首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Samples of all five of the known C1 chondrites have been analyzed thermomagnetically. The only magnetic phase found in four of the chondrites (Alais, Ivuna, Orgueil, Tonk) was magnetite containing less than 6% nickel. The Revelstoke C1 chondrite contains essentially Ni-free Fe3O4 as the predominant phase; however, a small amount of a thermally unstable iron compound (presumably FeS) is additionally present. Estimates of the weight percentage of magnetite, based on saturation moments, are: Alais, 5.3 ± 0.4%; Ivuna, 12.2 ± 0.9%; Orgueil, 11.9 ± 0.8%; Revelstoke, 7.2 ± 0.5%; and Tonk, 9.4 ± 0.6%. The first three estimates are based on multiple analyses and are considered to be grossly representative of the meteorites as a whole. The last two estimates are based on single-sample measurements and should be considered only in that context. The magnetite of the Alais sample appears to be somewhat unusual inasmuch as it is inhomogeneously distributed, and its content is only about half that of the average C1 chondrite.  相似文献   

2.
Thermomagnetic analysis was made on samples of all known C3 and C4 chondrites in a controlled oxygen atmosphere. Considerable variation was noted in the occurrence of magnetic minerals, comparable to the variation observed earlier in the C2 chondrites. Magnetite was found as the only major magnetic phase in samples of only three C3 chondrites (2–4 wt.%) and the Karoonda C4 chondrite (7.7 wt.%). The magnetite content of these three C3 chondrites is only about one-third that observed in the C1 and C2 chondrites which were found to contain magnetite as the only magnetic phase. Five C3 chondrites were observed to undergo chemical change during heating, producing magnetite: this behavior is characteristic of troilite oxidation. Upper limits on initial magnetite content of about 1–9% were established for these meteorites. Samples of the remaining five C3 chondrites and the Coolidge C4 chondrite were found to contain both magnetite and metallic iron. In two samples, iron containing ≤2% Ni was observed, while in the other four, the iron contained 6–8 wt.% Ni. In addition to containing both magnetite and iron metal, three of these samples reacted during heating to form additional magnetite. Variations in the magnetic mineralogy and, hence by inference bulk mineralogy, of C3 and C4 chondrites indicate a more complex genesis than is evident from whole-rock elemental abundance patterns.  相似文献   

3.
A bimodal volcanic suite with KAr ages of 0.05–1.40 Ma was collected from the Sumisu Rift using alvin. These rocks are contemporaneous with island arc tholeiite lavas of the Izu-Ogasawara arc 20 km to the east, and provide a present day example of volcanism associated with arc rifting and back-arc basin initiation. Major element geochemistry of the basalts is most similar to that of basalts found in other, more mature back-arc basins, which indicates that back-arc basins need not begin their magmatic evolution with lavas bearing strong arc signatures.Volatile concentrations distinguish Sumisu Rift basalts from island arc basalts and MORB. H2O contents, which are at least four times greater than in MORB, suppress plagioclase crystallization. This suppression results in a more mafic fractionating assemblage, which prevents Al2O3 depletion and delays the initiation of Fe2O3(tot) and TiO2 enrichment. However, unlike arc basalts,Fe3+/ΣFe ratios are only slightly higher than in MORB and are insufficient to cause magnetite saturation early enough to suppress Fe2O3(tot) and TiO2 enrichment. Thus, major element trends are more similar to those of MORB than arcs.H2O, CO2 and S are undersaturated relative to pure phase solubility curves, indicating exsolution of an H2O-rich mixed gas phase. HighH2O/S, highδD, and low (MORB-like)δ34S ratios are considered primary and distinctive of the back-arc basin setting.  相似文献   

4.
A new phase which is much denser than the component oxides of spinel (MgAl2O4) was synthesised at loading pressures greater than 250 kbar and at about 1000°C in a diamond-anvil press coupled with laser heating. The new phase (ε-MgAl2O4) was indexed on the basis of an orthorhombic cell with a = 8.507 ± 0.004, b = 2.740 ± 0.003, c = 9.407 ± 0.005Å, and Z = 4 at room temperature and 1 bar pressure. Thus the molar volume for ε-MgAl2O4 at the above conditions was calculated to be 33.01 ± 0.07 cm3, which is 10.3% less than that of the mixture corundum plus periclase. The dense phase of spinel found in shock-wave experiments can be reasonably interpreted as ε-MgAl2O4, and this may be a potentially important mineral component of the earth's lower mantle. The new structure may also provide a possible candidate for the dense phases of Fe3O4 and Mg2SiO4 which were found by shock experiments.  相似文献   

