首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine‐resolution catchment‐wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high‐resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The antecedent soil moisture status of a catchment is an important factor in hydrological modelling. Traditional Hortonian infiltration models assume that the initial moisture content is constant across the whole catchment, despite the fact that even in small catchments antecedent soil moisture exhibits tremendous spatial heterogeneity. Spatial patterns of soil water distribution across three transects (two in a burnt area and one in an unburnt area) in a semi‐arid area were studied. At the transect scale, when the factors affecting soil moisture were limited to topographical position or local topography, spatial patterns showed time stability, but when other factors, such as vegetation, were taken into account, the spatial patterns became time unstable. At the point scale, and in the same areas, topographical position was the main factor controlling time stability. Scale dependence of time stability was studied and local topography and vegetation presence were observed to play an important role for the correlation between consecutive measures depending on the scale. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Regional analysis of slope stability is often constrained by availability of data. Model requirements for input data cannot be met at the desired spatial resolution because data are either site‐speci?c or non‐existent. Faced with these dif?culties it has often been the practice to assume that certain parameters are uniform throughout the area of interest. An alternative approach proposed here allows a more detailed discrimination of slope stability conditions. Based on the principles of hillslope hydrology, hydrologic information can be generated at suf?cient resolution to allow higher resolution slope stability analysis. Measurements from an instrumented network in a small area have been used to establish index‐based models for topographic and climate‐related controls of piezometric response. The ability to relate groundwater levels to rainfall and topographic parameters provides a means of up‐scaling to larger catchments and ultimately the opportunity to generate a catchment‐wide prediction of the distribution, magnitude and frequency of rainstorm‐generated groundwater levels. The example provided in this study uses the topography index of TOPMODEL in GIS to predict the spatial patterns of groundwater elevation for seasonal soil moisture conditions and given rainfall inputs. This allows modelling of catchment‐wide response of soil water to rainstorms with different return periods (representing different magnitudes), and is an essential prerequisite for a probabilistic regional slope stability analysis. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Information shortage is a fundamental constraint in catchment hydrology that severely affects the possibilities for secure inference of the generic hydrologic landscape, as well as for secure validation of physically deduced distributed models. The introduction of databases with high enough spatiotemporal resolution to properly reflect generic hydrological catchment characteristics may therefore be considered as an inferential breakthrough. The work presented here is part of a project where observations from such an Australian catchment (the Tarrawarra) are utilised to estimate the discrepancy for individual soil moisture monitoring sites in reflecting generic catchment characteristics. With low enough discrepancy, observation sites may be considered as catchment characteristic soil moisture monitoring (CASMM) sites, thus capturing unbiased catchment characteristics and being well suited to represent the catchment in a monitoring effort. In this particular study, covariance structures in the temporal domain are inferred in order to enable subsequent enquiries regarding CASMM discrepancies. This is accomplished with ARMAX filters applied to the conditional auto- and cross-covariance structures that connect observations of soil moisture to the temporal variation of meteorology. The results suggest that weekly observations of Tarrawarra soil moisture are quite consistent realisations of first order auto-regressive processes, which means that the present state of soil moisture is generally acquired through the past week. With auto-correlative effects filtered out, cross-correlative meteorological effects on Tarrawarra soil moisture are identified and generally represented by the present week's accumulation of rainfall, the present week's accumulation of global radiation, and the previous week's maximum wind speed. After successive filtering of conditional cross-correlative effects, residual time-series observations may be considered as temporally independent, and therefore are well suited for subsequent inferences regarding covariance structures in the spatial domain. Since the exclusion of auto-correlative effects is necessary for unambiguous model interpretation, the estimated cross-correlative parameters should reflect the true nature of underlying physical processes.  相似文献   

5.
