首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
热液条件下CO2和H2形成烷烃的反应,提供了自然条件下CO2转化为有机质的一条非生物途径。研究这一过程,对于油气费托非生物成因研究和海底热液生命起源的讨论具有重要意义。已有研究表明,热力学有利的温度、压强条件和合适的催化剂,是热液条件下CO2和H2发生反应形成烷烃的必需条件。在热力学有利的条件下,铬铁矿能够催化反应形成CH4、C2H6和C3H8,但还不清楚是否存在能够促使反应产生C4H10等长链烷烃的天然矿物催化剂。含一种或多种过渡金属元素的磁铁矿,可能是值得考察的对象。另外,研究热液条件下CO2和H2反应形成烷烃的过程和机理,建立反应所形成烷烃的C、H同位素综合判识指标,是今后值得探索的研究课题。  相似文献   

2.
生物气CO_2还原途径中碳同位素分馏作用研究及应用   总被引:2,自引:0,他引:2  
地质历史中,CO2/H2还原产甲烷作用对生物气的形成具有十分重要的意义。中国柴达木盆地第四系生物气主要为CO2/H2还原型生物气。笔者以CO2/H2还原生气理论为指导,进行不同初始碳同位素值和不同赋存状态碳源的生物模拟实验,研究CO2/H2还原产气过程中发生的碳同位素分馏作用。实验结果表明,产物中δ13CH4值与底物的δ13C值呈很好的正相关关系;在反应母质过量的情况下,碳源的赋存状态可以影响产物甲烷的碳同位素组成。以游离形式CO2还原产生的甲烷δ13C值,相对于以HCO3-、CO23-离子形式产生的甲烷δ13C值轻。通过柴达木盆地东部第四系生物气田实例分析,探讨了该区生物气的主要底物CO2的来源及赋存状态,对评价盆地生物气资源和有利勘探区预测有重要的参考价值。  相似文献   

3.
陈惠娴  胡文瑄  王小林 《地质学报》2022,96(6):2107-2115
CH4和CO2是岩浆热液系统中的重要挥发组分,两者之间的转换机制是一个重要的科学问题,在碳循环和流体作用等诸多方面都具有重要意义。例如在成矿过程中,CH4和CO2的加入会改变成矿流体性质,CO2还能缓冲流体pH,对成矿元素的迁移和沉淀富集有重要影响。前人通过研究瑞士阿尔卑斯山中部石炭纪、二叠纪、三叠纪地层裂隙石英中的流体包裹体发现,在较高温度条件下,黑云母的绿泥石化能将CH4氧化生成CO2,然而缺少相关的实验地球化学证据。因此,本项研究选择黑云母作为氧化剂开展了CH4的氧化实验研究。通过对黑云母- 甲烷- 水体系、黑云母- 碳化铝- 水体系以及甲烷- 水体系的实验研究发现,证实了黑云母能够将CH4氧化为CO2,起始反应温度约150℃,远低于地质研究结果。对于黑云母- 甲烷- 水体系和甲烷- 水体系实验,采用熔融毛细硅管作为反应腔,而对于黑云母- 碳化铝- 水体系实验,则采用粗石英管作为反应腔。对反应后黑云母残片的能谱分析表明,变价元素Fe含量大量降低,表明黑云母中三价Fe作为氧化剂参与了反应。这一结果为地质系统中黑云母等铁锰暗色矿物在中低温条件下氧化CH4形成CO2提供了实验和理论支撑。而CH4向CO2的转变过程,将改变热液流体的性质,有利于富CO2成矿流体的形成,对金属矿床形成具有重要意义。  相似文献   

4.
段振豪  卫清 《地质学报》2011,85(7):1079-1093
本文介绍一个通过状态方程和特定粒子相互作用理论建立起来的气体在水溶液中的溶解度模型,用以计算气体(CH4、H2S、CO2)在纯水和含盐水溶液中的溶解度、流体包裹体的均一条件、成矿热液沸腾、流体不混溶性、水合物形成条件、CO2地质储藏量等.该模型不仅重现了上百套实验数据(约8000多个数据点),而且具有很强的外延能力.因...  相似文献   

