首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Laboratory rainfall simulation experiments using a small artificial olive tree are used to show that the fraction of rain falling at a constant intensity that becomes stemflow rises from 9% at 2.5 mm/h to 36.1% at 35 mm/h. Natural rainfall events commonly exhibit wide fluctuations of intensity. Simulated rainfall events each having a mean intensity of 10 mm/h, but containing short intensity peaks of 20 to 100 mm/h at varying intra‐event positions, were used to explore the effect of varying intensity profiles. Results demonstrate that changes in rainfall event profile are associated with wide variation in stemflow flux, stemflow volume and stemflow fraction. When applied to an initially dry plant, rainfall events with a late intensity peak yielded an average peak stemflow flux up to 188% larger than events of contrasting profile, such as early peak events. The increase was smaller, up to 141%, when rain was applied to plants that were already partially wet, but was again found in events with a late intensity peak. Moreover, such events yielded a peak stemflow flux up to approximately seven times larger than comparable events of uniform intensity. Likewise, changing event profile with no change in rainfall depth was associated with a maximum stemflow fraction that was 31% larger than theminimum stemflow fraction, and a maximum stemflow volume that was nearly 37% larger than the minimum stemflow volume. These results suggest that rainfall event profile exerts a significant effect on all of the studied stemflow parameters. It is hypothesized that this is a consequence of the way in which intensity profile affects the rate of wetting‐up of trickle pathways on the plant, and variation in the time taken for these pathways to become fully connected. Event profile must therefore be considered along with plant architecture in seeking to understand stemflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
David Dunkerley 《水文研究》2014,28(22):5469-5482
This paper presents the first experimental study of how rainfall intensity and event profile affects stemflow behaviour on the rigid branches and stems of leafless, woody plants. Constant intensity rainfall simulation experiments showed that stemflow fraction rises with intensity. Varying intensity experiments showed that the stemflow fraction and stemflow flux vary with the rainfall event intensity profile and peak intensity. Stemflow fraction tends to be larger when intensity peaks occur early in the rainfall event, and variable intensity events exhibited peak stemflow fluxes >3 times those seen in constant intensity events. Moreover, experiments in which incident drop energy was reduced by a mesh screen suspended above the test plant commonly showed increases of >100% (and exceeding 300% under particular intensity profiles) in stemflow fraction, depth and peak stemflow flux. The results suggest that the development of trickle pathways along woody branches is facilitated by rain of moderate intensity and that splash dislodgement of attached water progressively reduces the adhesion of drops during intense rainfall. Thus, in plants with extensive woody branches, it is not merely rainfall intensity that determines stemflow fraction but the temporal variations in rainfall intensity. This offers a new explanation for increased stemflow production when trees are leafless, than when foliage is present, in terms of the reduced intensity peaks during rain in the dormant season. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Simulated rainfall of fluctuating intensity was applied to runoff plots on bare dryland soils in order to explore a new method for analysing the non‐steady‐state responses of infiltration and overland flow. The rainfall events all averaged 10 mm/h but included intensity bursts of up to 70 mm/h and lasting 5–15 min, as well as periods of low intensity and intermittency of up to 25 min. Results were compared with traditional steady‐state estimates of infiltrability made under simulated rainfall sustained at a fixed intensity of 10 mm/h. Mean event infiltration rate averaged 13.6% higher under fluctuating intensities, while runoff ratios averaged only 63% of those seen under constant intensity. In order to understand the changing soil infiltrability, up to three affine Horton infiltration equations were fitted to segments of each experiment. All equations had the same final infiltrability fc, but adjusted values for coefficients f0 (initial infiltrability) and Kf (exponential decay constant) were fitted for periods of rainfall that followed significant hiatuses in rainfall, during which subsurface redistribution allowed near‐surface soil suction to recover. According to the fitted Horton equations, soil infiltrability recovered by up 10–24 mm/h during intra‐event rainfall hiatuses of 15 to 20‐min duration, contributing to higher overall event infiltration rates and to reduced runoff ratios. The recovery of infiltrability also reduced the size of runoff peaks following periods of low intensity rainfall, compared with the predictions based on single Horton infiltration equations, and in some cases, no runoff at all was recorded from late intensity peaks. The principal finding of this study is that, using a set of affine equations, the intra‐event time variation of soil infiltrability can be tracked through multiple intensity bursts and hiatuses, despite the lack of steady‐state conditions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The variability of rainfall in space and time is an essential driver of many processes in nature but little is known about its extent on