Information on the main drivers of subsurface flow generation on hillslopes of alpine headwater catchments is still missing. Therefore, the dominant factors controlling the water table response to precipitation at the hillslope scale in the alpine Bridge Creek Catchment, Northern Italy, were investigated. Two steep hillslopes of similar size, soil properties and vegetation cover but contrasting topography were instrumented with 24 piezometric wells. Sixty‐three (63) rainfall‐runoff events were selected over three years in the snow‐free months to analyse the influence of rainfall depth, antecedent moisture conditions, hillslope topographic characteristics and soil depth on shallow water table dynamics. Piezometric response, expressed as percentage of well activation and water peak magnitude, was strongly correlated with soil moisture status, as described by an index combining antecedent soil moisture and rainfall depth. Hillslope topography was found to be a dominant control only for the convex‐divergent hillslope and during wet conditions. Timing of water table response depended primarily on soil depth and topographic position, with piezometric peak response occurring later and showing a greater temporal variability at the hillslope bottom, characterized by thicker soil. The relationship between mean hillslope water table level and standard deviation for all wells reflected the timing of the water table response at the different locations along the hillslopes. The outcomes of this research contribute to a better understanding of the controls on piezometric response at the hillslope scale in steep terrain and its role on the hydrological functioning of the study catchment and of other sites with similar physiographic characteristics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Soil moisture plays an important role in hydrology. Understanding factors (such as topography, vegetation, and meteorological conditions) that influence spatio‐temporal variability in soil moisture, and how this influence is manifested, is important for understanding hydrological processes. A number of distributed (quasi‐)physical hydrological models have been developed to investigate this subject. Previous studies have shown that the spatial differences in the distribution of soil types (residual and colluvial soils) dominantly reflect spatio‐temporal fluctuations in soil moisture and runoff. We present a methodology for assessing the spatial distribution of residual and colluvial soils, which differ with respect to their physical characteristics, in a 0·88 km2 forested catchment with complex topography and a complex land‐use history. Our method is based on penetration resistance profile data; in this data set, each data point represents soil physical characteristics within an area of about 25 m2. If the spatial distribution of soils under similar meteorological, geological, historical land use, and other conditions could be characterized on the basis of similarity in topographic features, then the spatial distribution of soil could be predicted based on relationships between various topographic indices (e.g. topographic index and local slope). We tested whether our model correctly assessed the reference data. The model's results were 90·5% correct for residual soils and 87·3% correct for colluvial soils. Further studies will quantify the relationships between topographic features of land covered by residual and colluvial soils and changes in spatio‐temporal variations in the catchment (e.g. vegetation and land use) as a function of geology or meteorology. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Groundwater levels in steep headwater catchments typically respond quickly to rainfall, but the timing of the response may vary spatially across the catchment. In this study, we investigated the topographic controls and the effects of rainfall and antecedent conditions on the groundwater response timing for 51 groundwater monitoring sites in a 20‐ha pre‐alpine catchment with low permeability soils. The median time to rise and median duration of recession for the 133 rainfall events were highly correlated to the topographic characteristics of the site and its upslope contributing area. The median time to rise depended more on the topographic characteristics than on the rainfall characteristics or antecedent soil wetness conditions. The median time to rise decreased with Topographic Wetness Index (TWI) for sites with TWI < 6 and was almost constant for sites with a higher TWI. The slope of this relation was a function of rainfall intensity. The rainfall threshold for groundwater initiation was also a function of TWI and allowed extrapolation of point measurements to the catchment scale. The median lag time between the rainfall centroid and the groundwater peak was 75 min. The groundwater level peaked before peak streamflow at the catchment outlet for half of the groundwater monitoring sites, but only by 15 to 25 min. The stronger correlations between topographic indices and groundwater response timing in this study compared to previous studies suggest that surface topography affects the groundwater response timing in catchments with low permeability soils more than in catchments with more transmissive soils. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
We hypothesize that the spatial and temporal variation in large-scale soil moisture patterns can be described by a small number of spatial structures that are related to soil texture, land use, and topography. To test this hypothesis, an empirical orthogonal function (EOF) analysis is conducted using data from the 1997 Southern Great Plains field campaign. When considering the spatial soil moisture anomalies, one spatial structure (EOF) is identified that explains 61% of the variance, and three such structures explain 87% of the variance. The primary EOF is most highly correlated with the percent sand in the soil among the regional characteristics considered, but the correlation with percent clay is largest if only dry days are analyzed. When considering the temporal anomalies, one EOF explains 50% of the variance. This EOF is still most closely related to the percent sand, but the percent clay is unimportant. Characteristics related to land use and topography are less correlated with the spatial and temporal variation of soil moisture in the range of scales considered.  相似文献   

9.