5.
川东北地区酸性气体中CO2成因与TSR作用影响   总被引:3,自引:0,他引:3  
刘全有 《地质学报》2009,83(8):1195-1202
通过对川东北地区52个天然气样品化学组分和稳定碳同位素分析,天然气以烃类气体为主,且甲烷占绝对高含量,重烃气体甚微,干燥系数C1/C1+为0.989~1.0。非烃气体H2S和CO2含量变化较大,当二者含量大于5.0%时,具有较好的正相关性。川东北地区天然气中CO2主要包括碳酸盐岩热分解和TSR作用,其中碳酸盐岩热分解生成的CO2含量一般小于5.0%,13CCO2值小于-2‰,且CO2含量与13CCO2值具有正相关性;而TSR作用生成的CO2含量大于5.0%,13CCO2值多大于-2‰,且CO2含量与13CCO2值具有较弱的负相关性。CH4/CO2比值和(H2S+CO2)/(H2S+CO2+∑C1-3)比值能够较好地反映TSR作用程度;当CH4/CO2比值和(H2S+CO2)/(H2S+CO2+∑C1-3)比值分别小于10和大于0.1时,随着TSR作用增强,CH4/CO2比值减少,而(H2S+CO2)/(H2S+CO2+∑C1-3)比值呈指数增加。同时,遭受TSR作用改造的天然气具有较高CO2含量和重的13CCO2,造成13CCO2值与实验结果不一致性的可能原因是在TSR反应过程中部分CO2与硫酸盐中Mg2+、Fe2+和Ca2+等金属离子以碳酸盐的形式沉淀且残余的重碳同位素组成的CO2与酸性气体腐蚀碳酸盐储层形成的CO2相混合。  相似文献   

6.
对四川盆地东部50个天然气样品组分和碳、氢同位素组成分析结果显示,天然气以烃类气体为主,干燥系数高(C1/C1+=0.975~1.0),H2S含量变化较大(H2S=0.00%~16.89%)。利用烷烃气碳、氢同位素组成和判识油型气热演化程度图版,确定四川盆地东部天然气主要为原油裂解气,且热演化程度已处于油气裂解阶段。在四川盆地东部,烷烃气碳、氢同位素组成普遍存在局部倒转现象,即δ13C1δ13C2δ13C3和δD1δD2,这主要与研究区域不同硫酸盐热化学还原作用(TSR)强度有关,因为在该反应过程中不仅会产生大量的CH4,其碳同位素较重,同时,水参与了硫酸盐与烃类的化学还原反应使得水中的H+与烃类中H+发生同位素交换,从而引起TSR生成CH4的氢同位素分馏大于干酪根直接生烃过程造成的氢同位素分馏。异常δ13CCO2值与TSR反应过程中部分碳同位素较轻的CO2与硫酸盐中金属离子(Mg2+、Fe2+、Ca2+等)以碳酸盐的形式沉淀后,导致气藏中残余重碳同位素组成的CO2与酸性气体腐蚀碳酸盐岩储集层形成的CO2相混合有关。  相似文献   

7.
流体包裹体中微量气体组成及其成矿示踪体系研究新进展   总被引:2,自引:0,他引:2  
孙晓明  王敏  薛婷  孙凯 《地学前缘》2004,11(2):471-478
N2 Ar He体系可用以示踪成矿流体及温泉等与火山有关的水流体的来源 ,当体系中He含量低于检出限 ,N2 Ar He体系不能用时 ,CO2 /CH4 N2 /Ar体系可用于识别成矿流体中岩浆水、建造水和大气降水 ,CO2 CH4 H2 体系可以鉴别成矿流体是否发生过沸腾作用以及沸腾是在开放体系还是封闭体系中形成 ,一般开放体系中沸腾有利于成矿。CO2 CH4 C2 H6体系可用于判别岩浆作用是否直接影响成矿或对成矿流体的贡献 ,从而确定热液矿床的成因。CH4 C2 H6 C3 H8体系可用来示踪一些与干酪根热解有关的成矿流体长距离、大规模迁移过程。C2 H6 C3 H8 C6H6体系可用于判定成矿流体的大地构造环境 ,因岛弧与裂谷环境下C2 H6/C3 H8比值有明显差异。以广东长坑 (Au Ag)和嵩溪 (Ag Sb)矿床为例 ,概述了这些体系各自的应用  相似文献   

