) and indirect indicators (ice core acidity, NO 3 ? ion concentration in polar ice, temperature tree-ring reconstructions), has been analyzed for the Northern Hemisphere and its high-latitude part. It has been obtained that the observed relation between secular variations in solar activity and near-Earth temperature resulted from the effect of the corresponding variation in aerosol transparency of the stratosphere on terrestrial climate. It has been also indicated that long-term variations in the aerosol content of the stratosphere can, in turn, be related to secular cycles in atmospheric ionization caused by variations in fluxes of ionizing cosmic particles.  相似文献   

16.
Direct and indirect data on variations in cosmic rays, solar activity, geomagnetic dipole moment, and climate from the present to 10–12ka ago (the Holocene Epoch), registered in different natural archives (tree rings, ice layers, etc.), have been analyzed. The concentration of cosmogenic isotopes, generated in the Earth’s atmosphere under the action of cosmic ray fluxes and coming into the Earth archives, makes it possible to obtain valuable information about variations in a number of natural processes. The cosmogenic isotopes 14C in tree rings and 10Be in ice layers, as well as cosmic rays, are modulated by solar activity and geomagnetic field variations, and time variations in these concentrations gives information about past solar and geomagnetic activities. Since the characteristics of natural reservoirs with cosmogenic 14C and 10Be vary with climate changes, the concentrations of these isotopes also inform about climate changes in the past. A performed analysis indicates that cosmic ray flux variations are apparently the most effective natural factor of climate changes on a large time scale.  相似文献   

17.
We analyze the longest temperature series from Prague, Bologna and Uccle. We partition daily minimum and maximum temperatures and their differences in two subsets as a function of high vs low solar activity, using the superimposed epochs method. Differences display patterns with significant amplitudes and time constants ~3 months. These are recognized in all stations and are stable against a change in the analyzed period. Amplitude of variations is ~1 °C. Differences between average annual values corresponding to high vs low activity periods are also ~1 °C. Solar activity may account for these long-term temperature variations. These variations also present local characteristics, which may render identification of a global correlation delicate. We discuss possible physical mechanisms by which solar variation could force climate changes (e.g. through solar activity itself, the EUV part of the solar flux, cosmic rays, the downward ionosphere-earth current density, etc.).  相似文献   

18.
Wang  Jianglin  Yang  Bao  Zheng  Jingyun  Zhang  Xuezhen  Wang  Zhiyuan  Fang  Miao  Shi  Feng  Liu  Jingjing 《中国科学:地球科学(英文版)》2020,63(8):1126-1143
The temperature variability over multidecadal and longer timescales(e.g., the cold epochs in the late 15 th, 17 th, and early 19 th centuries) is significant and dominant in the millennium-long, large-scale reconstructions and model simulations;however, their temporal patterns in the reconstructed and simulated temperature series are not well understood and require a detailed assessment and comparison. Here, we compare the reconstructed and simulated temperature series for the Northern Hemisphere(NH) at multidecadal and longer-term timescales(30 years) by evaluating their covariance, climate sensitivity and amplitude of temperature changes. We found that covariances between different reconstructions or between reconstructions and simulations are generally high for the whole period of 850–1999 CE, due to their similar long-term temporal patterns. However,covariances between different reconstructions or between reconstructions and simulations steadily decline as time series extends further back in time, becoming particularly small during Medieval times. This is related to the large uncetainties in the reconstructions caused by the decreased number of proxy records and sample duplication during the pre-instrumental periods.Reconstructions based solely on tree-ring data show higher skill than multiproxy reconstructions in capturing the amplitude of volcanic cooling simulated by models. Meanwhile, climate models have a shorter recovery(i.e., lag) in response to the cooling caused by volcanic eruptions and solar activity minima, implying the lack of some important feedback mechanisms between external forcing and internal climate processes in climate models. Amplitudes of temperature variations in the latest published tree-ring reconstructions are comparable to those of the multiproxy reconstructions. We found that the temperature difference between the Medieval Climate Anomaly(950–1250 CE) and the Little Ice Age(1450–1850 CE) is generally larger in proxybased reconstructions than in model simulations, but the reason is unclear.  相似文献   

19.
This paper addresses observed variations in cosmic ray (CR) intensity, the interplanetary magnetic field (IMF), the solar wind (SW) turbulence energy spectrum, and the energy spectrum index of Forbush decreases in the 20th–23rd solar cycles. Unlike the previous three cycles, there are some distinctive features in the 23rd solar cycle. The entire cycle shows a considerable increase in the index of the SW turbulence energy spectrum inclination and an substantially harder energy spectrum of Forbush decreases. The anomalously high flux of high-energy CRs and the anomalously low level of the IMF strength were recorded at the end of this cycle. The conclusion has been made that such unusual CR behavior is associated with a decrease in the degree of scattering in the resonance interaction between CR fluxes and SW inhomogeneities with spatial scales of ∼1012 cm.  相似文献   

20.
The paper focuses on climate variations caused by the orbital effect and solar activity over the last one million years and oscillations (warming or cooling) of the climate since the last ice age retreat. Attention is paid to a significant discrepancy in the trend of global temperature change during the modern interglacial epoch (Holocene) obtained by various methods. A long-term cooling trend was observed in the summer temperature of the Northern Hemisphere during the last 2000 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号