the sub‐kilometre scale, despite many agricultural and environmental experiments on this scale. A network of 13 tipping‐bucket rain gauges was operated on a 1·4 km2 test site in southern Germany for four years to quantify spatial trends in rainfall depth, intensity, erosivity, and predicted runoff. The random measuring error ranged from 10% to 0·1% in case of 1 mm and 100 mm rainfall, respectively. The wind effects could be well described by the mean slope of the horizon at the stations. Except for one station, which was excluded from further analysis, the relative differences due to wind were in maximum ±5%. Gradients in rainfall depth representing the 1‐km2 scale derived by linear regressions were much larger and ranged from 1·0 to 15·7 mm km?1 with a mean of 4·2 mm km?1 (median 3·3 mm km?1). They mainly developed during short bursts of rain and thus gradients were even larger for rain intensities and caused a variation in rain erosivity of up to 255% for an individual event. The trends did not have a single primary direction and thus level out on the long term, but for short‐time periods or for single events the assumption of spatially uniform rainfall is invalid on the sub‐kilometre scale. The strength of the spatial trend increased with rain intensity. This has important implications for any hydrological or geomorphologic process sensitive to maximum rain intensities, especially when focusing on large, rare events. These sub‐kilometre scale differences are hence highly relevant for environmental processes acting on short‐time scales like flooding or erosion. They should be considered during establishing, validating and application of any event‐based runoff or erosion model. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Influence of rainfall spatial variability on flood prediction   总被引:9,自引:0,他引:9  
This paper deals with the sensitivity of distributed hydrological models to different patterns that account for the spatial distribution of rainfall: spatially averaged rainfall or rainfall field. The rainfall data come from a dense network of recording rain gauges that cover approximately 2000 km2 around Mexico City. The reference rain sample accounts for the 50 most significant events, whose mean duration is about 10 h and maximal point depth 170 mm. Three models were tested using different runoff production models: storm-runoff coefficient, complete or partial interception. These models were then applied to four fictitious homogeneous basins, whose sizes range from 20 to 1500 km2. For each test, the sensitivity of the model is expressed as the relative differences between the empirical distribution of the peak flows (and runoff volumes), calculated according to the two patterns of rainfall input: uniform or non-uniform. Differences in flows range from 10 to 80%, depending on the type of runoff production model used, the size of the basin and the return period of the event. The differences are generally moderate for extreme events. In the local context, this means that uniform design rainfall combining point rainfall distribution and the probabilistic concept of the areal reduction factor could be sufficient to estimate major flood probability. Differences are more significant for more frequent events. This can generate problems in calibrating the hydrological model when spatial rainfall localization is not taken into account: a bias in the estimation of parameters makes their physical interpretation difficult and leads to overestimation of extreme flows.  相似文献   

6.
Recent advances have been made to modernize estimates of probable precipitation scenarios; however, researchers and engineers often continue to assume that rainfall events can be described by a small set of event statistics, typically average intensity and event duration. Given the easy availability of precipitation data and advances in desk‐top computational tools, we suggest that it is time to rethink the ‘design storm’ concept. Design storms should include more holistic characteristics of flood‐inducing rain events, which, in addition to describing specific hydrologic responses, may also be watershed or regionally specific. We present a sensitivity analysis of nine precipitation event statistics from observed precipitation events within a 60‐year record for Tompkins County, NY, USA. We perform a two‐sample Kolmogorov–Smirnov (KS) test to objectively identify precipitation event statistics of importance for two related hydrologic responses: (1) peak outflow from the Six Mile Creek watershed and (2) peak depth within the reservoir behind the Six Mile Creek Dam. We identify the total precipitation depth, peak hourly intensity, average intensity, event duration, interevent duration, and several statistics defining the temporal distribution of precipitation events to be important rainfall statistics to consider for predicting the watershed flood responses. We found that the two hydrologic responses had different sets of statistically significant parameters. We demonstrate through a stochastic precipitation generation analysis the effects of starting from a constrained parameter set (intensity and duration) when predicting hydrologic responses as opposed to utilizing an expanded suite of rainfall statistics. In particular, we note that the reduced precipitation parameter set may underestimate the probability of high stream flows and therefore underestimate flood hazard. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This study explored the hydrological impacts of urbanization, rainfall pattern and magnitude in a developing catchment. The Stormwater Management Model was parameterized, calibrated and validated in three development phases, which had the same catchment area (12.3 ha) but different land use intensities. The model calibration and validation by using sub‐hourly hydro‐meteorological data demonstrated a good performance of the model in predicting stormwater runoff in the different development phases. Based on the results, a threshold between minor and major rainfall events was identified and conservatively determined to be about 17.5 mm in depth. Direct runoff for minor storm events has a linear relationship with rainfall; however, events with a rainfall depth greater than the threshold yield a rainfall–runoff regression line with a clearly steeper slope. The difference in urban runoff generation between minor and major rainfall events diminishes with the increase of imperviousness. Urbanization leads to an increase in the production of stormwater runoff, but during infrequent major storms, the runoff contribution from pervious surfaces reduces the runoff changes owing to urbanization. Rainfall pattern exerts an important effect on urban runoff, which is reflected in pervious runoff. With the same magnitude, prolonged rainfall events with unvarying low intensity yield the smallest peak flow and the smallest total runoff, yet rainfall events with high peak intensity produce the largest runoff volume. These results demonstrate the different roles of impervious and pervious surfaces in runoff generation, and how runoff responds to rainstorms in urban catchments depends on hyetograph and event magnitude. Furthermore, the study provides a scientific basis of the design guideline sustainable urban drainage systems, which are still arbitrary in many countries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Understanding the intensity and duration of tropical rain events is critical to modelling the rate and timing of wet‐canopy evaporation, the suppression of transpiration, the generation of infiltration‐excess overland flow and hence to erosion, and to river responsiveness. Despite this central role, few studies have addressed the characteristics of equatorial rainstorms. This study analyses rainfall data for a 5 km2 region largely comprising of the 4 km2 Sapat Kalisun Experimental Catchment in the interior of northeastern Borneo at sampling frequencies from 1 min?1 to 1 day?1. The work clearly shows that most rainfall within this inland, forested area is received during regular short‐duration events (<15 min) that have a relatively low intensity (i.e. less than two 0·2 mm rain‐gauge tips in almost all 5 min periods). The rainfall appears localized, with significant losses in intergauge correlations being observable in minutes in the case of the typical mid‐afternoon, convective events. This suggests that a dense rain‐gauge network, sampled at a high temporal frequency, is required for accurate distributed rainfall‐runoff modelling of such small catchments. Observed rain‐event intensity is much less than the measured infiltration capacities, and thus supports the tenet of the dominance of quick subsurface responses in controlling river behaviour in this small equatorial catchment. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
Automated rainfall simulator for variable rainfall on urban green areas   总被引:1,自引:0,他引:1  
Rainfall simulators can enhance our understanding of the hydrologic processes affecting the total runoff to urban drainage systems. This knowledge can be used to improve urban drainage designs. In this study, a rainfall simulator is developed to simulate rainfall on urban green surfaces. The rainfall simulator is controlled by a microcomputer programmed to replicate the temporal variations in rainfall intensity of both historical and synthetic rainfall events with constant rainfall intensity on an area of 1 m2. The performance of the rainfall simulator is tested under laboratory conditions with regard to spatial uniformity of the rainfall, the kinetic energy of the raindrops, and the ability to replicate historical and synthetic rainfall events with temporally varying intensity. The rainfall simulator is applied in the field to evaluate its functionality under field conditions and the influence of wind on simulated rainfall. Finally, a field study is carried out on the relationship between runoff, soil volumetric water content, and surface slope. Performance and field tests show that the simulated rainfall has a uniform spatial distribution, whereas the kinetic energy of the raindrops is slightly higher than that of other comparable rainfall simulators. The rainfall simulator performs best in low wind speed conditions. The simulator performs well in replicating historical and synthetic rainfall events by matching both intensity variations and accumulated rainfall depth. The field study shows good correlation between rainfall, runoff, infiltration, soil water content, and surface slope.  相似文献   

10.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
David Dunkerley 《水文研究》2015,29(15):3294-3305