A quantitative, process relevant analysis of ten mesoscale (ca 10–90 km2) catchments in the Cairngorm mountains, Scotland was carried out using 10‐m digital terrain models (DTMs). This analysis produced a range of topographic indices that described differences in the landscape organisation of the catchments in a way that helped explain contrasts in their hydrology. Mean transit time (MTT)—derived from isotopic tracer data—was used as a metric that characterised differences in the hydrological function of the ten catchments. Some topographic indices exhibited significant correlations with MTT. Most notably, the ratio of the median flow path length to the median flow path gradient was negatively correlated with MTT, whilst the median upslope area was positively correlated. However, the relationships exhibited significant scatter which precluded their use as a predictive tool that could be applied to ungauged basins in this region. In contrast, maps of soil hydrological properties could be used to differentiate hydrologically responsive soils (which are dominated by overland flow and shallow sub‐surface storm flow) from free draining soils (that facilitate deeper sub‐surface flows). MTT was negatively correlated with the coverage of responsive soils in catchments. This relationship provided a much better basis for predicting MTT in ungauged catchments in this geomorphic province. In the Cairngorms, the extensive cover of various glacial drift deposits appears to be a first order control on soil distributions and strongly influences the porosity and permeability of the sub‐surface. These catchment characteristics result in soil cover being a much more discerning indicator of hydrological function than topography alone. The study highlights the potential of quantitative landscape analysis in catchment comparison and the need for caution in extrapolating relationships between landscape controls and metrics of hydrological function beyond specific geomorphic provinces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Soil moisture is highly variable both spatially and temporally. It is widely recognized that improving the knowledge and understanding of soil moisture and the processes underpinning its spatial and temporal distribution is critical. This paper addresses the relationship between near‐surface and root zone soil moisture, the way in which they vary spatially and temporally, and the effect of sampling design for determining catchment scale soil moisture dynamics. In this study, catchment scale near‐surface (0–50 mm) and root zone (0–300 mm) soil moisture were monitored over a four‐week period. Measurements of near‐surface soil moisture were recorded at various resolutions, and near‐surface and root zone soil moisture data were also monitored continuously within a network of recording sensors. Catchment average near‐surface soil moisture derived from detailed spatial measurements and continuous observations at fixed points were found to be significantly correlated (r2 = 0·96; P = 0·0063; n = 4). Root zone soil moisture was also found to be highly correlated with catchment average near‐surface, continuously monitored (r2 = 0·81; P < 0·0001; n = 26) and with detailed spatial measurements of near‐surface soil moisture (r2 = 0·84). The weaker relationship observed between near‐surface and root zone soil moisture is considered to be caused by the different responses to rainfall and the different factors controlling soil moisture for the soil depths of 0–50 mm and 0–300 mm. Aspect is considered to be the main factor influencing the spatial and temporal distribution of near‐surface soil moisture, while topography and soil type are considered important for root zone soil moisture. The ability of a limited number of monitoring stations to provide accurate estimates of catchment scale average soil moisture for both near‐surface and root zone is thus demonstrated, as opposed to high resolution spatial measurements. Similarly, the use of near‐surface soil moisture measurements to obtain a reliable estimate of deeper soil moisture levels at the small catchment scale was demonstrated. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
