首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An exceptionally well-exposed, ancient, intra-arc basin in the Permian Takitimu Group of New Zealand contains 14 km of interbedded primary volcanic and marine volcaniclastic rocks of basaltic to rhyodacitic composition. These are the products of subaerial and submarine arc volcanism and closely associated turbidite sedimentation. The Takitimu oceanic arc/basin setting formed a dynamic closed sedimentary system in which large volumes of volcaniclastic material generated at the arc was rapidly redeposited in marine basins flanking the eruptive centres. Volcanism probably included (1) moderate- to deep-water extrusion of lava and deposition of hyaloclastite, (2) extrusive and explosive eruptions from shallow marine to marginally emergent volcanoes in or on the margin of the basin, and (3) Plinian and phreato-Plinian eruptions from more distant subaerial vents along the arc. Much of the newly erupted material was rapidly transported to the adjacent marine basin by debris flows, slumping and sliding. Hemipelagic sedimentation predominated on the outer margin of the basin, infrequently interrupted by deposition of ash from the most explosive arc volcanism and the arrival of extremely dilute turbidites. Turbidite sedimentation prevailed in the remainder of the basin, producing a thick prograding volcaniclastic apron adjacent to the arc. The volcaniclastic strata closely resemble classic turbidite deposits, and show similar lateral facies variations to submarine fan deposits. Study of such sequences provides insight into poorly understood processes in modern arc-related basins.  相似文献   

2.
The Milos volcanic field includes a well-exposed volcaniclastic succession which records a long history of submarine explosive volcanism. The Bombarda volcano, a rhyolitic monogenetic center, erupted ∼1.7 Ma at a depth <200 m below sea level. The aphyric products are represented by a volcaniclastic apron (up to 50 m thick) and a lava dome. The apron is composed of pale gray juvenile fragments and accessory lithic clasts ranging from ash to blocks. The juvenile clasts are highly vesicular to non-vesicular; the vesicles are dominantly tube vesicles. The volcaniclastic apron is made up of three fades: massive to normally graded pumice-lithic breccia, stratified pumice-lithic breccia, and laminated ash with pumice blocks. We interpret the apron beds to be the result of water-supported, volcaniclastic mass-How emplacement, derived directly from the collapse of a small-volume, subaqueous eruption column and from syn-eruptive, down-slope resedimentation of volcaniclastic debris. During this eruptive phase, the activity could have involved a complex combination of phreatomagmatic explosions and minor submarine effusion. The lava dome, emplaced later in the source area, is made up of flow-banded lava and separated from the apron by an obsidian carapace a few meters thick. The near-vertical orientation of the carapace suggests that the dome was intruded within the apron. Remobilization of pyroclastic debris could have been triggered by seismic activity and the lava dome emplacement. Published online: 30 January 2003 Editorial responsibility: J. McPhie  相似文献   

3.
The upper Mesozoic and Cenozoic distribution of calcareous, biogenic particles which are produced by planktonic foraminifers and nannoplankton and which are the most important components of pelagic sediments since mid-Mesozoic times, has been reconstructed using data from North Atlantic deep-sea drill sites. Two phases of sedimentation of carbonate-rich sediments are separated by an interval from 100 to 80 m.y. B.P. when CaCO3 particles were diluted by chiefly terrigenous material. Prior to 100 m.y. B.P. the highest concentrations of calcareous matter were confined to the deepest part of the then 4–4.5 km deep North Atlantic. After 80 m.y. B.P. sediments with high concentrations of calcareous matter have been deposited above 3 km paleodepth, but during the last 25 m.y. also between 4 and 5.5 km paleo-water depth. The latter occurrence is associated with indications of downslope displacement of calcareous material into the abyssal plains of the deepest parts of the North Atlantic.  相似文献   