5.
High-temperature experiments on ferromagnesian compositions have been hampered by the rapid absorption of up to 95% of the original iron by platinum and 40% by silver-palladium capsules. Molybdenum or iron capsule materials can decrease or alleviate iron loss, but restrict oxygen fugacities to values near the iron-wustite buffer. Because Co2+ is stable at fO2 =HM and because the solubility of Co in platinum in this range of fO2 is ~0.05% at temperatures to 1350°C, its use as an analogue for Fe2+ is possible. In addition, experiments simulating various Fe2+ ratios can be easily performed by choosing appropriate Co2+/Fe3+ ratios. The cobalt phases produced possess brilliant and distinctive colors which are valuable aids in optical identification of minute phases. The cobalt analogue hypothesis was tested with atmospheric pressure experiments in air on the cobalt analogue of the 1921 Kilauea basalt at three simulated Fe2+/Fe3+ ratios. The results were compared with those of R.E.T. Hill (1969) for the natural 1921 basalt. The phase relations were the same, with the cobalt system stability fields systematically shifted by about +50°C. Microprobe analysis of olivines and the coexisting glasses indicate that the distribution of Co2+ between olivine and melt is independent of temperature and liquid composition. Although the analogue liquid composition differs from the equilibrium composition of the natural system, it may be corrected be employing distribution coefficients (KD = 0.61 for the Co system; KD = 0.33 for the Fe system) to closely approximate what the natural system would yield if iron loss did not occur.  相似文献   

6.
A study has been made of the magnetic properties of a suite of continental serpentinites from Burro Mountain, California. The chemistry of this set of samples has been previously studied, enabling the magnetic properties to be compared to the chemical changes which occurred during serpentinization. Two distinct magnetic phases have been recognized. The first is extremely stable but does not appear to contribute significantly to the natural remanent magnetization of the most strongly magnetized samples. The second phase is clearly multi-domained magnetite having a well-defined transition in its coercivity near 120°K. However, this second phase is not apparent in either the least serpentinized or the most serpentinized of the samples studied. The magnetic data argue strongly for the existence of two types of serpentinites; the first is magnetized dominantly by a stable component which we suggest may be Ni3Fe, the second is magnetized Fe3O4 with unstable magnetization. There is no clear connection between the appearance of the stable component and the amount of serpentinization.  相似文献   

7.
By using the diamond-anvil pressure cell coupled with laser heating, Ca2GeO4 in the K2NiF4-type structure has been found to decompose into the mixture Ca3Ge2O7 plus CaO at pressures greater than 200 kbar and at about 1000°C, and the same type of structure for Ca2MnO4 has been found to decompose into the mixture CaMnO3 (perovskite) plus CaO at pressures greater than 100 kbar and at about 1400°C. The decomposition product of Ca3Ge2O7 is a new compound which is isostructural with Sr3Ti2O7 and has the lattice parameters of a = 3.72 ± 0.01 and c = 19.32 ± 0.05 A? at room temperature and 1 bar pressure. The results of the study of Ca2GeO4 and Ca2MnO4 (both with the K2NiF4-type structure) strongly support the view that compounds possessing the K2NiF4-type structure are unstable relative to corresponding mixtures possessing the perovskite and rocksalt structures. It is concluded that, in the earth's mantle, the K2NiF4-type Ca2SiO4 would ultimately decompose into the mixture CaSiO3 (perovskite) + CaO or would otherwise transform to other as-yet-unknown phase(s), and that the mixture of MgSiO3 (perovskite) + MgO (the post-spinel phase of Mg2SiO4) would not adopt the K2NiF4-type structure.  相似文献   

8.
Magnetic properties and crystal structure parameters of synthetic solid solutions Fe3O4Fe3TiO4, Fe2O4MgFe2O4 and Fe3O4Mg2TiO4 have been studied. Basic regularities in the behaviour of saturation magnetisation (Is), Curie temperature (TC) and cubic lattice parameter a during the substitution of Ti and Mg ions for Fe ions have been found. As the concentration of Ti ions increases, Is reduces from 70 Gs·cm3 g?1 to 0, TC changes from 580 to 130°C and a from 8.391 to 8.520 Å. Growth of the Mg concentration leads to changes in Is to 19.8 Gs·cm3, g?1, TC, to 440°C and a, to 8.360 Å. The full Fe ions substitution gives “a”=8.440 A?.Chemical compositions of the samples, in which the valency variation of Fe ions at oxidation leads to an increase in susceptibility and TC, have been determined.  相似文献   