Despite an increasing number of empirical investigations of catchment transit times (TTs), virtually all are based on individual catchments and there are few attempts to synthesize understanding across different geographical regions. Uniquely, this paper examines data from 55 catchments in five geomorphic provinces in northern temperate regions (Scotland, United States of America and Sweden). The objective is to understand how the role of catchment topography as a control on the TTs differs in contrasting geographical settings. Catchment inverse transit time proxies (ITTPs) were inferred by a simple metric of isotopic tracer damping, using the ratio of standard deviation of δ18O in streamwater to the standard deviation of δ18O in precipitation. Quantitative landscape analysis was undertaken to characterize the catchments according to hydrologically relevant topographic indices that could be readily determined from a digital terrain model (DTM). The nature of topographic controls on transit times varied markedly in different geomorphic regions. In steeper montane regions, there are stronger gravitational influences on hydraulic gradients and TTs tend to be lower in the steepest catchments. In provinces where terrain is more subdued, direct topographic control weakened; in particular, where flatter areas with less permeable soils give rise to overland flow and lower TTs. The steeper slopes within this flatter terrain appear to have a greater coverage of freely draining soils, which increase sub‐surface flow, therefore increasing TTs. Quantitative landscape analysis proved a useful tool for inter‐catchment comparison. However, the critical influence of sub‐surface permeability and connectivity may limit the transferability of predictive tools of hydrological function based on topographic parameters alone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
For lack of other widely available spatial information, topography is often used to predict water fluxes and water quality in mesoscale watersheds. Such data have however proven to be misleading in many environments where large and flat valley bottoms and/or highly conducive soil covers determine water storage and water transport mechanisms. Also, the focus is generally on the prediction of saturation areas regardless of whether they are connected to the catchment hydrographic network or rather present in isolated topographic depressions. Here soil information was coupled with terrain data towards the targeted prediction of connected saturated areas. The focus was on the 30 km2 Girnock catchment (Cairngorm Mountains, northeast Scotland) and its 3 km2 sub‐catchment, Bruntland Burn in which seven field surveys were done to capture actual maps of connected saturated areas in both dry and humid conditions. The 1 km2 resolution UK Hydrology of Soil Types (HOST) classification was used to extract relevant, spatially variable, soil parameters. Results show that connected saturated areas were fairly well predicted by wetness indices but only in wet conditions when they covered more than 30% of the whole catchment area. Geomorphic indices including information on terrain shape, steepness, aspect, soil texture and soil depth showed potential but generally performed poorly. Indices based on soil and topographic data did not have more predictive power than those based on topographic information only: this was attributed to the coarse resolution of the HOST classification. Nevertheless, analyses provided interesting insights into the scale‐dependent water storage and transport mechanisms in both study catchments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Synthetic data have long been employed in hydrology for model development and testing. The objective of this study was to generate a synthetic dataset of hydrologic response with higher spatial and temporal resolution than could presently be obtained in the field, spanning a longer period than the typical duration of monitoring campaigns in experimental catchments. The synthetic dataset was generated for a rangeland catchment with the Integrated Hydrology Model (InHM), and is presented for future use by the community. The InHM boundary‐value problem is based upon the previously reported hypothetical reality of Tarrawarra‐like hydrologic response. Whereas the emphasis in developing the hypothetical reality was on parameterising InHM to reproduce observations from the Tarrawarra catchment, the emphasis in generating the synthetic dataset is on developing an internally valid hydrologic‐response dataset that extends well beyond the period of observations at Tarrawarra. The synthetic dataset spans 11 years of continuous forcing and response data (e.g. integrated response, distributed fluxes, state variable dynamics). The dataset should be useful for a wide range of problems including evaluation of simple rainfall runoff modelling techniques, design of measurement networks, development of data‐assimilation algorithms, and studies on information theory. The dataset is available at: ftp://pangea.stanford.edu/pub/loague/ . Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