4.
The Aegean Sea covers an area of some 160×103 km2 and receives the water/sediment fluxes from a mountainous drainage basin of >200×103 km2. On the basis of its morphodynamic characteristics, the Aegean Basin could be divided into: (1) the North Aegean Sea, an elongated region (trending between N50° and N70°) including the extensive northern shelves and the Deep Aegean Trough; (2) the Central Aegean, which includes: the Cyclades Plateau, a relatively shallow (average depth <350 m) submerged platform, surrounded by small basins (up to 1000 m depth), including also the relatively extended eastern shelf of Asia Minor, and (3) the Southern Aegean Sea, located southwards of the Hellenic volcanic arc, which presents the characteristics of a true back-arc basin (the Cretan Sea).The surficial unconsolidated sediments of the north Aegean floor are dominated by the terrigenous component (from 50% up to >90%) due to the large terrigenous riverine fluxes. The South Aegean presents high percentages (>50%) of biogenic material, due to the small terrigenous inputs and despite the fact that it is more oligotrophic than the North Aegean. The Central Aegean presents a transitional character with the terrigenous influxes being imported along its eastern part and quantitatively being in between those of the North and South Aegean Sea sub-regions.The coarse-grained materials in shallow (shelf) areas are attributed to ‘relict’ deposits, while those in large water depths are almost exclusively biogenic products. The offshore distribution of the fine-grained terrigenous material is dominated by the overall circulation pattern, while meso-scale eddies may, locally, either enhance (anticyclones) or reduce (cyclones) settling rates. Moreover, the spatial distribution of the predominant clay minerals (illite and smectite) and of kaolinite and chlorite is governed by the lithology and proximity to land source areas, the water circulation and the processes of differential settling and flocculation.Overall, the North Aegean is characterised by sedimentation processes similar to those of a ‘continental margin’, primarily neritic and secondarily hemipelagic, the Central Aegean region mostly by hemipelagic and the South Aegean, behaving more like an ‘oceanic margin’, mostly by pelagic processes.  相似文献   

5.
Te Whaiau Formation is a massive volcaniclastic deposit interbedded within gravelly and sandy volcanogenic sediments of the northwestern Tongariro ring plain. The ca. 0.5-km3 deposit comprises a clay-rich, matrix-supported diamicton with lithological and physical properties that are typical of a cohesive debris-flow deposit. Clays identified in the matrix are derived from hydrothermally altered andesite lava and pyroclastic rocks. The distribution pattern of the deposit, and the nature of the clay matrix, point to a source area that was located in the vicinity of Mt. Tongariro's current summit (1967 m). Most of the proximal zone is buried under late Pleistocene lavas forming the northwestern flank of the massif. In contrast, the medial and distal zones are well exposed to the northwest in the Whanganui River catchment. Lithofacies exposed in these latter zones contain isolated volcaniclastic megaclasts and well-preserved, jointed blocks of andesite. Small hummocks, up to 5 m high, are present only in the distal margins of the deposit. Based on these observations, possible source areas and analogy with similar deposits elsewhere, we infer that Te Whaiau Formation was initiated as a fluid-saturated debris avalanche that transformed downstream into a single, cohesive debris flow. It is interpreted that the mass flow was initially confined to the northwestern flank of Tongariro before spreading laterally onto the lowlands to the northwest. The resulting heterolithological diamicton filled stream channels in the western sector of the Tongariro ring plain. At 15 km from source, the debris flow encountered an elevated terrain, which acted as a barrier to further spreading to the north. The stratigraphy of the cover beds and K/Ar data on an underlying lava indicate that Te Whaiau Formation was emplaced between 55 and 60 ka, a cool period characterized by intense volcaniclastic sedimentation around the Tongariro massif. Jigsaw-fit fractured volcanic bombs suggest that an explosive eruption through hydrothermally altered rock and pyroclastic deposits probably triggered the mass flow. The characteristics of the deposit indicate that a large portion of the proto-Tongariro edifice collapsed en masse to form the initial avalanche. Hence, we infer that the current morphology of Tongariro volcano is derived not only from glacial erosion, but also from gravitational failure. Prehistoric eruptions and current geothermal activity on the upper northern and western slopes of the Tongariro massif suggest that avalanche-induced debris flows must be considered a potential future volcanic hazard for the region.  相似文献   

