首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.  相似文献   

2.
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.  相似文献   

3.
A new coupling model of wave interaction with porous medium is established in which the wave field solver is based on the two dimensional Reynolds Averaged Navier-Stokes (RANS) equations with a closure. Incident waves, which could be linear waves, cnoidal waves or solitary waves, are produced by a piston-type wave maker in the computational domain and the free surface is traced through the Piecewise Linear Interface Construction-Volume of Fluid (PLIC-VOF) method. Nonlinear Forchheimer equations are adopted to calculate the flow field within the porous media. By introducing a velocity–pressure correction equation, the wave field and the porous flow field are highly and efficiently coupled. The two fields are solved simultaneously and no boundary condition is needed at the interface of the internal porous flow and the external wave. The newly developed numerical model is used to simulate wave interaction with porous seabed and the numerical results agree well with the experimental data. The additional numerical tests are also conducted to study the effects of seabed thickness, porosity and permeability coefficient on wave damping and the pore water pressure responses.  相似文献   

4.
A two-dimensional vertical (2DV) non-hydrostatic boundary fitted model based on a Godunov-type shock-capturing scheme is introduced and applied to the simulation of waves from deep water up to the swash zone. The effects of shoaling, breaking, surf zone dissipation and swash motions are considered. The application of a Godunov-type shock-capturing algorithm together with an implicit solver on a standard staggered grid is proposed as a new approach in the 2DV simulation of large gradient problems such as wave breaking and hydraulic jumps. The complete form of conservative Reynolds averaged Navier–Stokes (RANS) equations are solved using an implicit finite volume method with a pressure correction technique. The horizontal advection of the horizontal velocity is solved by an explicit predictor–corrector method. Fluxes are predicted by an exact Riemann solver and corrected by a downwind scheme. A simple total variation diminishing (TVD) method with a monotonic upstream-centered scheme for conservation laws (MUSCL) limiter function is employed to eliminate undesirable oscillations across discontinuities. Validation of the model is carried out by comparing the results of the simulations with several experimental test cases of wave breaking and run-up and the analytical solution to linear short waves in deep water. Promising performance of the model has been observed.  相似文献   

5.
《Coastal Engineering》1999,36(1):1-16
A weakly-nonlinear and dispersive wave equation recently developed by the authors is used for formulating a spectral-type unidirectional wave propagation model describing spectral transformations of narrow-band waves travelling over arbitrary depths. The essential characteristics of the model equation are recapitulated first and then the spectral domain representation in terms of spatially varying harmonic amplitudes is presented. The resulting evolution equations are used to simulate the experiments concerning harmonic generation in shallow water and nonlinear random wave transformations over a submerged bar. Furthermore, the spectral model predictions are compared with the field measurements in nearshore with satisfactory results.  相似文献   

6.
The paper considers the application of two numerical models to simulate the evolution of steep breaking waves. The first one is a Lagrangian wave model based on equations of motion of an inviscid fluid in Lagrangian coordinates. A method for treating spilling breaking is introduced and includes dissipative suppression of the breaker and correction of crest shape to improve the post breaking behaviour. The model is used to create a Lagrangian numerical wave tank, to reproduce experimental results of wave group evolution. The same set of experiments is modelled using a novel VoF numerical wave tank created using OpenFOAM. Lagrangian numerical results are validated against experiments and VoF computations and good agreement is demonstrated. Differences are observed only for a small region around the breaking crest.  相似文献   

7.
Uncertainty in the behaviour of future storm events and extreme water levels means that the introduction of Early Warning Systems for coastal inundation risk at vulnerable local sites becomes increasing paramount. In this study the coupled hydro-morphodynamic model XBeach is used at two sites along the Emilia-Romagna coastline in northern Italy to predict coastal inundation risk in the presence of coastal structures and temporary artificial dunes. These dunes are typically formed by beach scraping and are used on this coastline to protect beach-front infrastructure during the winter period. Coastal inundation risk is defined by the cross-shore distance between the seaward edge of the building and the time-varying waterline predicted by XBeach. A series of synthetic storm events as well as a real-world scenario that caused dune failure at one of the sites are tested. Comparisons between XBeach results and the Van Der Meer empirical formula for wave transmission behind offshore structures show a very strong agreement, while the real-world scenario indicates promising model prediction performance of dune failure at least one day in advance. A new model tool known as DuneMaker is developed that modifies XBeach model grids to simulate the impacts of scraped/placed artificial dunes of varying size, shape and configuration. The use of this tool is demonstrated on the same model test runs, where it is shown that improved dune design can reduce the predicted coastal inundation risk at critical points of vulnerability identified by the model.  相似文献   

