首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the contents, sources and accumulation rate of sedimentary organic matter (OM) in the Pearl River Estuary (PRE) and adjacent coastal area were investigated. The stable carbon isotopic composition (δ13C) is a reliable geochemical proxy and was used to indicate the OM origin here. Nevertheless, the organic carbon and nitrogen molar ratios (TOC/TN) and the stable nitrogen isotopic composition (δ15N) were affected by diagenesis and could be the supplementary indicators. The sources of OM were estimated based on the two end-member model. The results showed that in the estuary, sedimentary OM originated from terrestrial and aquatic mixing origins, whereas, OM in coastal sediments was dominantly algae-derived. The accumulation rate of sedimentary OM was analyzed based on 210Pb dating. Due to the sampling sites and the distinct hydraulic environments, the accumulation rates of TOC, aquatic and terrestrial OC were obviously higher in the estuary than in coastal area. TOC accumulation rates were 18–27 mg cm−2 y−1 in the estuary, and 0.84–3.6 mg cm−2 y−1 in coastal area. Aquatic OC accumulation rates were 7.9–11.3, 0.8–1.3, and 2.6–3.1 mg cm−2 y−1, and terrestrial OC accumulation rates were 9.7–16.3, 0.02–0.14, 0.16–0.42 mg cm−2 y−1 in cores 2, 5, 6, respectively. It could be seen from the high accumulation rate of organic matter in the estuary that, when nutrients increased in the river, phytoplankton biomass and productivity would also have increased. As a result, phytoplankton sinking and organic matter sedimentation usually increased with primary productivity, resulting in the observed accumulation rate of aquatic OC in the estuary. Furthermore, terrestrial OC accumulation rates in the estuary and coastal area showed an increasing trend with the age.  相似文献   

2.
Sediment accumulation rates were determined at several sites throughout Nauset Marsh (Massachusetts, U.S.A.), a back-barrier lagoonal system, using feldspar marker horizons to evaluate short-term rates (1 to 2 year scales) and radiometric techniques to estimate rates over longer time scales (137Cs,210Pb,14C). The barrier spit fronting theSpartina-dominated study site has a complex geomorphic history of inlet migration and overwash events. This study evaluates sediment accumulation rates in relation to inlet migration, storm events and sea-level rise. The marker horizon technique displayed strong temporal and spatial variability in response to storm events and proximity to the inlet. Sediment accumulation rates of up to 24 mm year−1were recorded in the immediate vicinity of the inlet during a period that included several major coastal storms, while feldspar sites remote from the inlet had substantially lower rates (trace accumulation to 2·2 mm year−1). During storm-free periods, accumulation rates did not exceed 6·7 mm year−1, but remained quite variable among sites. Based on137Cs (3·8 to 4·5 mm year−1) and210Pb (2·6 to 4·2 mm year−1) radiometric techniques, integrating sediment accumulation over decadal time scales, the marsh appeared to be keeping pace with the relative rate of sea-level rise from 1921 to 1993 of 2·4 mm year−1. At one site, the210Pb-based sedimentation rate and rate of relative sea-level rise were nearly similar and peat rhizome analysis revealed thatDistichlis spicatarecently replaced this onceS. patenssite, suggesting that this portion of Nauset Marsh may be getting wetter, thus representing an initial response to wetland submergence. Horizon markers are useful in evaluating the role of short-term events, such as storms or inlet migration, influencing marsh sedimentation processes. However, sampling methods that integrate marsh sedimentation over decadal time scales are preferable when evaluating a systems response to sea-level rise.  相似文献   

3.
Rates of sediment accumulation and microbial mineralization were examined at three Kandelia candel forests spanning the intertidal zone along the south coastline of the heavily urbanized Jiulongljiang Estuary, Fujian Province, China. Mass sediment accumulation rates were rapid (range: 10–62 kg m−2 y−1) but decreased from the low- to the high-intertidal zone. High levels of radionuclides suggest that these sediments originate from erosion of agricultural soils within the catchment. Mineralization of sediment carbon and nitrogen was correspondingly rapid, with total rate of mineralization ranging from 135 to 191 mol C m−2 y−1 and 9 to 11 mol N m−2 y−1; rates were faster in summer than in autumn/winter. Rates of mineralization efficiency (70–93% for C; 69–92% for N) increased, as burial efficiency (7–30% for C; 8–31% for N) decreased, from the low-to the high-intertidal mangroves. Sulphate reduction was the dominant metabolic pathway to a depth of 1 m, with rates (19–281 mmol S m−2 d−1) exceeding those measured in other intertidal deposits. There is some evidence that Fe and Mn reduction-oxidation cycles are coupled to the activities of live roots within the 0–40 cm depth horizon. Oxic respiration accounted for 5–12% of total carbon mineralization. Methane flux was slow and highly variable when detectable (range: 5–66 μmol CH4 m−2 d−1). Nitrous oxide flux was also highly variable, but within the range (1.6–106.5 μmol N2O m−2 d−1) measured in other intertidal sediments. Rates of denitrification were rapid, ranging from 1106 to 3780 μmol N2 m−2 d−1, and equating to 11–20% of total sediment nitrogen inputs. Denitrification was supported by rapid NH4 release within surface deposits (range: 3.6–6.1 mmol m−2 d−1). Our results support the notion that mangrove forests are net accumulation sites for sediment and associated elements within estuaries, especially Kandelia candel forests receiving significant inputs as a direct result of intense human activity along the south China coast.  相似文献   