9.
Pyroxene-garnet solid-solution equilibria have been studied in the pressure range 41–200 kbar and over the temperature range 850–1,450°C for the system Mg4Si4O12Mg3Al2Si3O12, and in the pressure range 30–105 kbar and over the temperature range 1,000–1,300°C for the system Fe4Si4O12Fe3Al2Si3O12. At 1,000°C, the solid solubility of enstatite (MgSiO3) in pyrope (Mg3Al2Si3O12) increases gradually to 140 kbar and then increases suddenly in the pressure range 140–175 kbar, resulting in the formation of a homogeneous garnet with composition Mg3(Al0.8Mg0.6Si0.6)Si3O12. In the MgSiO3-rich field, the three-phase assemblage of β- or γ-Mg2SiO4, stishovite and a garnet solid solution is stable at pressures above 175 kbar at 1,000°C. The system Fe4Si4O12Fe3Al2Si3O12 shows a similar trend of high-pressure transformations: the maximum solubility of ferrosilite (FeSiO3) in almandine (Fe3Al2Si3O12) forming a homogeneous garnet solid solution is 40 mol% at 93 kbar and 1,000°C.If a pyrolite mantle is assumed, from the present results, the following transformation scheme is suggested for the pyroxene-garnet assemblage in the mantle. Pyroxenes begin to react with the already present pyrope-rich garnet at depths around 150 km. Although the pyroxene-garnet transformation is spread over more than 400 km in depth, the most effective transition to a complex garnet solid solution takes place at depths between 450 and 540 km. The complex garnet solid solution is expected to be stable at depths between 540 and 590 km. At greater depths, it will decompose to a mixture of modified spinel or spinel, stishovite and garnet solid solutions with smaller amounts of a pyroxene component in solution.  相似文献   

10.
Graphite comprises about 2% of some of the 3.8-AE metamorphosed sedimentary rocks of Isukasia, west Greenland. δ13CPDB of carbon in this graphite ranges from ?16.0 to ?9.3‰. For those samples that contain both graphite and siderite, Δcarbonate-graphite is about 6; this fractionation is consistent with an inorganic equilibrium between siderite and graphite at roughly 400–500°C. It is likely that graphite found in these rocks formed by the reaction: 6FeCO3 = 2Fe3O4 + 5CO2 +C in which case it is of little help in determining whether or not organisms were active 3.8 AE ago. The presence of quartz-magnetite-cummingtonite-iron formation in the Isukasia metasedimentary sequence may, ultimately, be one of the most powerful environmental indicators remaining in these rocks.  相似文献   

11.
High temperature calorimetric measurements of the enthalpies of solution in molten if2 PbO · B2O3 of α- and γ-Fe2SiO4 and α-, β-, and γ-Co2SiO4 permit the calculation of phase relations at high pressure and temperature. The reported triple point involving α-, β-, and γ-Co2SiO4 is confirmed to represent stable equilibrium. The curvature in the α?β phase boundary in Co2SiO4 and of an α?γ boundary in Fe2SiO4 at high temperature is explained in part by the effects of compressibility and thermal expansion, but better agreement with the observed phase diagram is obtained when one considers the effect of small amounts of cation disorder in the spinel and/or modified spinel phases. The calculated ΔH0 and ΔS0 values for the α?β, α?γ, and β?γ transitions show that enthalpy and en changes both vary strongly in the series Mg, Fe, Co, and Ni, and are of equal importance in determining the stability relations. The disproportionation of Fe2SiO4 and Co2SiO4 spinel to rocksalt plus stishovite is calculated to occur in the 170–190 kbar region; cation disorder and/or changes in wüstite stoichiometry can affect the P?T slope. The calorimetric data for CoSiO3 and FeSiO3 are in good agreement with the observed phase boundary for pyroxene formation from olivine and quartz. The decomposition of pyroxene to spinel and stishovite at pressures near the coesite-stishovite transition is predicted in both iron and cobalt systems. The use of calorimetric data, obtained from small samples of high pressure phases, is very useful in predicting equilibrium phase diagrams in the 50–300 kbar range.  相似文献   