8.
夏季风场对长江冲淡水扩展影响的数值模拟   总被引:7,自引:3,他引:7  
建立一个σ坐标系下三维非线性斜压陆架模式,研究长江冲淡扩展的动力机制。数值试验再现了夏季长江冲淡水转向东北的现象,夏季风场对长江冲淡水扩展的影响,取决于风速的大小和动向,风速为3m/s的南风,对冲淡水向北扩展的影响比较明显,而当南风风速达到6m/s时,则起着十分显著的作用,西南风加强了冲淡水向东扩展,但对南北向的扩展影响甚微,东南风抑了冲淡水向东扩散,并使之偏向西北,明确阐明了夏季风场对冲淡水扩展  相似文献   

9.
This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating nearshore wave processes. The governing equations are a depth-integrated vertical momentum equation and the shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A special type of finite element method, which was previously developed for a well-validated depth-integrated free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The comparison shows that the developed wave model without the use of any empirical parameters is capable of accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up of nonlinear dispersive waves and transformation and inundation of tsunami waves.  相似文献   

10.
A reformed numerical model based on the “one-line theory” for beach deformation is presented. In this model, the change of beach slope during coastline procession is considered.A wave numerical model combined with wave refraction, diffraction and reflection is used to simulate wave climate to increase numerical accuracy.The results show that the numerical model has a good precision based on the adequate field data. The results can be applied to practical engineering.  相似文献   

11.
应用内外解匹配的方法和驻相法推导了柱坐标系下地震引起的水面波动方程的解,即推导了地震海啸波生成与传播的理论方程,并对越洋地震海啸理论方程进行了求解。基于Boussinesq方程出发,建立了二维越洋海啸波传播数学模型,并对越洋海啸进行了数值计算,计算方法采用有限差分方法,差分格式采用交替方向隐格式(Alternating Direction Implicit即ADI方法)。利用越洋海啸计算模式对发生在大洋中的地震海啸进行了模拟,将数值模拟结果与地震海啸波理论方程的计算结果进行了比较,两种计算结果吻合较好。  相似文献   

12.
On the modeling of wave propagation on non-uniform currents and depth   总被引:1,自引:0,他引:1  
By transforming two different time-dependent hyperbolic mild slope equations with dissipation term for wave propagation on non-uniform currents into wave-action conservation equation and eikonal equation, respectively, shown are the different effects of dissipation term on the eikonal equation in the two different mild slope equations. The performances of intrinsic frequency and wave number are also discussed. Thus the suitable mathematical model is chosen in which the wave number vector and intrinsic frequency are expressed both more rigorously and completely. By using the perturbation method, an extended evolution equation, which is of time-dependent parabolic type, is developed from the time-dependent hyperbolic mild slope equation which exists in the suitable mathematical model, and solved by using the alternating direction implicit (ADI) method. Presented is the numerical model for wave propagation and transformation on non-uniform currents in water of slowly varying topography. From the comparisons of the numerical solutions with the theoretical solutions of two examples of wave propagation, respectively, the results show that the numerical solutions are in good agreement with the exact ones. Calculating the interactions between incident wave and current on a sloping beach [Arthur, R.S., 1950. Refraction of shallow water waves. The combined effects of currents and underwater topography. EOS Transactions, August 31, 549–552], the differences of wave number vector between refraction and combined refraction–diffraction of waves are discussed quantitatively, while the effects of different methods of calculating wave number vector on numerical results are shown.  相似文献   

13.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed.  相似文献   

14.
Long-term time series of sea state parameters are required in different coastal engineering applications. In order to obtain wave data at shallow water and due to the scarcity of instrumental data, ocean wave reanalysis databases ought to be downscaled to increase the spatial resolution and simulate the wave transformation process. In this paper, a hybrid downscaling methodology to transfer wave climate to coastal areas has been developed combining a numerical wave model (dynamical downscaling) with mathematical tools (statistical downscaling). A maximum dissimilarity selection algorithm (MDA) is applied in order to obtain a representative subset of sea states in deep water areas. The reduced number of selected cases spans the marine climate variability, guaranteeing that all possible sea states are represented and capturing even the extreme events. These sea states are propagated using a state-of-the-art wave propagation model. The time series of the propagated sea state parameters at a particular location are reconstructed using a non-linear interpolation technique based on radial basis functions (RBFs), providing excellent results in a high dimensional space with scattered data as occurs in the cases selected with MDA. The numerical validation of the results confirms the ability of the developed methodology to reconstruct sea state time series in shallow water at a particular location and to estimate different spatial wave climate parameters with a considerable reduction in the computational effort.  相似文献   

15.
基于高阶边界元的三维数值波浪港池   总被引:9,自引:1,他引:8  
初步建立了一个基于高阶边界元的三维数值波浪港池,港池具有造波和消波功能。采用高阶边界元16节点四边形单元和基于二阶显式泰勒展开的混合欧拉-拉格朗日时间步进求解带自由表面的完全非线性势流方程。模型中对于影响数值精度的问题作了细致的处理。数值计算结果表明本港池可以用来模拟非线性波浪的传播,具有很高的数值精度和稳定性。  相似文献   