4.
Sedimentation rates were determined for the northern Gulf of Mexico margin sediments at water depths ranging from 770 to 3560 m, using radiocarbon determinations of organic matter. Resulting sedimentation rates ranged from 3 to 15 cm/kyr, decreasing with increasing water depth. These rates agree with long-term sedimentation rates estimated previously using stratigraphic methods, and with estimates of sediment delivery rates by the Mississippi River to the northern Gulf of Mexico, but are generally higher by 1–2 orders of magnitude than those estimated by 210Pbxs methods. Near-surface slope sediments from 2737 m water depth in the Mississippi River fan were much older than the rest. They had minimum 14C ages of 16–27 kyr and δ13C values ranging from −24‰ to −26.5‰, indicating a terrestrial origin of organic matter. The sediments from this site were thus likely deposited by episodic mass wasting of slope sediment through the canyon, delineating the previously suggested main pathway of sediment and clay movement to abyssal Gulf sediments.  相似文献   

5.
Cylindrical sediment traps were deployed at various depths in the anoxic water of Framvaren for two periods of one year (1981–1982 and 1983–1984). The traps were emptied three times during 1981–1982 and five times during 1983–1984. The vertical fluxes of total suspended material, organic carbon and nitrogen were calculated on a daily and annual basis. The average annual sediment flux 20 m above the bottom was approximately 60 g m−2 y−1 and the flux of organic carbon was 20 g m−2 y−1. On the basis of an average C/N ratio of 8 and a constant carbon flux below a depth of 20 m, it is concluded that little mineralization of the organic matter takes place in the anoxic water column. Assuming a primary production of the order to 50–100 g m−2 y−1, 22–24% of that reaches the anoxic water masses. Further breakdown of organic matter takes place in the surface sediments.  相似文献   

6.
Five transects across the NW Iberian margin were studied in the framework of the EU-funded Ocean Margin EXchange II (OMEX II) project, to determine and establish recent sediment and organic carbon transport and accumulation processes and fluxes.On the Galician shelf and shelf edge, resuspension of sediments resulting in well-developed bottom nepheloid layers was observed at all stations, but transport of suspended sediment appears largely confined to the shelf. On the continental slope, only very dilute bottom nepheloid layers were present, and intermediate nepheloid layers were only occasionally seen. This suggests that cross-slope transfer of particles is limited by the prevailing northerly directed shelf and slope currents.Optical backscatter and ADCP current measurements by the BOBO lander, deployed at 2152 m depth on the Galician slope, indicated that particles in the bottom boundary layer were kept in suspension by tidal currents with highest speeds between 15–25 cm s−1. Net currents during the recording period August 6th–September 10th 1998, were initially directed along-slope toward the NNW, but later turned off-slope toward the SW.The separation of the water masses on the slope from the sediment-laden shelf water by the along-slope current regime is reflected in the recent sedimentary deposits of the Galician shelf and slope. Apart from compositional differences, shelf deposits differ from those on the slope by their higher flux of excess 210Pb (0.57–5.37 dpm cm−2y−1 versus 0.11–3.00 dpm cm−2y−1), a much higher sediment accumulation rate (315.6–2295.9 g m−2y−1 versus 10.9–124.7 g m−2y−1) and organic carbon burial rate (1.01–34.30 g m−2y−1 versus 0.01–0.69 g m−2y−1).In contrast to the observations on the Galician margin, pronounced nepheloid layers occurred in the Nazaré Canyon, which extended to considerably greater water depths. This indicates that significantly greater transport of fine-grained particles in both the INL and the BNL was occurring within the canyon, as reflected in the exceptionally high 210Pb excess flux (up to 34.09 dpm cm−2y−1), mass accumulation rates (maximum 9623.1 g m−2y−1) and carbon burial fluxes (up to 180.91 g m−2y−1) in the sediment. However, radioisotope fluxes in the lower canyon were only slightly higher than at comparable depths on the Galician margin. This suggests that transport and rapid accumulation is focused on the upper and middle part of the canyon, from where it is episodically released to the deep sea. Compared to the Galician margin, the Nazaré Canyon may be considered as an important organic carbon depocenter on short time-scales, and a major conduit for particulate matter transport to the deep sea on >100 y time-scales.  相似文献   