12.
The fO2 stability relations of ilmenite and ulvöspinel were determined using C-O H-N gas-flow apparatus with fO2 measured by a solid ceramic (calcia-zirconia) oxygen electrolyte cell. For Fe+TiO2 + 1/2 O2 =FeTiO3 (from 850°–1050°C), 1/2 log fO2=(−11,250/T) + 0.98 and for Fe+FeTiO3 + 1/2 O2 =Fe2TiO4 (from 850°–1210°C), 1/2 logfO2 = (−12,170/T) + 1.93. These curves lie at significantly higher values of ?O2 than determined by previous investigators (i.e., 3/4 and1/4 order of magnitude for ilmenite and ulvöspinel, respectively). In addition, for Fe+ 2TiO2 + 1/2 O2 =FeTi2O5 (1210°C), ΔGr0=−45.8 ± 0.6 kcal. The QFI curve crosses the ulvöspinel reduction curve at ∼950°C and is at lower values of fO2 below this temperature. The occurrences of fayalite reduction to SiO2 + Fe in lunar rock 14053, as well as a new finding of this assemblage in 14072, are evidence for extreme sub-solidus reduction, whereas ulvöspinel breakdown alone occurs under less reducing conditions. The ‘complete’ reduction of ulvöspinel to TiO2 + Fe occurs in 2 steps: first, to ilmenite + Fe and then, however more slowly, to rutile + Fe. Thus, the presence of ulvöspinel but lack of ilmenite reduction in lunar rocks cannot be used as evidence that the fO2 was between the associated curves — only upper limits of fO2 can be inferred.  相似文献   

13.
Atmospheres of different oxidation potentials were used to equilibriate samples at 1300°C starting with a stoichiometric composition xFe2TiO4·(1 ? x) Fe3O4 where x = 0.3 and 0.6. Samples were selected which appeared homogeneous in polished section and gave only spinel-type X-ray reflections. All specimens were found to have small amounts of included material of higher Curie point than the bulk material. Specimens were made by dispersing grains of known size in a non-magnetic matrix and the hysteresis properties were measured for these speciméns.  相似文献   

14.
The high pressure spinel polymorph of Ni2SiO4 persists metastably at 713°C and atmospheric pressure. The enthalpy of the olivine-spinel transition was obtained by measuring the heats of solution of both polymorphs in a molten oxide solvent, 2PbO · B2O3, at that temperature. For Ni2SiO4(ol)→Ni2SiO4, ΔH9860 = +1.4 ± 0.7kcal/mol. The heat content increments, H986 ? H297, were found to be: olivine, 25.73 ± 0.42kcal/mol, and spinel, 25.39 ± 0.20kcal/mol. The measured enthalpy of the transformation is consistent with the low slope of the phase boundary, ?P/?T = ~ 12b/deg, observed by Akimoto and others. The entropy of the olivine-spinel transition in Ni2SiO4 is accordingly about a factor of three smaller in magnitude (ΔS = ~ ?1cal/deg mol) than that for Co2SiO4,Fe2SiO4,Mg2SiO4or Mg2GeO4 (ΔS = ?3to?3.5cal/deg mol).  相似文献   

15.
The transformation of acicular γ Fe2O3 particles to α Fe2O3 has been monitored using magnetic properties as a proxy for γ Fe2O3 concentration during the inversion process. The transformation is thermally activated, the height of the barrier opposing inversion being 3.7 eV at atmospheric pressure and 0.5 eV at a pressure of about 100 MPa. The barrier arises from the combination of a term representing the reduction in lattice energy in an inverted region, and the strain energy associated with the interface between the inverted and non-inverted phases. The sensitivity of the inversion process to pressure can be understood in terms of the dependence of these energy terms, and the energy barrier, on interatomic spacing. Extrapolation of these laboratory data to the conditions of the submarine crust at Site 504B of the Deep Sea Drilling Project is consistent with the inferred magnetic mineralogy of the recovered material.  相似文献   

16.
Stoichiometric titanomagnetites Fe3?xTixO4 with compositions between x = 0 (magnetite) and x = 0.72 (a titanomagnetite having a Curie temperature of 60°C) have been synthesised using the double-sintering technique in controlled atmospheres. The quality of these materials was tested by various mineralogical and magnetic measurements. Isolated small multidomain (MD) and pseudo-single-domain (PSD) particles within pores of the bulk material were investigated with respect to their domain structures, and threshold sizes for the transition from the PSD to the SD stage determined for titanomagnetites of various compositions by extrapolation from the domain state of small MD grains. The threshold size was found to be 0.7 and 0.5 μm, respectively, for TM72 (x = 0.72) and TM62 (x = 0.62). The threshold size decreases slightly for smaller x values; however, the experimental data obtained to date are not sufficiently reliable to yield precise results.Preliminary experiments concerning hysteresis loops and TRM generation are also reported.  相似文献   