This study was designed to develop a physically based hydrological model to describe the hydrological processes within forested mountainous river basins. The model describes the relationships between hydrological fluxes and catchment characteristics that are influenced by topography and land cover. Hydrological processes representative of temperate basins in steep terrain that are incorporated in the model include intercepted rainfall, evaporation, transpiration, infiltration into macropores, partitioning between preferential flow and soil matrix flow, percolation, capillary rise, surface flow (saturation‐excess and return flow), subsurface flow (preferential subsurface flow and baseflow) and spatial water‐table dynamics. The soil–vegetation–atmosphere transfer scheme used was the single‐layer Penman–Monteith model, although a two‐layer model was also provided. The catchment characteristics include topography (elevation, topographic indices), slope and contributing area, where a digital elevation model provided flow direction on the steepest gradient flow path. The hydrological fluxes and catchment characteristics are modelled based on the variable source‐area concept, which defines the dynamics of the watershed response. Flow generated on land for each sub‐basin is routed to the river channel by a kinematic wave model. In the river channel, the combined flows from sub‐basins are routed by the Muskingum–Cunge model to the river outlet; these comprise inputs to the river downstream. The model was applied to the Hikimi river basin in Japan. Spatial decadal values of the normalized difference vegetation index and leaf area index were used for the yearly simulations. Results were satisfactory, as indicated by model efficiency criteria, and analysis showed that the rainfall input is not representative of the orographic lifting induced rainfall in the mountainous Hikimi river basin. Also, a simple representation of the effects of preferential flow within the soil matrix flow has a slight significance for soil moisture status, but is insignificant for river flow estimations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
16.
In this paper, the controls of different indicators on the statistical moments (i.e. mean annual flood (MAF), coefficient of variation (CV) and skewness (CS)) of the maximum annual flood records of 459 Austrian catchments are analysed. The process controls are analysed in terms of the correlation of the flood moments within five hydrologically homogeneous regions to two different types of indicators. Indicators of the first type are static catchment attributes, which are associated with long‐term observations such as mean annual precipitation, the base flow index, and the percentage of catchment area covered by a geological unit or soil type. Indicators of the second type are dynamic catchment attributes that are associated with the event scale. Indicators of this type used in the study are event runoff coefficients and antecedent rainfall. The results indicate that MAF and CV are strongly correlated with indicators characterising the hydro‐climatic conditions of the catchments, such as mean annual precipitation, long‐term evaporation and the base flow index. For the catchments analysed, the flood moments are not significantly correlated with static catchment attributes representing runoff generation, such as geology, soil types, land use and the SCS curve number. Indicators of runoff generation that do have significant predictive power for flood moments are dynamic catchment attributes such as the mean event runoff coefficients and mean antecedent rainfall. The correlation analysis indicates that flood runoff is, on average, more strongly controlled by the catchment moisture state than by event rainfall. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
For many years hydrologists have tried to build physically realistic models which are still simple enough to be fitted to a range of observations made in the field. This is an ongoing process which will become even more difficult as the quality and variety of field and remotely sensed data improves. Hence models must be able to predict soil moisture patterns in time and in space as well as the outflow hydrograph. The model presented here (TOPMODEL) aims to predict the nature of variable source areas in a way that reflects their dynamics over space and time. All component processes are described and shown in operation. As TOPMODEL and similar models have a growing popularity, this paper can be seen as a demonstration of the model's predictive capabilities. The model is applied to the catchments of Plynlimon, mid-Wales for 1984, 1985 and 1986 data sets. The model has been thoroughly tested and cross-validated against independent data sets for different time periods, for a separate catchment, for internal gauges and for wet and dry periods. The resulting predicted soil moisture patterns show a small, semi-permanent variable source area that has the ability during large storms to expand dynamically over short time periods. Spatial predictions of evapotranspiration are also shown which reflect the influence of soil moisture patterns on this process. The weakest component of the model is the representation of root zone evaporation and how this pre-sets the antecedent condition of the catchment during long dry periods.  相似文献   

18.