7.
Vertical distribution of faecal pellets (FP), their sedimentation and the production rates of FP by mesozooplankton were studied during a cruise on and off the Iberian shelf in August 1998. The cruise was divided into two legs, each of them a short-term Lagrangian drift experiment. FP were collected with water bottles, with drifting sediment traps and during experiments carried out onboard the ship. The pellets were enumerated and their biovolumes and carbon contents (FPC) were calculated.The standing stock of FP in the upper 50 m was on average three times higher during the first on-shelf experiment than during the second off-shelf experiment. There were large diurnal variations, but no clear pattern emerged between day and night sampling. The vertical export of FPC from the upper, productive layer was on average one order of magnitude greater on the shelf (range 6–160 mg.m−2.d−1) compared to the off-shelf experiment (range 1–30 mg.m−2.d−1). FPC sedimentation explained 20% of the total POC export from the euphotic layer on the shelf, but <5% off the shelf. FP sedimentation was dominated by medium-sized cylindrical pellets (40–60 μm in diameter), but larger cylindrical pellets (60–100 μm in diameter) also played an important role. The smaller FP size fractions were never of any significance, in spite of the high abundance of smaller calanoid and cyclopoid copepods. The community production of FPs by mesozooplankton were calculated for the off shelf stations, and the average retention potential of FP in the upper 200 m was estimated to be 98%. Thus retention processes are clearly important for cross-shelf advection of FPs, their injection into the deep ocean and in the regulation of pelagic benthic coupling.  相似文献   

8.
Lagrangian experiments with short-term, drifting sediment traps were conducted during a cruise on RRS Charles Darwin to the NW coast of Spain to study the vertical flux and composition of settling biogenic matter. The cruise was split into two legs corresponding to (i) a period of increased production following an upwelling event on the continental shelf (3–10 August 1998) and (ii) an evolution of a cold water filament originating from the upwelled water off the shelf (14–19 August). The export of particulate organic carbon (POC) from the upper layer (0–60m) on the shelf was 90–240mgC.m−2.d−1 and off the shelf was 60–180mgC.m−2.d−1. Off shelf the POC flux at 200m was 50–60mg.m−2.d−1. A modest sedimentation of diatoms (15–30mgC.m−2.d−1) after the upwelling was associated with increased vertical flux of chlorophyll a (1.8–2.1mg.m−2.d−1) and a decrease of the POC:PON molar ratio of the settled material from 9 to 6.4. Most of the pico-, nano-, and microplankton in the settled material were flagellates; diatoms were significant during the on shelf and dinoflagellates during the off shelf leg. Off shelf, the exponential attenuation of POC flux indicated a strong retention capacity of the plankton community between 40 and 75m. POC:PON ratio of the settled particulate matter decreased with depth and the relative portion of flagellates increased, suggesting a novel, flagellate and aggregate mediated particulate flux in these waters. Export of POC from the euphotic layer comprised 14–26% of the integrated primary production per day during the on shelf leg and 25–42% during the off shelf leg, which characterises the importance of sedimentation in the organic carbon budget of these waters.  相似文献   

9.
Sulfate reduction in deep coastal marine sediments   总被引:1,自引:0,他引:1  
Sulfate reduction rates in sediments of four deep stations in the Saguenay Fjord and the Laurentian Trough, Gulf of St. Lawrence, are among the lowest reported for the coastal environment. Maximum rates were 0.4–7.0 nmol cm−3 day−1. The low rates are due to relatively low sedimentation rates and continuously low temperatures. Regional differences in both integrated and maximum sulfate reduction rates in the sediment correlate with sediment trap measurements of sedimentation rate and organic carbon flux.Sulfate reduction accounts for the degradation of 5–26% of the estimated downward flux of organic matter to these sediments. Unlike the absolute rate of sulfate reduction, the relative proportion of the carbon flux that is degraded via sulfate reduction is not directly correlated with the sedimentation rate but is a function of organic matter composition, intensity of bioturbation, and the abundance of sub-oxic electron acceptors. Thus, the lowest proportion of carbon degradation via sulfate reduction occurred at a Gulf site, where a combination of low sedimentation and bioturbation rates allowed a long residence time for organic matter near the sediment surface and, in consequence, a low flux of labile carbon into the sulfate reduction zone. The highest proportion was observed at a station with a similar organic carbon flux but with higher rates of sedimentation and bioturbation. At a third site, with the highest rates of sulfate reduction as well as the highest rates of sedimentation and bioturbation, the contribution of sulfate reduction to organic matter degradation was only intermediate. This is attributable to the exhaustion of the supply of porewater sulfate. In deep coastal environments the proportion of organic matter degraded via sulfate reduction can be highly variable both spatially and temporally.  相似文献   