8.
采用CO碳化SiO2和Al3O4负载的Co(NO3)2的方法制备了SiO2和Al3O4负载的Co2C催化剂,采用N2物理吸附、X射线衍射和H2-程序升温还原技术对催化剂进行了表征,并用于催化费托合成反应中.结果显示,需要较长碳化时间才可合成负载的Co2C催化剂;所制催化剂表现出CO加氢生成高碳醇的催化性能,其原因可能在于催化剂表面存在的金属Co物种使CO解离,表面Co物种有利于CO插入,从而导致醇的生成,但体相Co2C则不具有催化活性.  相似文献   

9.
氧化作用对气态烃组成和碳同位素组成的影响   总被引:6,自引:4,他引:2  
通过加水模拟实验,揭示了气态烃在被矿物氧化过程中分子组成和碳同位素组成的变化.实验结果表明,随着反应时间的延长,气态烃、非烃 (H2、 CO2、 H2S)组成及碳同位素组成发生了明显且很有规律的变化.气态烃碳数越高,氧化速率越快,碳同位素变化 (增重 )越大.当氧化剂为赤铁矿或赤铁矿 硫酸镁时, CH4含量没有明显降低,δ 13C值增重 1‰~ 2‰; C2H6含量最后 (288h)降低了约 20%,δ 13C值增重约 3‰; C3H8含量最后降低了约 50%,δ 13C值增重约 5‰; Ic4h10含量在 72 h时即降低了约 80%,氧化速率远高于 Nc4h10.非烃 CO2的含量增加了 1.26~ 1.71倍.当氧化剂为硫酸镁时, CH4含量明显增高,最多时增加了 34.7%,δ 13C值增重约 8‰; C2H6含量在 72 h时降低了约 14%,在 144 h时降低了约 85%,δ 13C值增重约 24‰; C3H8含量在 72 h时降低了约 65%,在 144 h时降低了 98%以上; Ic4h10和 Nc4h10在 72 h时即降低了 90%以上.非烃 CO2含量最多增加了 1.86倍, H2S最多增加了 9.62倍.这些实验结果对认识天然气藏在矿物氧化过程中分子组成和碳同位素组成的变化具有重要意义.  相似文献   

10.
本文介绍一个通过状态方程和特定粒子相互作用理论建立起来的气体在水溶液中的溶解度模型,用以计算气体(CH4、H2S、CO2)在纯水和含盐水溶液中的溶解度、流体包裹体的均一条件、成矿热液沸腾、流体不混溶性、水合物形成条件、CO2地质储藏量等.该模型不仅重现了上百套实验数据(约8000多个数据点),而且具有很强的外延能力.因此适用宽广的温度、压力和盐度范围(CH4:273~523K,1~2000bar,0~6m;H2S:273~500K,0~200bar,O~6m;CO2:273~533K,0~2000bar,0~4.5m),而且精度高、形式简洁.由于使用状态方程和特定粒子相互作用理论相结合的方法,这一模型在无需实验数据的情况下能够拓展到诸如海水和地下热卤水等更为复杂的体系.该模型在国际上得到日益广泛的应用,已被许多国家的同行用以多方面的研究工作,如计算CH4、H2S和CO2气体在水、卤水和海水等天然水溶液不同温度、压力和盐度条件下的溶解度(即水溶液中最大允许的气体含量),分析矿物流体包裹体的PVTX条件(根据包裹体中气体的总含量和均一温度,用该模型就会很方便得到均一化压力,在此基础上还可以迸一步通过状态方程得到密度和等容线)、计算成矿流体的不混溶性或沸腾点、计算CO2地质储藏量、实验校正等方面.相关研究可进行在线计算:www.geochem-model.  相似文献   