6.
Late Paleocene–middle Miocene pelagic limestone/chert sequences from the Mineoka Tectonic Belt, Boso Peninsula, central Japan, were biostratigraphically studied for planktic foraminifer fossils for the first time. The rock units are included as several isolated blocks tectonically within the ophiolitic mélange together with the Mio-Pliocene Honshu arc-derived terrigenous and Izu Arc-derived volcaniclastic materials. The pelagic sequences are grouped into the newly proposed Kamogawa Group which is subdivided into the Paleocene Nishi Formation, Eocene–Oligocene Heguri-Naka Limestone and early–middle Miocene Shirataki and Heguri Formations. This study of Kamogawa Group pelagic sequences throws new light on tectonic modeling of plate accretion to the unique trench–trench–trench (TTT)-type triple junction area off the Boso Peninsula. Different formations of the Kamogawa Group have different tectonic and paleogeographic significances for the oceanic plate with a seamount that was approaching the Izu and Honshu arcs during Pacific plate subduction, and that was accreted to the Honshu Arc during the middle Miocene.  相似文献   

7.
After the severest mass extinction event in the Phanerozoic, biotic recovery from the extinction at the Permian–Triassic boundary required approximately 5 my, which covers the entire Early Triassic. It is important to obtain information on the superocean Panthalassa, which occupied most of the world ocean, to explore paleoenvironmental changes during the Early Triassic at the global scale. In order to establish the continuous lithostratigraphy of pelagic sediments in Panthalassa during the Early Triassic, high‐resolution reconstruction of the Lower Triassic pelagic sequence in Japan was conducted for the first time based on detailed field mapping and lithostratigraphic correlation in the Inuyama area, central Japan. The reconstructed Early Triassic sequence is approximately 9.5 m thick, consists of five rock types, and is divided into eight lithological units. For the reconstructed continuous sequence, measurement of carbon isotopic composition of sedimentary organic matter (δ13Corg) was carried out. Stratigraphic variation of the δ13Corg value shows large‐amplitude fluctuations between ?34.4 and ?21.0‰ throughout the sequence. In order to establish a higher resolution age model for the reconstructed Lower Triassic pelagic sequence, we correlated δ13Corg records in the Inuyama area with high‐resolution isotopic profiles of carbonate carbon (δ13Ccarb) from shallow‐marine carbonate sequences in southern China based on the similarity in general variation patterns with age constraints by radiolarian and conodont biostratigraphy. The result provides a high‐resolution time scale for the pelagic sequence of Panthalassa during the Smithian and Spathian. The age model suggests a drastic increase in sedimentation rate during the late Smithian, which should have been caused by the increase in terrigenous input to this site.  相似文献   

8.
南海大陆边缘盆地由于边界条件的差异,形成了离散型、走滑-伸展型和伸展-挠曲复合型3类陆缘盆地.这些盆地由于其构造演化差异性,导致了盆地沉积充填存在较大差异,相应地导致这些盆地油气成藏条件及油气资源量的巨大差异.南海北部离散型大陆边缘盆地主要发育湖相泥岩和海相泥岩烃源岩,尽管存在较好的湖相烃源岩,但由于各断陷分隔且面积较...  相似文献   