10.
The Bay of Concepcion (36°40′S; 73°02′W) is a semi-enclosed and shallow embayment in which biogeochemical processes are seasonally coupled to coastal upwelling during the austral spring and summer. The nutrient cycle in the bay is complex due to the combined effects of a pronounced O2 minimum layer and high nutrient concentrations both originating from subsurface equatorial water during coastal upwelling and a rapid rate of sediment nutrient recycling. The sediments are characterized by a high content of organic matter mainly due to the extremely high rates of phytoplankton production and deposition. During the upwelling period, a black flocculent layer frequently covers the sediment–water interface in the inner part of the bay where an extensive mat of Beggiatoa spp. develops. Three approaches are used to analyse the extent to which the benthic system recycles or retains nutrients at two stations, located at the centre (station C, St. C) and mouth (station B, St. B) of the bay for a 1-year period (March 1996–1997): (1) estimation of C and N remineralization rates based on SO42− reduction measurements, (2) calculation of C and N turnover rates using a diagenetic model applied to total organic carbon and total nitrogen vertical distributions and, (3) construction of C and N budgets from direct measurements of sedimentation (from a sediment trap) and estimates of the C and N burial rates. Depth-integrated SO42− reduction rates varied between 3.4 (winter) and 25.5 (summer) mmol m−2 d−1. Estimated C and N oxidation rates ranged between 7.9 and 87.8 mol C m−2 yr−1 and between 0.9 and 6.9 mol N m−2 yr−1, respectively. Each approach yielded minor differences in the C and N remineralization rates (and also minor differences between both studied stations), except when the kinetic model was applied to C and N distribution without including the presence of the flocculent layer. The rates of carbon oxidation and sulphate reduction were considerably higher than in other coastal sediments with similar depositional regime. The C and N burial rates were 2.23 and 0.21 (St. C) and 1.30 and 0.09 (St. B) mol m−2 yr−1, respectively. The C/N ratio of the buried fraction was ca. 10.6 at St. C and 14.4 at St. B. Because the observed differences in burial rates could not be ascribed to distinctive depositional (both stations have similar sediment accumulation rates) and oceanographic (similar O2 concentration and hydrography) conditions, differences may be due to in part spatial heterogeneity in the supply of organic matter. The degree of preservation of organic matter as plankton detritus and nitrogen accumulating bacterial biomass associated with Beggiatoa spp. at St. C may also be involved.  相似文献   

11.
In the Suo-Nada area of the Seto Inland Sea, Japan, sedimentation rates and the sedimentary record of anthropogenic metal loads were determined by combining the Pb-210 dating technique with heavy metal analysis of the sediments. The sedimentation rates vary from 0.11 to 0.27 g cm–2 yr–1. Lower sedimentation rates were observed in the eastern part of the basin which is characterized by a bottom with sand and gravel, and fast tidal currents.Anthropogenic and natural loads of copper and zinc into the sediments are 34 and 326, and 65 and 375 ton yr–1, respectively. The anthropogenic loads are fairly low compared with those of the other main areas of sediment accumulation in the Seto Inland Sea. The highest level of zinc and copper pollution was observed in the western part of the basin because of waste discharge from an old and big ironworks outside basin since the early 1900's.  相似文献   