17.
The ranges of δ18O and δ17O in components of the Murchison (C2) chondrite exceed those in all other meteorites analyzed. Previous authors have proposed that C2 chondrites are the products of aqueous alteration of anhydrous silicates. A model is presented to determine whether the isotopic variations can be understood in terms of such alteration processes. The minimum number (two) of initial isotopic reservoirs is assumed. Two major stages of reservoir interaction are required: one at high temperature to produce the16O-mixing line observed for the anhydrous minerals, and another at low temperature to produce the matrix minerals. The isotopic compositions severely constrain the conditions of the low-temperature process, requiring temperatures < 20°C and volume fractions of water > 44%. Extension of the model to the data on C1 chondrites requires aqueous alteration in a warmer, wetter environment.  相似文献   

18.
High-pressure phase relations in the system NaAl3Si3O11–CaAl4Si2O11 were examined at 13–23 GPa and 1600–1900 °C, using a multianvil apparatus. A Ca-aluminosilicate with CaAl4Si2O11 composition, designated CAS phase, is stable above about 13 GPa at 1600 °C. In the system NaAl3Si3O11–CaAl4Si2O11, the CAS phase dissolving NaAl3Si3O11 component coexists with jadeite, corundum and stishovite below 22 GPa, above which the CAS phase coexists with Na-rich calcium ferrite, corundum and stishovite. At 1600 °C, the solubility of NaAl3Si3O11 component in the CAS solid solution increases with increasing pressure up to about 50 mol% at about 22 GPa, above which the solubility decreases with pressure. The maximum solubility of NaAl3Si3O11 component in the CAS phase increases with temperature up to around 70 mol% at 1900 °C at 22 GPa. The dissociation of NaAlSi2O6 jadeite to NaAlSiO4 calcium ferrite plus stishovite occurs at about 22 GPa. Lattice parameters of the CAS phase with the hexagonal Ba-ferrite structure change with increase of the NaAl3Si3O11 component: a-axis decreases and c-axis slightly increases, resulting in decrease of molar volume. Enthalpies of the CAS solid solutions were measured by high-temperature drop-solution calorimetry techniques. The results show that enthalpy of hypothetical NaAl3Si3O11 CAS phase is much higher than the mixture of NaAlSi2O6 jadeite, corundum and stishovite and is close to that of the mixture of NaAlSiO4 calcium ferrite, corundum and stishovite. When we adopt the Na:Ca ratio of 75:25 of the natural Na-rich CAS phase in a shocked Martian meteorite, Zagami, the phase relations determined above suggest that the natural CAS phase crystallized from melt at pressure around 22 GPa and temperature close to or higher than 2000–2200 °C. The inferred P, T conditions are consistent with those estimated using other high-pressure minerals in the shocked meteorite.  相似文献   

19.
Small euhedral chromite crystals are found in olivine macrophenocrysts (Fo80–84) from the basaltic andesites (150 ppm Cr) erupted in 1943–1947, and in orthopyroxene macrophenocrysts of the andesites (75 ppm Cr) erupted in 1947–1952. The majority of the chromite octahedra are 5–20 μm in diameter, and some are found in clusters and linear chains of three or more oriented chromite crystals. The composition of the majority of the chromite grains within olivine and orthopyroxene macrophenocrysts is Fe2+/(Fe2++Mg)=0.5–0.6, Cr/(Cr+Al)=0.5–0.6 and Fe3+/(Fe3++Al+Cr)=0.2–0.3. The chromite crystals in contact with the groundmass are larger, subhedral, and grade in composition from chromite cores to magnetite rims. Comparison of the composition of chromite with those of other volcanic rocks shows that the most primitive Paricutin chromite is richer in total iron and higher in Fe3+/(Fe3++Al+Cr) than primary chromite in most lavas. The linear chains of oriented chromite octahedra are found in olivine and orthopyroxene macrophenocrysts, and in the groundmass. These chromite chains are thought to result from diffusion-controlled crystallization because of the very high partition coefficient (1000) of Cr between chromite and melt. We conclude that chromite was a primary phase in the lavas at the time of extrusion and that magnetite only crystallized after extrusion during cooling of the lava flows. The presence of chromite microphenocrysts in andesitic lavas containing as little as 70 ppm Cr can be explained by dissolved H2O in the melt depressing the liquidus temperature for orthopyroxene such that chromite becomes a liquidus phase. The influence of dissolved H2O can also explain the lack of plagioclase macrophenocrysts in most of the lavas and the relatively high partition coefficient (20) of Ni between olivine and melt and the high partition coefficient (40) of Cr between orthopyroxene and melt. The liquidus temperature of the basaltic andesite is estimated to have been less than 1140°C, assuming H2O>1 wt.%, and the log fO2 to have been above that of the QFM buffer. The chromite and orthopyroxene liquidus temperature of the andesites, assuming H2O>1 wt.%, is estimated to have been 1100°C or less. The derivation of the later andesites from the earlier basaltic andesites has been explained by a combination of fractional crystallization of olivine, orthopyroxene and plagioclase, and assimilation of xenoliths. The significantly lower Cr, Ni and Mg of the andesites may have been in part due to the separation of olivine macrophenocrysts plus enclosed chromite crystals from the earlier basaltic andesites.  相似文献   