9.
The Parece Vela Basin is a back-arc basin. It is approximately 5000 m deep and is divided into two topographic provinces by the north-trending Parece Vela Rift. The western province is thinly sedimented and topographically rough. The eastern province is blanketed by a thick apron of volcaniclastic sediments which were derived from the West Mariana Ridge. The Parece Vela Rift is composed of a series of discrete deeps and troughs with depths commonly of 6 km and locally exceeding 7 km.Petrologic and seismic refraction data indicate that the Parece Vela Basin is of oceanic character.Low-amplitude, nort-trending, lineated magnetic anomalies are present in the basin and appear symmetric about a line near the Parece Vela Rift. In the central latitudes of the basin seafloor spreading anomalies 10 (30 m.y. B.P.) to 5E or 5D (18 or 17 m.y. B.P.) can be identified. The uncertainty in identifying the youngest anomaly may be due to ridge jumps near the end of spreading. Spreading may have started slightly later in the northern end of the basin. Anomalies in the eastern province are disrupted and are difficult to correlate. DSDP results indicate post-spreading volcanism on the eastern side of the basin and this may have degraded the anomalies. The age obtained in the western province of the basin at DSDP Site 449 (~25m.y. B.P.) is in close agreement with that obtained from the magnetic data (~26m.y. B.P.).It is hypothesized that subduction was occurring at a west-dipping subduction zone east of the Palau-Kyushu Ridge in the Early Oligocene. This volcanic arc split about 31 or 32 m.y. ago and interarc spreading was initiated between the Palau-Kyushu Ridge (which then became a remnant arc) and the West Mariana Ridge. The Parece Vela Basin formed between the ridges by two-limb seafloor spreading. Spreading stopped about 17 or 18 m.y. ago.Like certain other marginal basins, the Parece Vela Basin is deeper than predicted from depth vs. age curves. The average heat flow for the Parece Vela Basin is in agreement with that predicted from heat flow vs. age curves.The origin of the Parece Vela Rift is unclear. It may represent the extinct spreading center or may be a postspreading feature.  相似文献   

10.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents (ΣREE), LREE/HREE ratio and cerium anomaly (δCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio <1, δCe >0.85, ΣREE <400 μg/g, LREE/HREE ratio ≈4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio >1, δCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio ≈6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or ɛNd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to ɛNd values. Terrigenous clay minerals of type I with the ɛNd values of ™8 to ™6 originate mainly from North American fluvial deposits. Those of type II with the ε Nd values of ™9 to ™7 are mainly from the East Asia and North American fluvial deposits. Those of type III with ε Nd values of ™6 to ™3 could come from the central and eastern Pacific volcanic islands. Those of type IV with ε Nd values of ™13 to ™12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   

11.
Since late Tortonian, depositional sequences developed along the Southern Calabrian forearc, inside the half-graben depressions of the Mesima-Gioia Tauro and Reggio Calabria basins. In these basins volcaniclastic sedimentation took place during lower to middle Pleistocene. Volcaniclastic deposits consist of isolated pumice swarms, ash layers and thick successions of lapilli and ash.  相似文献   

12.
Ocean plate stratigraphy (OPS) within an ancient accretionary complex provides important information for understanding the history of an oceanic plate from its origin at a mid‐ocean ridge to its subduction at a trench. Here, we report a recently discovered chert–clastic sequence (CCS) that comprises a continuous succession from pelagic sediments to terrigenous clastics and which constitutes part of the OPS in the Akataki Complex within the Cretaceous Shimanto Accretionary Complex on the central Kii Peninsula, SW Japan. As well as describing this sequence, we present U–Pb ages of detrital zircons from terrigenous clastic rocks in the CCS, results for which show that the youngest single grain and youngest cluster ages belong to the Santonian–Campanian and are younger than the radiolarian age from the underlying pelagic sedimentary rock (late Albian–Cenomanian). Thus, the CCS records the movement history of the oceanic plate from pelagic sedimentation (until the late Albian–Cenomanian) to a terrigenous sediment supply (Santonian–Campanian).  相似文献   