12.
Sediments and organisms were examined for concentrations of organic and metal contaminants from near the Los Angeles County (JWPCP) municipal outfall at Palos Verdes (PV) station 7-3, the Los Angeles City (Hyperion) municipal outfall at Santa Monica Bay (SMB) station 6-4 and reference station SMB 2–3 near Malibu Beach. Flows and mass emission rates of suspended solids, PCBs, Cd and Zn were similar at the two outfalls. Mass emission rate of copper was almost twice as high from Hyperion as from JWPCP, while mass emission rate of DDTs was an order or magnitude higher from JWPCP than from Hyperion.Surficial sediments at PV 7-3 were enriched in most contaminants relative to SMB 6-4 and relative to the mass emission rates of contaminants from the JGVPCP and Hyperion outfalls. Some of this enrichment could be accounted for by the greater accumulation of organic material, measured as total volatile solids, at PV 7-3 relative to SMB 6-4. Some might be accounted for by resurfacing of more contaminated historical deposits buried at PV 7-3. Some of the enrichment of DDTs relative to PCBs could be accounted for by the greater abundance of oxygenated metabolites of PCBs (PCBols) relative to DDTs (DDTols) in sediments.The degree of contamination of organisms by DDTs increased with proximity to PV 7-3 but contamination by PCBs was similar at PV 7-3 and SMB 6-4. DDT concentrations in fish livers ranged from 12 ± 4 ( ) mg/wet kg in longspine combfish from SMB 2–3 to 610 ± 105 (n = 5) mg/wet kg in Pacific sanddab from PV 7-3. DDT concentrations in fish gonads ranged from 0·003 ± 0·003 (n = 5) mg/wet kg in yellowchin sculpin from SMB 6-4 to 1.5 ± 6 (n = 3) mg/wet kg in Pacific sanddabs from PV 7-3. PCB concentrations in fish livers ranged from 1·2 ± 0·4 (n = 4) mg/wet kg in yellowchin sculpin from SMB 2–3 to 16 ± 3 (n = 6) in Pacific Sanddab from SMB 6-4. DDT and PCB concentrations in invertebrate hepatopancreas were only slightly lower than those in fish livers. DDTols and PCBoIs comprised an average of 91 % of the total of parent compounds and oxygenated metabolites in sediments and 66 % in livers and hepatopancreas. Trace metals were frequently decreased in livers and hepatopancreas from near outfalls even though they were highly elevated in sediments.Comparison of sediment and tissue chlorinated hydrocarbon data with that from Elliot and Commencement Bays, Puget Sound, indicated that none of the southern California coastal stations considered in this study were sufficiently lacking contamination to be considered as adequate control sites.  相似文献   

13.
As a contribution to the EC-OMEX-II program, sediment carbon and nitrogen budgets are presented for the Iberian Margin (northeastern Atlantic). The budgets for degradable organic carbon and associated nitrogen were calculated from sediment and pore water properties, using a steady-state version of a numerical coupled diagenetic model, OMEXDIA. Data were collected throughout the major upwelling period along five transects, four of which were located on the open margin and one positioned in a major submarine canyon, the Nazaré Canyon.A comparison of in situ oxygen profiles measured with monocathodic microelectrodes and with Clark type microelectrodes showed that monocathodic electrodes overestimate the oxygen concentration gradient near the sediment–water interface. This artifact probably results from the loss in sensitivity of the monocathodic microelectrode during profiling. Shipboard time course measurements with Clark type electrodes demonstrated transient conditions upon sediment retrieval on deck and indicated enhanced rates of oxygen consumption in the surface sediment, presumably as a result of lysis or exudation of oxidisable substrates by infauna. As a result, oxygen fluxes calculated from shipboard oxygen profiles overestimated in situ fluxes by up to a factor of 5 for water depths >1000 m.The sediments from the canyon and from a depositional area on the shelf were enriched in organic carbon (3–4.5 wt%) relative to the open margin stations (0.5–2 wt%) and showed C/N ratios exceeding Redfield stoichiometry for marine organic matter, indicating there was deposition of organic carbon of terrestrial origin in these areas. The oxidation of organic carbon on the open margin declined from ˜11 gCm−2y−1 on the shelf to 2 gCm−2y−1 at 5000 m water depth, and was dominated by aerobic oxidation. The reactivity of the degradable organic carbon at the time of deposition was <2.5 y−1 on the shelf, and declined to <0.5 y−1 offshore. The burial of refractory organic carbon at the stations along the open margin transects also declined with increasing water depth from ˜5 gCm−2y−1 on the shelf to <1 gCm−2y−1 at 2000 m depth, whereas the burial of particulate inorganic carbon declined from ˜20 gCm−2y−1 to <5 gCm−2y−1. A comparison of the estimated total organic carbon deposition and predicted delivery for the shelf suggest that 58 to 165 gCm−2y−1 is oxidized in the water column, laterally advected, or focused into one of the canyons.Anaerobic oxidation, denitrification and, therefore, total oxidation of organic carbon was enhanced within the canyon relative to the open margin. Total organic carbon oxidation decreased with water depth from 22 gCm−2y−1 at the head of the canyon to 3 gCm−2y−1 over its fan. The reactivity of the organic carbon deposited in the canyon was lower than those of the shelf stations, suggesting that the canyon is being enriched in older, laterally advected organic matter. The burial of refractory organic carbon in sediments from the Nazaré Canyon was considerably higher than in the sediments from the open margin; it also decreased with depth from 20 gCm−2y−1 at 343 m to ˜2.5 gCm−2y−1 at 4298 m water depth. The burial of particulate inorganic carbon was slightly lower than that of refractory organic carbon.The burial of refractory organic carbon and the deposition of degradable organic carbon were both positively correlated with the sedimentation rates for the Iberian Margin, and indicated burial efficiencies were 0.6 to 48%. A single trend for burial efficiency versus sedimentation rate for both the canyon and the open margin indicates that the sedimentation rate was the master variable for the geographical distribution of organic carbon oxidation and carbon preservation on the NW Iberian Margin.  相似文献   