The metric or ‘observable’ properties of intra‐event rainfall intermittency (IERI) are quantified using a 10‐year record from arid Fowlers Gap, Australia. Rainfall events were delineated using the minimum inter‐event time (MIT) criterion, using eight values in the range of 1 h – 24 h. Within events, no‐rain periods were defined as corresponding to rainfall rates R < 0.1 mm/h or R < 0.2 mm/h (both less than typical wet‐canopy evaporation rates during rainfall). In this way, rainfall events were subdivided into rain and no‐rain periods. Intermittency was characterised using two measures: the fraction of rainless time within an event, and the duration of the longest rainless period. Events identified using a minimum inter‐event time (MIT) of 24 h included on average 9.4 h of contiguous no‐rain time (47.5% of the mean event duration), and only 6.8 h of contiguous rain. Total IERI averaged 51.1% for these events. Events defined with MIT = 6 h (a value commonly adopted in the literature) exhibited a mean of 1.53 h of no‐rain and 9.04 h of contiguous rain. Total IERI averaged 13.9% for these events for R < 0.1 mm/h, but reached 39.2% if no‐rain periods were taken as those of <0.2 mm/h. The maximum contiguous no‐rain period for events defined using MIT = 6 h was 10.9 h from an event of 12.6 h duration, and this represents 86.5% of the event duration. Results demonstrate that smaller, shorter, and less intense rainfall events tend to exhibit higher IERI than larger, longer, and more intense events. IERI is relevant to the understanding of land surface processes. Information on the metric properties of IERI in different rainfall types (convective and stratiform) and rainfall climates (arid, maritime, and wet tropical) may prove to have significance for diverse studies in land surface hydrology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This paper discusses the effects of water quality on the hydrological and erosion response of non‐saline, non‐sodic soils during simulated rain experiments. It is well known that rain water quality affects the behaviour of saline soils. In particular, rain simulation experiments cannot be run using tap water if realistic values of infiltration rates and soil erosion are to be found. This paper reports on similar effects for non‐saline, non‐sodic soils. Two soils – a well‐aggregated clay‐rich soil developed on marine silty clay deposits and a soil developed on silt loam – were selected and subjected to a series of simulated rainstorms using demineralized water and tap water. The experiments were conducted in two different laboratories in order to obtain results independent of the tap water quality or the rainfall simulator characteristics. The results indicate that time‐to‐ponding is largely delayed by solute‐rich water (tap water). When tap water is used, infiltration rates are significantly overestimated, i.e. by more than 100 per cent. Interrill erosion rates increase by a factor of 2·5–3 when demineralized water is used. The silty clay soil was more affected by the water quality than the silt loam soil, with respect to infiltration and runoff production. Regarding interrill erosion rates, the two tested soils were similarly affected by the water quality. Therefore, it can be concluded that rainfall simulation experiments with non‐dispersive soils (e.g. non‐saline, non‐sodic) must also be conducted using water with very low electrical conductivity (i.e. less than 30–50 µS cm−1), close to that of distilled water. The use of tap water certainly hampers comparisons and the relative ranking of the hydrological and erosion response of different soils, while parameter values, such as final infiltration rate or time‐to‐ponding, cannot be extrapolated and extended to natural situations. Therefore, the majority of hydrological and erosion models and parameter values measured during rainfall simulations in the past should be used with caution for all types of soils. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
A 40 m × 20 m mowed, grass hillslope adjacent to a headwater stream within a 26‐ha watershed in east‐central Pennsylvania, USA, was instrumented to identify and map the extent and dynamics of surface saturation (areas with the water table at the surface) and surface runoff source areas. Rainfall, stream flow and surface runoff from the hillslope were recorded at 5‐min intervals from 11 August to 22 November 1998, and 13 April to 12 November 1999. The dynamics of the water table (0 to 45 cm depth from the soil surface) and the occurrence of surface runoff source areas across the hillslope were recorded using specially designed subsurface saturation and surface runoff sensors, respectively. Detailed data analyses for two rainfall events that occurred in August (57·7 mm in 150 min) and September (83·6 mm in 1265 min) 1999, illustrated the spatial and temporal dynamics of surface saturation and surface runoff source areas. Temporal data analyses showed the necessity to measure the hillslope dynamics at time intervals comparable to that of rainfall measurements. Both infiltration excess surface runoff (runoff caused when rainfall intensity exceeds soil infiltration capacity) and saturation excess surface runoff (runoff caused when soil moisture storage capacity is exceeded) source areas were recorded during these rainfall events. The August rainfall event was primarily an infiltration excess surface runoff event, whereas the September rainfall event produced both infiltration excess and saturation excess surface runoff. Occurrence and disappearance of infiltration excess surface runoff source areas during the rainfall events appeared scattered across the hillslope. Analysis of surface saturation and surface runoff data showed that not all surface saturation areas produced surface runoff that reached the stream. Emergence of subsurface flow to the surface during the post‐rainfall periods appeared to be a major flow process dominating the hillslope after the August rainfall event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
J. Mertens  D. Raes  J. Feyen 《水文研究》2002,16(3):731-739