13.
Geologic mapping on a scale of 1:10000 and detailed stratigraphic studies of lava flows and tephra deposits of the Arenal-Chato volcanic system reveal a complex and cyclic volcanic history. This cyclicity provides insight into the evolution of magma batches during the growth of the andesitic volcanic system. The Arenal and Chato volcanoes have a central zone comprised of a lava armor and a distal zone comprised of a tephra apron. During Arenal's last two eruptive periods major craters formed near intersections of regional fractures at the lava armortephra apron transition. We suggest that such intersections are potential sites for future major explosions. The earliest rocks, i.e., the Chato lava flows, range in composition from basaltic andesite to andesite. These rocks, except for the andesitic domes of Chatito and La Espina, appear to have evolved from a common parental magma. The last active period of Chato volcano occurred 3550 B. P. The earliest known activity of Arenal volcano is 2900 B. P. Arenal lava flows have 54–56 wt% SiO2 and may be subdivided into a high-alumina group (HAG, Al2O3 = 20 wt%) and a low-alumina group (LAG, Al2O3 = 19 wt%). Compared to the HAG, the LAG also has smaller amounts of incompatible elements and higher amounts of FeO and MgO. Arenal tephra deposits were emplaced by Plinian-Sub-Plinian explosions occurring at 300±150-yr intervals. These deposits are compositionally zoned and alternate between dacite and basalt. The stratigraphy reveals an apparent magmatic cycle consisting of (a) dacitic-andesitic tephra, (b) HAG lava flows, (c) LAG lava flows, and (d) andesitic-basaltic tephra. This magmatic cycle is repeated four times during Arenal's history and is interpreted to have developed by the crystal fractionation and crystal redistribution of a single magma batch. The period of this cycle, and consequently the life of a magma batch, is about 800 years. If the cyclic pattern continues, a basaltic explosive phase may occur in the next 250 years.  相似文献   

14.
The eruptions of the Soufrière Hills volcano on Montserrat (Lesser Antilles) from 1995 to present have draped parts of the island in fresh volcaniclastic deposits. Volcanic islands such as Montserrat are an important component of global weathering fluxes, due to high relief and runoff and high chemical and physical weathering rates of fresh volcaniclastic material. We examine the impact of the recent volcanism on the geochemistry of pre-existing hydrological systems and demonstrate that the initial chemical weathering yield of fresh volcanic material is higher than that from older deposits within the Lesser Antilles arc. The silicate weathering may have consumed 1.3% of the early CO2 emissions from the Soufrière Hills volcano. In contrast, extinct volcanic edifices such as the Centre Hills in central Montserrat are a net sink for atmospheric CO2 due to continued elevated weathering rates relative to continental silicate rock weathering. The role of an arc volcano as a source or sink for atmospheric CO2 is therefore critically dependent on the stage it occupies in its life cycle, changing from a net source to a net sink as the eruptive activity wanes. While the onset of the eruption has had a profound effect on the groundwater around the Soufrière Hills center, the geochemistry of springs in the Centre Hills 5 km to the north appear unaffected by the recent volcanism. This has implications for the potential risk, or lack thereof, of contamination of potable water supplies for the island’s inhabitants.  相似文献   

15.
16.
The earliest activity of Monte Vulture, central Italy, included ignimbrites but the bulk of the volcano was built up by plinian airfall deposits. Contemporaneous remobilisation of these deposits formed an apron of lahars around the base of the main cone. The volcano was constructed on a ridge; the valley to the east and tributaries to the north and south became sediment traps for volcaniclastic materials emplaced by fluvial reworking and directly from volcanic activity. To the west the valley was swept clear by active downcutting. Instability of the west flank as a result of this erosion was probably a contributory cause of major gravitational sector collapse on the volcano's flank, terminating the main cone-building phase. The resultant scar is an amphitheatre-shaped hollow called here the Valle dei Grigi. Previous workers have attributed this feature to coalescing calderas formed by engulfment. The last volcanic phase was the production of the Monticchio calderas and associated phreatomagmatic explosions producing airfall and surge deposits. Because most of the activity at Vulture has been repeated plinian eruptions producing similar assemblages of products, detailed stratigraphy of the volcano is difficult to accomplish. To characterise Vulture in terms of its products, various facies are identified and interpreted in relation to volcanic processes, distance from vent and environmental conditions.  相似文献   