20.
Phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 were examined at pressures of 19-27 GPa and relatively low temperatures of 800-1000 °C using a multianvil apparatus to clarify phase transitions of pyroxene-garnet assemblages in the mantle. Both of glass and crystalline starting materials were used for the experiments. At 1000 °C, garnet solid solution (s.s.) transforms to aluminous ilmenite s.s. at 20-26 GPa which is stable in the whole compositional range in the system. In Mg4Si4O12-rich composition, ilmenite s.s. transforms to a single-phase aluminous perovskite s.s., while Mg3Al2Si3O12-rich ilmenite s.s. dissociates into perovskite s.s. and corundum s.s. These newly determined phase relations at 1000 °C supersede preliminary phase relations determined at about 900 °C in the previous study. The phase relations at 1000 °C are quite different from those reported previously at 1600 °C where garnet s.s. transforms directly to perovskite s.s. and ilmenite is stable only very close to Mg4Si4O12. The stability field of Mg3Al2Si3O12 ilmenite was determined at 800-1000 °C and 25-27 GPa by reversed phase boundaries. In ilmenite s.s., the a-axis slightly increases but the c-axis and molar volume decrease substantially with increasing Al2O3 content. Enthalpies of ilmenite s.s. were measured by differential drop-solution calorimetry method using a high-temperature calorimeter. The excess enthalpy of mixing of ilmenite s.s. was almost zero within the errors. The measured enthalpies of garnet-ilmenite and ilmenite-perovskite transitions at 298 K were 105.2±10.4 and 168.6±8.2 kJ/mol, respectively, for Mg4Si4O12, and 150.2±15.9 and 98.7±27.3 kJ/mol, respectively, for Mg3Al2Si3O12. Thermodynamic calculations using these data give rise to phase relations in the system Mg4Si4O12-Mg3Al2Si3O12 at 1000 and 1600 °C that are generally consistent with those determined experimentally, and confirm that the single-phase field of ilmenite expands from Mg4Si4O12 to Mg3Al2Si3O12 with decreasing temperature. The earlier mentioned phase relations in the simplified system as well as those in the Mg2SiO4-Fe2SiO4 system are applied to estimate mineral proportions in pyrolite as a function of depth along two different geotherms: one is a horizontally-averaged temperature distribution in a normal mantle, and the other being 600 °C lower than the former as a possible representative geotherm in subducting slabs. Based on the previously described estimated mineral proportions versus depth along the two geotherms, density and compressional and shear wave velocities are calculated as functions of depth, using available mineral physics data. Along a normal mantle geotherm, jumps of density and velocities at about 660 km corresponding to the post-spinel transition are followed by steep gradients due to the garnet-perovskite transition between 660 and 710 km. In contrast, along a low-temperature geotherm, the first steep gradients of density and velocities are due to the garnet-ilmenite transition between 610 and 690 km. This is followed by abrupt jumps at about 690 km for the post-spinel transition, and steep gradients between 700 and 740 km that correspond to the ilmenite-perovskite transition. In the latter profile along the low-temperature geotherm, density and velocity increases for garnet-ilmenite and ilmenite-perovskite transitions are similar in magnitude to those for the post-spinel transition. The likely presence of ilmenite in cooler regions of subducting slabs is suggested by the fact that the calculated velocity profiles along the low-temperature geotherm are compatible with recent seismic observations indicating three discontinuities or steep velocity gradients at around 600-750 km depth in the regions of subducting slabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号