16.
A numerical model is developed by combining a porous flow model and a two-phase flow model to simulate wave transformation in porous structure and hydraulic performances of a composite type low-crest seawall. The structure consists of a wide submerged reef, a porous terrace at the top and an impermeable rear wall. The porous flow model is based on the extended Navier-Stokes equations for wave motion in porous media and kε turbulence equations. The two-phase flow model combines the water domain with the air zone of finite thickness above water surface. A unique solution domain is established by satisfying kinematic boundary condition at the interface of air and water. The free surface advection of water wave is modeled by the volume of fluid method with newly developed fluid advection algorithm. Comparison of computed and measured wave properties shows reasonably good agreement. The influence of terrace width and structure porosity is investigated based on numerical results. It is concluded that there exist optimum value of terrace width and porosity that can maximize hydraulic performances. The velocity distributions inside and in front of the structure are also investigated.  相似文献   

17.
《Ocean Engineering》1999,26(4):287-323
A set of Boussinesq-type equations with improved linear frequency dispersion in deeper water is solved numerically using a fourth order accurate predictor-corrector method. The model can be used to simulate the evolution of relatively long, weakly nonlinear waves in water of constant or variable depth provided the bed slope is of the same order of magnitude as the frequency dispersion parameter. By performing a linearized stability analysis, the phase and amplitude portraits of the numerical schemes are quantified, providing important information on practical grid resolutions in time and space. In contrast to previous models of the same kind, the incident wave field is generated inside the fluid domain by considering the scattered wave field in one part of the fluid domain and the total wave field in the other. Consequently, waves leaving the fluid domain are absorbed almost perfectly in the boundary regions by employment of damping terms in the mass and momentum equations. Additionally, the form of the incident regular wave field is computed by a Fourier approximation method which satisfies the governing equations accurately in water of constant depth. Since the Fourier approximation method requires an Eulerian mean current below wave trough level or a net mass transport velocity to be specified, the method can be used to study the interaction of waves and currents in closed as well as open basins. Several computational examples are given. These illustrate the potential of the wave generation method and the capability of the developed model.  相似文献   

18.
Internal wave generation in an improved two-dimensional Boussinesq model   总被引:1,自引:0,他引:1  
A set of Boussinesq-type equations with improved linear frequency dispersion in deeper water is solved numerically using a fourth order accurate predictor-corrector method. The model can be used to simulate the evolution of relatively long, weakly nonlinear waves in water of constant or variable depth provided the bed slope is of the same order of magnitude as the frequency dispersion parameter. By performing a linearized stability analysis, the phase and amplitude portraits of the numerical schemes are quantified, providing important information on practical grid resolutions in time and space. In contrast to previous models of the same kind, the incident wave field is generated inside the fluid domain by considering the scattered wave field in one part of the fluid domain and the total wave field in the other. Consequently, waves leaving the fluid domain are absorbed almost perfectly in the boundary regions by employment of damping terms in the mass and momentum equations. Additionally, the form of the incident regular wave field is computed by a Fourier approximation method which satisfies the governing equations accurately in water of constant depth. Since the Fourier approximation method requires an Eulerian mean current below wave trough level or a net mass transport velocity to be specified, the method can be used to study the interaction of waves and currents in closed as well as open basins. Several computational examples are given. These illustrate the potential of the wave generation method and the capability of the developed model.  相似文献   

19.
A combined wave refraction-diffraction numerical model was developed to predict wave conditions around an arbitrary island. The methodology was based on the mild-slope equation, solved using a finite difference scheme with a marching procedure. The new model reduced the computer's memory demand considerably in comparison with finite-element, parabolic, error vector propagation and other finite difference approaches, and could therefore predict wave conditions for a large coastal area under given offshore boundary-wave conditions. Laboratory data on wave conditions under submerged circular and elliptical shoal conditions were selected to validate the numerical results. Good agreement was observed in all cases. Wave characteristics around an island were predicted using this model with the given deep-water wave condition. The model can predict wave conditions for any island with a mild-slope coastline.  相似文献   

20.
Modeling of storm-induced coastal flooding for emergency management   总被引:3,自引:0,他引:3  
This paper describes a model package that simulates coastal flooding resulting from storm surge and waves generated by tropical cyclones. The package consists of four component models implemented at three levels of nested geographic regions, namely, ocean, coastal, and nearshore. The operation is automated through a preprocessor that prepares the computational grids and input atmospheric conditions and manages the data transfer between components. The third generation spectral wave model WAM and a nonlinear long-wave model calculate respectively the wave conditions and storm surge over the ocean region. The simulation results define the water levels and boundary conditions for the model SWAN to transform the storm waves in coastal regions. The storm surge and local tides define the water level in each nearshore region, where a Boussinesq model uses the wave spectra output from SWAN to simulate the surf-zone processes and runup along the coastline. The package is applied to hindcast the coastal flooding caused by Hurricanes Iwa and Iniki, which hit the Hawaiian Island of Kauai in 1982 and 1992, respectively. The model results indicate good agreement with the storm-water levels and overwash debris lines recorded during and after the events, demonstrating the capability of the model package as a forecast tool for emergency management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号