Hydrological modelling often implies the use of rainfall data. Its quality and resolution directly affect the accuracy of the simulation results. This study illustrates that a simple approach of incorporating rainfall intensity information in daily rainfall records significantly improves the simulation of surface runoff and rainfall infiltration into soil profiles. The procedure is developed using a frequency analysis on rainfall data of the Royal Meteorological Institute of Belgium, collected with a resolution of 10 min and for a consecutive period of 61 years. The frequency analysis of the data allowed the incorporation of rainfall intensity information into daily rainfall records. To test the effect of this approach the surface runoff and water flow into three different soil types was simulated using the HYDRUS‐1D model for a typical dry, normal and wet year. The simulation results whereby the observed 10‐min rainfall data was used as input were considered as the reference. Comparative analysis revealed that the simulations using the 10 min rainfall data deducted from the incorporation of rainfall intensity into daily rainfall records, deviate a maximum 1·2% from the reference and produce much better results than the Soil Conservation Service (SCS) runoff curve‐number method because rainfall intensity is considered in the procedure presented. The SCS curve‐number method typical overestimates surface runoff during periods of low rainfall intensity (winter) and underestimate runoff during periods of high rainfall intensities (summer). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Taiwan suffers from heavy storm rainfall during the typhoon season. This usually causes large river runoff, overland flow, erosion, landslides, debris flows, loss of power, etc. In order to evaluate storm impacts on the downstream basin, a real‐time hydrological modelling is used to estimate potential hazard areas. This can be used as a decision‐support system for the Emergency Response Center, National Fire Agency Ministry, to make ‘real‐time’ responses and minimize possible damage to human life and property. This study used 34 observed events from 14 telemetered rain‐gauges in the Tamshui River basin, Taiwan, to study the spatial–temporal characteristics of typhoon rainfall. In the study, regionalized theory and cross‐semi‐variograms were used to identify the spatial‐temporal structure of typhoon rainfall. The power form and parameters of the cross‐semi‐variogram were derived through analysis of the observed data. In the end, cross‐validation was used to evaluate the performance of the interpolated rainfall on the river basin. The results show the derived rainfall interpolator represents the observed events well, which indicates the rainfall interpolator can be used as a spatial‐temporal rainfall input for real‐time hydrological modelling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
Post‐wildfire runoff was investigated by combining field measurements and modelling of infiltration into fire‐affected soils to predict time‐to‐start of runoff and peak runoff rate at the plot scale (1 m2). Time series of soil‐water content, rainfall and runoff were measured on a hillslope burned by the 2010 Fourmile Canyon Fire west of Boulder, Colorado during cyclonic and convective rainstorms in the spring and summer of 2011. Some of the field measurements and measured soil physical properties were used to calibrate a one‐dimensional post‐wildfire numerical model, which was then used as a ‘virtual instrument’ to provide estimates of the saturated hydraulic conductivity and high‐resolution (1 mm) estimates of the soil‐water profile and water fluxes within the unsaturated zone. Field and model estimates of the wetting‐front depth indicated that post‐wildfire infiltration was on average confined to shallow depths less than 30 mm. Model estimates of the effective saturated hydraulic conductivity, Ks, near the soil surface ranged from 0.1 to 5.2 mm h?1. Because of the relatively small values of Ks, the time‐to‐start of runoff (measured from the start of rainfall), tp, was found to depend only on the initial soil‐water saturation deficit (predicted by the model) and a measured characteristic of the rainfall profile (referred to as the average rainfall acceleration, equal to the initial rate of change in rainfall intensity). An analytical model was developed from the combined results and explained 92–97% of the variance of tp, and the numerical infiltration model explained 74–91% of the variance of the peak runoff rates. These results are from one burned site, but they strongly suggest that tp in fire‐affected soils (which often have low values of Ks) is probably controlled more by the storm profile and the initial soil‐water saturation deficit than by soil hydraulic properties. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
V. P. Singh 《水文研究》1997,11(12):1649-1669
The shape, timing and peak flow of a stream flow hydrograph are significantly influenced by spatial and temporal variability in rainfall and watershed characteristics. Depending upon the size and shape of a watershed, its hydrological response is closely linked with storm dynamics. On an urban watershed a rain storm moving in the direction of flow produces a higher peak than it would if it were moving in the opposite direction. The effect of storm speed on peak discharge is much less for rapidly moving storms than for storms moving at about the same speed as the flow velocity. In a relatively homogeneous watershed the most important effect of spatial variability of rainfall occurs in the timing and shape of the runoff hydrograph. Temporally variable rainfall leads to higher peak flow than does constant rainfall. Significant errors in the prediction of runoff occur when an equivalent uniform hillslope is used to represent a heterogeneous hillslope. When average soil properties are used instead of spatially variable properties, significant differences are observed in infiltration. Spatially variable roughness alters the flow dynamics significantly. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Extreme rainfall events (>50 mm day?1) falling on cultivated land which is relatively bare of vegetation cover, typically give rise to networks of rills and gullies with ephemeral gullies in depressions and valley bottoms. Farming practices such as the removal of field boundaries, the presence of wheelings and rolled surfaces encourage runoff. The coincidence of vulnerable crops such as maize, potatoes and sugar beet with erodible soils and sloping sites may lead to high rates of erosion associated with single events or wet seasons. Not all extreme rainfall events lead to runoff and erosion, this depends on timing with respect to the growing crop. Rates of erosion associated with extreme events may be high but when placed in a long‐term temporal context, they tend to be quite low. Extreme events frequently lead to off‐site impacts most notably muddy flooding of properties and the pollution of watercourses. Landscapes may be protected from extreme events by standard soil conservation techniques; off‐site impacts may similarly be alleviated by flood‐protection measures. In both cases, the challenge is to put in place adequate economic incentives, social pressures and governmental policy frameworks to incentivise effective action. Predicted rainfall changes in the future include wetter winters and increases in rain per rain‐day. In this case, the risk of erosion on cultivated land will increase. However, erosion mitigation strategies should still address the issue of the incidence of high‐risk crops on vulnerable sites. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
A rainfall interception measuring system was developed and tested for open‐grown trees. The system includes direct measurements of gross precipitation, throughfall and stemflow, as well as continuous collection of micrometeorological data. The data were sampled every second and collected at 30‐s time steps using pressure transducers monitoring water depth in collection containers coupled to Campbell CR10 dataloggers. The system was tested on a 9‐year‐old broadleaf deciduous tree (pear, Pyrus calleryana ‘Bradford’) and an 8‐year‐old broadleaf evergreen tree (cork oak, Quercus suber) representing trees having divergent canopy distributions of foliage and stems. Partitioning of gross precipitation into throughfall, stemflow and canopy interception is presented for these two mature open‐grown trees during the 1996–1998 rainy seasons. Interception losses accounted for about 15% of gross precipitation for the pear tree and 27% for the oak tree. The fraction of gross precipitation reaching the ground included 8% by stemflow and 77% by throughfall for the pear tree, as compared with 15% and 58%, respectively, for the oak tree. The analysis of temporal patterns in interception indicates that it was greatest at the beginning of each rainfall event. Rainfall frequency is more significant than rainfall rate and duration in determining interception losses. Both stemflow and throughfall varied with rainfall intensity and wind speed. Increasing precipitation rates and wind speed increased stemflow but reduced throughfall. Analysis of rainfall interception processes at different time‐scales indicates that canopy interception varied from 100% at the beginning of the rain event to about 3% at the maximum rain intensity for the oak tree. These values reflected the canopy surface water storage changes during the rain event. The winter domain precipitation at our study site in the Central Valley of California limited our opportunities to collect interception data during non‐winter seasons. This precipitation pattern makes the results more specific to the Mediterranean climate region. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the effect of introducing spatially varying rainfall fields to a hydrological model simulating runoff and erosion. Pairs of model simulations were run using either spatially uniform (i.e. spatially averaged) or spatially varying rainfall fields on a 500‐m grid. The hydrological model used was a simplified version of Thales which enabled runoff generation processes to be isolated from hillslope averaging processes. Both saturation excess and infiltration excess generation mechanisms were considered, as simplifications of actual hillslope processes. A 5‐year average recurrence interval synthetic rainfall event typical of temperate climates (Melbourne, Australia) was used. The erosion model was based on the WEPP interrill equation, modified to allow nonlinear terms relating the erosion rate to rainfall or runoff‐squared. The model results were extracted at different scales to investigate whether the effects of spatially varying rainfall were scale dependent. A series of statistical metrics were developed to assess the variability due to introducing the spatially varying rainfall field. At the catchment (approximately 150 km2) scale, it was found that particularly for saturation excess runoff, model predictions of runoff were insensitive to the spatial resolution of the rainfall data. Generally, erosion processes at smaller sub‐catchment scales, particularly when the sediment generation equation had non linearity, were more sensitive to spatial rainfall variability. Introducing runon infiltration reduced the total runoff and sediment yield at all scales, and this process was also most sensitive to the rainfall resolution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号