14.
《Marine Chemistry》2001,73(2):153-171
Particles from the Whites Point/JWPCP outfalls operated by the Los Angeles County Sanitation District (LACSD) have been discharged onto the Palos Verdes (PV) shelf, Southern California, since the late 1930s. Since the early 1950s, they have made a significant contribution to the sedimentary deposits on the shelf. In order to study the transport and diagenesis of organic carbon (OC) and associated trace metals, replicate sediment cores were collected during 1996 and 1997 at four different sites at the ∼60 m isobath on the PV shelf, and analyzed for OC, Ag, Al, Cd, Cr, Cu, Mn, Ni, Pb, and Zn. We conclude from these results that a significant fraction of OC and associated heavy metals were transported laterally on silt particles from shallower environments. Cross-shelf transport of sediments caused multiple peaks in measured profiles of OC and trace metals at site 6C, 2 km away from the outfall. The same mechanism is likely to contribute to a concentration decrease that is smaller than that expected from decreases from the Whites Point outfall emissions. Based on Pb/OC ratios in sediments, deposited in 1971, and comparisons to the outfall from the same year, we estimate that 50±10% of the OC deposited in the early 1970s, now buried at 30–50 cm depth, had oxidized since that time, implying a half-life of about 26 years for the outfall-OC, as an upper limit. The average OC oxidation rate at peak depth (about 2 mg C cm−2 year−1) is, however, only about 10% of the present-day OC accumulation rate (20 mg C cm−2 year−1), which itself is adding not much more than 1% per year to the post-1950s OC inventory (∼1500 mg cm−2). We furthermore estimate that the OC inventory in PV shelf sediments in 1971 was equivalent to about 35% of that emitted by the outfall. OC and trace metal inventories did not decrease in the period 1981 to 1997, contrary to those of other contaminants such as DDTs and PCBs.  相似文献   

15.
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 μM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment–water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment–water interface and the annual DSi efflux was close to 0.057 mol Si m−2 yr−1. Biogenic silica accumulation was close to 0.008 mol Si m−2 yr−1 and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si m−2 yr−1. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si m−2 yr−1). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.  相似文献   

16.
A budget model covering the Baltic Sea was developed for the time period 1980–2000 to estimate water and dissolved silica (DSi) fluxes as well as internal DSi sinks/sources. The Baltic Sea was resolved by eight basins, where the largest basin — the Baltic Proper — was divided laterally into north/west and southern/east parts as well as vertically to take into account the existence of the permanent halocline. The basins demonstrated rather different patterns with regard to silica cycling. The Gulfs of Finland and Riga together with the northernmost basins, Bothnian Bay and Bothnian Sea, are distinguished by substantial specific rates of silica removal accounting for 1.6–4.9 g Si m− 2 yr− 1. Bearing in mind the large total primary production, the basins comprising the Baltic Proper with the specific removal rates 0.2 and 1.2 g Si m− 2 yr− 1, do not appear as regions with a high silica accumulation. The Arkona and the Kattegat mainly behave as regions of rapid through-flows. These results point out the northernmost Gulf of Bothnia, the Gulfs of Riga and Finland as areas with a larger share of biogenic silica accumulation than in the Baltic Proper. It is attributed to hydrographic and hydrochemical features. An estimate of diatom export production was made for the Baltic Proper showing that the diatom contribution accounts for 19–44% of the net export production.  相似文献   