11.
The interdependence of the Fe(Mg)–1 (e.g., FeO-MgO in silicate melt; CaFeSi2O6-CaMgSi2O6 in pyroxene) and TiAl2(MgSi2)–1 exchange reactions between silicate melts and coexisting Ca-pyroxene has been examined. High-calcium clinopyroxenes were grown in 1 atmosphere melting and crystallization experiments on rock powders spanning the composition range tholeiite to melilitite (1,0922+Mg2+ exchange and suggest that at given values of extent of Fe(Mg)–1 substitution is strongly coupled with the TiAl2(MgSi2)–1 substitution in pyroxenes near the five-component space CaMg(Si2O6-CaFe(Si)2O6-CaTi(Al)2O6-CaFe(Al,Si)2O6-CaAl(Al,Si)2O6. The inferred stabilization of Ti in iron-rich relative to magnesium pyroxene is consistent with the operation of Fe2+Ti4+ intervalence charge transfer interactions (e.g., Rossman 1980) and observations on zoning in natural titanaugites (e.g., Tracy and Robinson 1977). Although the rims of some pyroxenes grown in some melting experiments exhibit prominent zoning in TiAl2(MgSi2)–1, the average values of inferred from the compositions of these pyroxenes, together with those of the relatively homogeneous pyroxenes produced in crystallization experiments, exhibit a 11 correlation with values of derived from the solution model of Ghiorso et al. (1983) with a standard error of 750 calories. The Ti contents of Ca-rich pyroxenes crystallizing from a wide range of natural silicate liquids can therefore be predicted.  相似文献   

12.
Phase relations in the ternary systems Ag2S-Cu2S-PbS and Ag2S-Cu2S-Bi2S3 were studied using the silica vacuum technique. In the system Ag2S-Cu2S-Bi2S3 the phase relations are dominated by join-lines from galena to f.c.c. (Agx Cu2−xS) and b.c.c. (Cux Ag2−xS) at 500°C. With decreasing temperature, galena can coexist with all the phases on the Ag2S-Cu2S join. There are six solid solutions, and one new phase, i.e., “C” whose composition is Ag1.1 Cu4.8Bi5.8S12 in the system Ag2S-Cu2S-Bi2S3 at 500°C. The pavonite (AgBi3S5) contains 14 mole% Cu2S in solid solution, but only 3.0 mole% Ag2S in CuBi3S5 solid solution. The Cu3Bi5S9 ss and wittichenite (Cu3BiS3) ss can form join-lines with pavonite as and have the maximum contents of 9.0 and 18 mole% Ag2S. The most striking feature is the presence of bejaminite as a stable phase with a chemical formula of Ag2Bi4S7 on the Ag2S-Bi2S3 join. AgBiS2 of the PbS type occupies a fairly large field with a maximum of 23 mole% Cu2S.  相似文献   