17.
The Daeri Member, a Cretaceous volcanic–sedimentary succession, can be divided into lower, middle, and upper parts based on vertical changes in its lithologic characters. The lower Daeri Member is composed of siliciclastic deposits formed in a semi‐arid floodplain environment, which is overlain by the middle Daeri Member consisting mainly of andesite lava flow. After the emplacement of the andesite, activities of intrabasinal normal faults created accommodation on hanging wall blocks together with the development of intrabasinal topographic relief. The upper Daeri Member occurs only in hanging wall blocks and is composed of rhyolitic volcaniclastic sediments formed during an explosive volcanic eruption. Following the eruption, owing to semi‐arid climatic conditions and the destruction of vegetation, the eruptive materials were easily remobilized and deposited by episodic sediment gravity flows, resulting in deposition of the resedimented volcaniclastic deposits with sheet‐like geometry. Away from the intrabasinal normal faults, the resedimented volcaniclastic deposits show a decrease in grain size together with changes in inferred depositional processes from debris flows to hyperconcentrated flows and supercritical sheetfloods. This suggests that the resedimented volcaniclastic deposits were stacked on alluvial fan environments induced by intrabasinal topographic relief associated with normal fault activities. In addition, episodic movement of the faults gave rise to periodic fluctuation of the accommodation and an increase in gradient of the alluvial fan surface, resulting in the development of coarsening‐upward trends in the resedimented volcaniclastic deposits. The development of the alluvial fan and the coarsening‐upward trends indicate that dynamic tectonic subsidence and concomitant changes in the intrabasinal physiographic relief influenced the depositional processes and sizes of the transported volcaniclastic sediments of the upper Daeri Member. Thus, it is necessary to carefully observe tectonic signatures in volcaniclastic successions, particularly the syneruptive lithofacies, in order to reconstruct the tectonic and volcanic histories of receiving basins.  相似文献   

18.
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and 143Nd/144Nd. Montmorillonite/illite ratio (M/I ratio), total REE contents ((REE), LREE/HREE ratio and cerium anomaly (бCe) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio >1, бCe (0.85, (REE (400 μg/g, LREE/HREE ratio (4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio <1, бCe=0.86 to 1.5, ΣREE=200 to 350 μg/g, LREE/HREE ratio (6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The 143Nd/144Nd ratios or (э)Nd values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to (э)Nd values. Terrigenous clay minerals of type I with the (э)Nd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type II with the (э)Nd values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with (э)Nd values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with (э)Nd values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.  相似文献   

19.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   

20.
Marine geology of the Medriff Corridor, Mediterranean Ridge   总被引:1,自引:0,他引:1  
Abstract Thirty-one piston and/or gravity cores not exceeding 10 m in length were raised in selected areas of a 300 km-long transect (Medriff Corridor) crossing the Mediterranean Ridge, an accretionary complex subject to continent/continent collision, containing an important evaporitic body (Messinian evaporites), in order to ground-truth the geological make-up. Core location, very accurate with reference to a complex bottom configuration, was preceded by swathe mapping, seismic profiling and side-scan sonar investigations. Most sediment cores have a pelagic facies, with biogenic marls as dominant lithology, and sapropels and tephras as minor, isochronous lithologies. A combination of isochronous lithologies and calcareous plankton biochronology permits high resolution stratigraphic correlations. Pelagic facies sediments are Middle Pleistocene to Holocene in age. Two cores associated with mounds located along thrusts contain a matrix-supported mud breccia of deep provenance, Burdigalian-Langhian in age, similar to that characteristic of the Mediterranean Ridge diapiric belt (Cita et al. 1995 ). Three new brine-filled anoxic basins (Urania, l'Atalante and Discovery) were discovered. The brines originated from submarine dissolution of Messinian evaporites and are different in the various basins. The sedimentary record strongly differs from basin to basin. These brine lakes are very young (35 000 years or less). A drastic change in sedimentation rate recorded in the Discovery Basin suggests that basin collapse was sudden and followed by progressive development of basin anoxia. Some cores were analyzed with a prototype multisensor for P-wave velocity, magnetic susceptibility and density. Sapropels show up as abrupt decreases in P-wave velocity and density, and tephra as sudden increases in magnetic susceptibility. Mud breccia displays P-wave velocities greater than pelagic marls, with peaks related to lithic clasts. Anoxic sediments have high P-wave velocities; peaks are associated with gypsum crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号