17.
We investigated the composition, recycling, and mass accumulation rates of sediments along a transect in the Southern Ocean located from 66°S to 57°S at 170°W. This transect also corresponds to the location of a sediment trap mooring line. The sediments at the seven sites studied range from largely terrigenous material to nearly pure (>90%) biogenic silica. CaCO3 is a minor but persistent component at most sites. Mass accumulation rates have been determined on the basis of excess 230Th in the sediments, i.e., 230Th-normalized accumulation rates. The influence of redistribution of sediments on the sea floor has been estimated from 14C analyses. The recycling of material delivered to the sediments has been characterized on the basis of pore water studies that make extensive use of both in situ sampling and shipboard extractions. The influence of the highly variable rates of input of particulate matter that characterize much of the Southern Ocean upon pore water gradients and fluxes across the sediment water interface has been considered.We find only poor correspondence between BSiO2 burial fraction (=burial/particulate flux), a quantifiable measure of preservation efficiency, and BSiO2 particulate rain along the transect. However, preservation does appear to be closely linked to a combination of sedimentation rate and particulate rain.The burial fraction of BSiO2 is small relative to benthic rain (5–19%). Despite the small fraction buried, burial flux normalized to (sedimentation rate)1/2 appears to provide a very consistent means of predicting benthic particulate rain over a large range of rain rates, including data from a number of different studies and environments. At sites with BSiO2 rain 250 mmol m−2 yr−1 the average difference between predicted and observed rain is 25–30%. Such rain rates occur in many marine areas, particularly the Southern Ocean, with the result that this relationship potentially provides a means of estimating BSiO2 benthic rain over prolonged periods in the past on the basis of readily measured sediment parameters.At the southern-most deep ocean station, the particulate flux was characterized by an extremely high Corg/CaCO3 ratio (>10), but this high ratio does not appear to have a substantial influence on CaCO3 burial. CaCO3 is preserved in the sediments at this site despite a particulate flux with a 10-fold excess of Corg above that required for complete dissolution in the sediments. The unexpectedly high preservation of CaCO3 is due largely to the very steep Corg oxidation rate profile at this site. As a result, a large fraction of the organic matter oxidized in the sediments does so in close proximity to the sediment–water interface where most of the metabolic CO2 is neutralized by CO32− from the overlying water, rather than by the dissolution of sedimentary CaCO3.Diagenetic modeling indicates that at several of the stations, the remineralization fluxes of carbonate species across the sediment–water interface may not have been at steady state as a result of the highly pulsed nature of particulate rain in this environment. We estimate that at the time of our sampling it is possible that near-interface fluxes could have been a factor of 1.6–2 times the annual average.At every site on the transect, the burial fluxes of detrital material are substantially greater than the detrital particulate rain measured in the sediment traps, by as much as a factor of 40. Detrital burial is bimodal, being greatest at the southern and northern extremes of the transect. We postulate that the excess of burial over particulate rain in the south reflects the contribution of ice rafted debris at these high latitudes. Increases in the supply at the northern stations must have a different source. We believe that the excess at these stations is material eroded from the sea floor to the west, possibly on the Campbell Plateau, and advected by currents to the northern portion of the transect at depths below the shallow traps.  相似文献   

18.
Biologically dominated lower Chesapeake Bay and the physically dominated York River subestuary are contrasted in terms of the dynamics of sediment mixing, strata formation and sea-bed particle residence times. Two lower bay sites were examined; both are located within the bay stem plains and are characterized by muddy sand and an abundance of large, deep-dwelling organisms. X-radiographs indicate extensive biological reworking of sediments, with no long-term preservation of physical stratification.210Pb profiles reveal low sediment accumulation rates at both lower bay sites (<0·1 cm year−1), but significant differences in biological mixing depths (25vs40 cm) and biodiffusivity (>80vs6–30 cm2year−1). In contrast, the York River site, located within a partially-filled palaeochannel, is predominantly mud with a depauperate benthic community dominated by small, short-lived, shallow-dwelling organisms. Although210Pb accumulation rates at the York River site (<0·2 cm year−1) are similar to those measured in the lower bay, there is little bioturbation. In addition, transient bed forms at the York River site form laterally persistent, linear ridges and furrows sub-parallel to the channel, spaced 10–20 m apart. These observations, coupled with evidence of episodic erosion and deposition from radioisotope and porosity profiles, and X-radiographs, suggest that the upper 60–120 cm of the sea-bed are dominated by physical mixing. Deep mixing and low accumulation rates result in long residence times of particles in the mixed upper portion of the sea-bed (102year) at both locations, despite different mixing controls [i.e. biological (diffusive)vsphysical (advective)].  相似文献   