13.
Seal or cap-rock integrity is a safety issue during geological carbon dioxide capture and storage (CCS). Industrial impurities such as SO2, O2, and NOx, may be present in CO2 streams from coal combustion sources. SO2 and O2 have been shown recently to influence rock reactivity when dissolved in formation water. Buoyant water-saturated supercritical CO2 fluid may also come into contact with the base of cap-rock after CO2 injection. Supercritical fluid-rock reactions have the potential to result in corrosion of reactive minerals in rock, with impurity gases additionally present there is the potential for enhanced reactivity but also favourable mineral precipitation.The first observation of mineral dissolution and precipitation on phyllosilicates and CO2 storage cap-rock (siliciclastic reservoir) core during water-saturated supercritical CO2 reactions with industrial impurities SO2 and O2 at simulated reservoir conditions is presented. Phyllosilicates (biotite, phlogopite and muscovite) were reacted in contact with a water-saturated supercritical CO2 containing SO2, or SO2 and O2, and were also immersed in the gas-saturated bulk water. Secondary precipitated sulfate minerals were formed on mineral surfaces concentrated at sheet edges. SO2 dissolution and oxidation resulted in solution pH decreasing to 0.74 through sulfuric acid formation. Phyllosilicate dissolution released elements to solution with ∼50% Fe mobilized. Geochemical modelling was in good agreement with experimental water chemistry. New minerals nontronite (smectite), hematite, jarosite and goethite were saturated in models. A cap-rock core siltstone sample from the Surat Basin, Australia, was also reacted in water-saturated supercritical CO2 containing SO2 or in pure supercritical CO2. In the presence of SO2, siderite and ankerite were corroded, and Fe-chlorite altered by the leaching of mainly Fe and Al. Corrosion of micas in the cap-rock was however not observed as the pH was buffered by carbonate dissolution. Ca-sulfate, and Fe-bearing precipitates were observed post SO2-CO2 reaction, mainly centered on surface cracks and an illite rich illite-smectite precipitate quantified. Water saturated impure supercritical CO2 was observed to have reactivity to rock-forming biotite, muscovite and phlogopite mineral separates. In the cap-rock core however carbonates and chlorite were the main reacting minerals showing the importance of assessing actual whole core.  相似文献   

14.
A series of stable pentasulfide complexes of the common base metals, Mn, Fe, Co, Ni, Cu and Zn exist in aqueous solutions at ambient temperatures. Pure sodium pentasulfide was prepared and reacted with the divalent cations of Mn, Fe, Co, Ni, Cu and Zn in aqueous solution at ambient temperature. The S52- complexes were found to exist as determined by voltammetric methods.Pentasulfide complexes with compositions assigned as [M(1-S5)] and [M2(- S5)]2+ occur for Mn, Fe, Co and Ni where only one terminal S atom in the S52- binds to one metal (1 = mono-dentate ligand or M-S-S-S-S-S, = ligand bridging two metal centers or M-S-S-S-S-S-M). Conditional stability constants are similar for all four metals with log 1 between 5.3 and 5.7 and log 2 between 11.0 and 11.6. The constants for these pentasulfide complexes are similar to the tetrasulfide complexes and are approximately 0.4–0.8 log units higher than for comparable bisulfide complexes [M(SH)]+ as expected based on the higher nucleophilicity of S52- compared to HS-. Voltammetric results indicate that these are labile complexes.As with the bisulfide and tetrasulfide complexes, Zn(II) and Cu(II) are chemically distinct from the other metals. Zn(II) reacts with pentasulfide to form a stable monomeric pentasulfide chelate, [Zn(1-S5)] with log = 8.7. Cu(II) reacts with pentasulfide to form a complex with the probable stoichiometry [Cu(S5)]2 with log estimated to be 20.2. As with the other four metals, these complexes are comparable with the tetrasulfide complexes. Discrete voltammetric peaks are observed for these complexes and indicate they are electrochemically inert to dissociation. Reactions of Zn(II) and Cu(II) also lead to significant breakup of the polysulfide.The relative strength of the complexes is Cu > Zn > Mn, Fe, Co, Ni. Cu displaces Zn from [Zn(1- S5)] and both Cu and Zn displace Mn, Fe, Co and Ni from their pentasulfide complexes.  相似文献   