In situ soil moisture data from the Bibeschbach experimental catchment in Luxembourg are used to evaluate relative surface soil moisture observed with the MetOp‐A Advanced Scatterometer (ASCAT). Filtered and bias‐corrected surface soil wetness indices (SWIs) derived from coarse‐resolution (25 km) C‐band scatterometer observations are shown to be highly correlated (r = 0.86) with catchment‐averaged soil moisture measured in the field. The combination of ASCAT and ENVISAT Advanced Synthetic Aperture Radar (ASAR) data sets yields high‐resolution (1 km) relative surface soil moisture that is equally well correlated with in situ measurements. It is concluded that for soil moisture monitoring applications at a catchment scale, the two soil moisture products are equivalent. The best correlation between the SWI derived from ASCAT and ASCAT‐ASAR with in situ soil moisture observations at ca. 5 cm depth is obtained with a characteristic time length parameter T equal to 288 h. These results suggest that satellite‐derived surface soil wetness may serve as proxy for soil storage that enables the monitoring of abrupt switches in river system dynamics to appear when an effective field capacity is exceeded and rapid subsurface stormflow is initiated. In catchments where soil moisture is the main controlling factor of rapid subsurface flow, MetOp ASCAT–derived SWI has the potential to monitor how a river system approaches a critical threshold. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Understanding the dynamic response of soil moisture to rainfall is crucial for describing hydrological processes at the hillslope scale. However, because of sparse monitoring coupled with the complexity of water movement and steep topography, the findings of rainfall-related soil moisture dynamics have not always been consistent, indicating a need for systematic investigations of soil moisture dynamics and infiltration patterns following rainfall inputs at multiple topographic positions along a hillslope. This study aimed to examine the nature of these responses by characterizing and quantifying the response amplitude, rate and time for 37 large rainfall events at 25 combinations of topographic positions and soil depths along a steep forested hillslope. Our results showed that soil moisture responses under different rainfall patterns could be attributed to one or the other rainfall characteristics, such as rainfall intensity and amount. However, soil moisture dynamics at different hillslope positions after rainfall varied widely due to the controls of soil properties, topography, and non-equilibrium flow. Preferential flow was more evident under dry initial soil conditions than under wet initial soil conditions. Findings of this study reveal that the dynamic response patterns of soil moisture to rainfall do not always follow topographic controls, which can improve our understanding of water cycling related to the infiltration process at the hillslope scale, and support water resources management in subtropical mountain ecosystems.  相似文献   

20.
This article investigates the soil moisture dynamics within two catchments (Stanley and Krui) in the Goulburn River in NSW during a 3‐year period (2005–2007) using the HYDRUS‐1D soil water model. Sensitivity analyses indicated that soil type, and leaf area index were the key parameters affecting model performance. The model was satisfactorily calibrated on the Stanley microcatchment sites with a single point rainfall record from this microcatchment for both surface 30 cm and full‐profile soil moisture measurements. Good correlations were obtained between observed and simulated soil water storage when calibrations for one site were applied to the other sites. We extended the predictions of soil moisture to a larger spatial scale using the calibrated soil and vegetation parameters to the sites in the Krui catchment where soil moisture measurement sites were up to 30 km distant from Stanley. Similarly good results show that it is possible to use a calibrated soil moisture model with measurements at a single site to extrapolate the soil moisture to other sites for a catchment with an area of up to 1000 km2 given similar soils and vegetation and local rainfall data. Site predictions were effectively improved by our simple data assimilation method using only a few sample data collected from the site. This article demonstrates the potential usefulness of continuous time, point‐scale soil moisture data (typical of that measured by permanently installed TDR probes) and simulations for predicting the soil wetness status over a catchment of significant size (up to 1000 km2). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号