19.
Municipal wastes discharged through deepwater submarine outfalls since 1937 have contaminated sediments of the Palos Verdes Shelf. A site approximately 6–8 km downcurrent from the outfall system was chosen for a study of the diagenetic fate of organic contaminants in the waste-impacted sediments. Concentrations of three classes of hydrophobic organic contaminants (DDT+metabolites, polychlorinated biphenyls (PCBs), and the long-chain alkylbenzenes) were determined in sediment cores collected at the study site in 1981 and 1992. Differences between the composition of effluent from the major source of DDT (Montrose Chemical) and that found in sediments suggests that parent DDT was transformed by hydrolytic dehydrochlorination during the earliest stages of diagenesis. As a result, p,p′-DDE is the dominant DDT metabolite found in shelf sediments, comprising 60–70% of ΣDDT. The p,p-DDE/p,p′-DDMU concentration ratio decreases with increasing sub-bottom depth in sediment cores, indicating that reductive dechlorination of p,p′-DDE is occurring. Approximately 9–23% of the DDE inventory in the sediments may have been converted to DDMU since DDT discharges began ca. 1953. At most, this is less than half of the decline in p,p′-DDE inventory that has been observed at the study site for the period 1981–1995. Most of the observed decrease is attributable to remobilization by processes such as sediment mixing coupled to resuspension, contaminant desorption, and current advection. Existing field data suggest that the in situ rate of DDE transformation is 102–103 times slower than rates determined in recent laboratory microcosm experiments (Quensen, J.F., Mueller, S.A., Jain, M.K., Tiedje, J.M., 1998. Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science, 280, 722–724.). This explains why the DDT composition (i.e. o,p′-, p,p′-isomers of DDE, DDD, DDT) of sediments from this site have not changed significantly since at least 1972. Congener-specific PCB compositions in shelf sediments are highly uniform and show no evidence of diagenetic transformation. Apparently, the agents/factors responsible for reductive dechlorination of DDE are not also effecting alteration of the PCBs. Two types of long-chain alkylbenzenes were found in the contaminated sediments. Comparison of chain length and isomer distributions of the linear alkylbenzenes in wastewater effluent and surficial sediment samples indicate that these compounds undergo biodegradation during sedimentation. Further degradation of the linear alkylbenzenes occurs after burial despite relatively invariant isomer compositions. The branched alkylbenzenes are much more persistent than the linear alkylbenzenes, presumably due to extensive branching of the alkyl side chain. Based on these results, p,p′-DDE, PCBs, and selected branched alkylbenzenes are sufficiently persistent for use in molecular stratigraphy. The linear alkylbenzenes may also provide information on depositional processes. However, their application as quantitative molecular tracers should be approached with caution.  相似文献   

20.
To quantify recent sediment accumulation, carbon fluxes and cycling, three N.W. European Continental Margin transects on Goban Spur and Meriadzek Terrace were extensively studied by repeated box- and multicore sampling of bottom sediments. The recent sediment distribution and characteristics appear directly related to the near-bed hydrodynamic regime on the margin, which at the upper slope break on the Goban Spur results in along-slope and periodic off-slope directed transport of particles, possibly by entrainment of particles in a detached bottom or intermediate nepheloid layer. From the shelf to the abyssal plain the surface sediments on the Goban Spur change from terrigenous sandy shelf sediments into clayey silts. 210Pb activity decreases exponentially down core, reaching a stable background value at 10 cm (shallower stations) to 5 cm (deeper stations) sediment depth. 210Pb profiles of repeatedly sampled stations indicate negligible annual variability of mixing and flux. The 210Pbxs flux to the sediment shows a decreasing trend with increasing water depth. Below about 2000 m the average 210Pbxs flux is about 0.3 dpm cm−2 y−1, a third of the fluxes measured on the shelf and upper slope stations. Sediment mixing rates (Db) correlate with macro- and meiofaunal density changes and are within the normal oceanic ranges. Lower mixing rates on the lower slope likely reflect lower organic carbon fluxes there. Mass accumulation rates on Meriadzek Terrace are at maximum 80 g m−2 y−1, almost twice as high as at Goban Spur stations of comparable depth. A minimum accumulation rate of 16.6 g m−2 y−1 is found at the Goban Spur upper slope break. Organic carbon burial rates are low compared to other margins and range from a lowest value of 0.05 g m−2 y−1 at the upper slope break to 0.11 g m−2 y−1 downslope. A maximum organic carbon burial rate of 0.41 g m−2 y−1 is found on Meriadzek Terrace. Carbonate burial rates increase along the northern transect from the shelf (13 g m−2 y−1) via a low (9.3 g m−2 y−1) on the upper slope break to the deep sea (30.7 g m−2 y−1). Carbonate burial is highest on Meriadzek Terrace (44.5 g m−2 y−1). The N.W. European Margin at Goban Spur and Meriadzek Terrace cannot be considered a major carbon depocenter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号