15.
16.
Single crystal Raman spectra of pyrite-type RuS2, RuSe2, OsS2, OsSe2, PtP2, and PtAs2 are presented and discussed with reference to the energies of the X-X stretching modes x-x (A g, F g) and the X2 librations (E, 2Fg). The main results obtained are (i) strong Raman resonance effects, (ii) different sequences for x-x (A g) and (E g), i.e., R_{x_2 } $$ " align="middle" border="0"> for PtP2 and PtAs2 and R_{x_2 } $$ " align="middle" border="0"> for OsS2, owing to the interplay of intraionic and interionic lattice forces, (iii) greater strengths for the intraionic P-P and As-As bonds compared to the S-S and Se-Se bonds, respectively, and (iv) a strong influegnce of the metal ions on the strength of the X-X bonds.This is contribution LXI of a series of papers on lattice vibration spectra  相似文献   

17.
18.
The phase diagrams of the systems Cu2S-PbS-Bi2S3 and Ag2S-PbS-Bi2S3 have been investigated in the present study. The paper is concerned with the complete solid solution between bismuthtite and aikinite above 300°C in the system Cu2S-PbS-Bi2S3. The synthetic phases CuBi3S5 and Cu3Bi5S9 have their solid solution ranges in the ternary system with 9 and 26 mole% PbS at maximum, respectively. A complete solid solution between PbS and AgBiS2 divides the phase diagram of the system Ag2S-PbS-Bi2S3 into two parts: Bi-rich and Ag-rich. All sulfosalt minerals and solid solutions, including pavonite ss, lillianite ss, heyovskyite and benjaminite are on the Bi-rich side. And divarant relations were found between pavonite ss -lillianite ss, benjaminite and bismuthtite as well as between lillianite ss -bismuthtite and galenobismutite. Synthetic experiments using LiCl-KCl flux technique show that when a minor amount of copper (less lwt.%) is added in, many of Ag-and Pb-bismuth sulfosalt minerals, for example, vikingite (Ag5Pb8Bi13S30), are synthesized successively, particularly at 400°C. So is heyrovskyite, which has a solid solution range with 3.7 mole% Cu2S at maximum in the system Cu2S-PbS-Bi2S3.  相似文献   

19.
Reservoir and cap-rock core samples with variable lithology's representative of siliciclastic reservoirs used for CO2 storage have been characterized and reacted at reservoir conditions with an impure CO2 stream and low salinity brine. Cores from a target CO2 storage site in Queensland, Australia were tested. Mineralogical controls on the resulting changes to porosity and water chemistry have been identified. The tested siliciclastic reservoir core samples can be grouped generally into three responses to impure CO2-brine reaction, dependent on mineralogy. The mineralogically clean quartzose reservoir cores had high porosities, with negligible change after reaction, in resolvable porosity or mineralogy, calculated using X-ray micro computed tomography and QEMSCAN. However, strong brine acidification and a high concentration of dissolved sulphate were generated in experiments owing to minimal mineral buffering. Also, the movement of kaolin has the potential to block pore throats and reduce permeability. The reaction of the impure CO2-brine with calcite-cemented cap-rock core samples caused the largest porosity changes after reaction through calcite dissolution; to the extent that one sample developed a connection of open pores that extended into the core sub-plug. This has the potential to both favor injectivity but also affect CO2 migration. The dissolution of calcite caused the buffering of acidity resulting in no significant observable silicate dissolution. Clay-rich cap-rock core samples with minor amounts of carbonate minerals had only small changes after reaction. Created porosity appeared mainly disconnected. Changes were instead associated with decreases in density from Fe-leaching of chlorite or dissolution of minor amounts of carbonates and plagioclase. The interbedded sandstone and shale core also developed increased porosity parallel to bedding through dissolution of carbonates and reactive silicates in the sandy layers. Tight interbedded cap-rocks could be expected to act as baffles to fluids preventing vertical fluid migration. Concentrations of dissolved elements including Ca, Fe, Mn, and Ni increased during reactions of several core samples, with Mn, Mg, Co, and Zn correlated with Ca from cap-rock cores. Precipitation of gypsum, Fe-oxides and clays on seal core samples sequestered dissolved elements including Fe through co-precipitation or adsorption. A conceptual model of impure CO2-water-rock interactions for a siliciclastic reservoir is discussed.  相似文献   

20.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号