首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate Change and Water Resources   总被引:13,自引:1,他引:13  
Current perspectives on global climate change based on recent reports of the Intergovernmental Panel on Climate Change (IPCC) are presented. Impacts of a greenhouse warming that are likely to affect water planning and evaluation include changes in precipitation and runoff patterns, sea level rise, land use and population shifts following from these effects, and changes in water demands. Irrigation water demands are particularly sensitive to changes in precipitation, temperature, and carbon dioxide levels. Despite recent advances in climate change science, great uncertainty remains as to how and when climate will change and how these changes will affect the supply and demand for water at the river basin and watershed levels, which are of most interest to planners. To place the climate-induced uncertainties in perspective, the influence on the supply and demand for water of non-climate factors such as population, technology, economic conditions, social and political factors, and the values society places on alternative water uses are considered.  相似文献   

2.
Global warming may profoundly affect temporal and spatial distributions of surface water availability. While climate modelers cannot yet predict regional hydrologic changes with confidence, it is appropriate to begin examining the likely effects of water allocation institutions on society's adaptability to prospective climate change. Such institutions include basic systems of water law, specific statutes, systems of administration and enforcement, and social norms regarding acceptable water-use practices. Both climate and the changing nature of demands on the resource have affected the development and evolution of water allocation institutions in the United States. Water laws and administrative arrangements, for example, have adapted to changing circumstances, but the process of adaptation can be costly and subject to conflict. Analysis of past and ongoing institutional change is used to identify factors that may have a bearing on the costliness of adaptation to the uncertain impacts of global warming on water availability and water demands. Several elements are identified that should be incorporated in the design of future water policies to reduce the potential for disputes and resource degradation that might otherwise result if climate change alters regional hydrology.  相似文献   

3.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

4.
Effect of climate change on watershed system: a regional analysis   总被引:1,自引:0,他引:1  
Climate-induced increase in surface temperatures can impact hydrologic processes of a watershed system. This study uses a continuous simulation model to evaluate potential implications of increasing temperature on water quantity and quality at a regional scale in the Connecticut River Watershed of New England. The increase in temperature was modeled using Intergovernmental Panel on Climate Change (IPCC) high and low warming scenarios to incorporate the range of possible temperature change. It was predicted that climate change can have a significant affects on streamflow, sediment loading, and nutrient (nitrogen and phosphorus) loading in a watershed. Climate change also influences the timing and magnitude of runoff and sediment yield. Changes in variability of flows and pollutant loading that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed. Potential impacts of these changes include deficit supplies during peak seasons of water demand, increased eutrophication potential, and impacts on fish migration.  相似文献   

5.
Adapting California’s water management to climate change   总被引:1,自引:0,他引:1  
California faces significant water management challenges from climate change, affecting water supply, aquatic ecosystems, and flood risks. Fortunately, the state also possesses adaptation tools and institutional capabilities that can limit vulnerability to changing conditions. Water supply managers have begun using underground storage, water transfers, conservation, recycling, and desalination to meet changing demands. These same tools are promising options for responding to a wide range of climate changes. Likewise, many staples of flood management—including reservoir operations, levees, bypasses, insurance, and land-use regulation—are available for the challenges of increased floods. Yet actions are also needed to improve response capacity. For water supply, a central issue is the management of the Sacramento-San Joaquin Delta, where new conveyance, habitat investments, and regulations are needed to sustain water supplies and protect endangered fish species. For flood management, among the least-examined aspects of water management with climate change, needed reforms include forward-looking reservoir operation planning and floodplain mapping, less restrictive rules for raising local funds, and improved public information on flood risks. For water quality, an urgent priority is better science. Although local agencies are central players, adaptation will require strong-willed state leadership to shape institutions, incentives, and regulations capable of responding to change. Federal cooperation often will be essential.  相似文献   

6.
近十年来我国气候变暖影响研究的若干进展   总被引:51,自引:12,他引:51       下载免费PDF全文
近年来,我国政府和科技界十分关注气候王馥棠变暖对我国经济发展可能影响的评估, 开展了许多重大项目和课题的研究。该文仅就气候变暖对我国自然植被、农业、森林、水资源、能源利用和区域海平面上升等领域影响评估研究的若干有意义的初步结果简要归纳和评述如下:取自不同GCM模型的未来气候变化情景下的影响评估模拟表明,我国的特征性自然植被类型将会发生明显的变化。同当前气候(1951~1980年)下的模拟分布相比,到2050年我国几乎所有地方的农业种植制度均将发生较大变化;气候变暖将导致复种指数增加和种植方式多样化,但降水与蒸散之间可能出现的负平衡和土壤水分胁迫的增加以及生育期的可能缩短,最终将导致我国主要作物的产量下降。气候变暖对我国水资源最明显的影响将会发生在黄淮海流域,这个区域的水资源供需短缺将大大提高。同时,气候变暖将改变我国室内取暖和降温的能源需求关系:北方冬季取暖的能源消耗将减少, 而南方夏季降温的能源消耗将会增加。海平面的上升将使我国三个主要沿海低洼脆弱区,即珠江三角洲、长江三角洲和黄河三角洲,面临部分遭受海水淹没的威胁。  相似文献   

7.
Global climate change will impact the hydrologic cycle by increasing the capacity of the atmosphere to hold moisture. Anticipated impacts are generally increased evaporation at low latitudes and increased precipitation at middle and high latitudes. General Circulation Models (GCMs) used to simulate climate disagree on whether the U.S. as a whole and its constituent regions will receive more or less precipitation as global warming occurs. The impacts on specific regions will depend on changes in weather patterns and are certain to be complex. Here we apply the suite of 12 potential climate change scenarios, previously described in Part 1, to the Hydrologic Unit Model of the United States (HUMUS) to simulate water supply in the conterminous United States in reference to a baseline scenario. We examine the sufficiency of this water supply to meet changing demands of irrigated agriculture. The changes in water supply driven by changes in climate will likely be most consequential in the semi-arid western parts of the country where water yield is currently scarce and the resource is intensively managed. Changes of greater than ±50% with respect to present day water yield are projected in parts of the Midwest and Southwest U.S. Interannual variability in the water supply is likely to increase where conditions become drier and to decrease under wetter conditions.  相似文献   

8.
The hydrologic changes and the impact of these changes constitute a fundamental global-warmingrelated concern. Faced with threats to human life and natural ecosystems, such as droughts, floods, and soil erosion, water resource planners must increasingly make future risk assessments. Though hydrological predictions associated with the global climate change are already being performed, mainly through the use of GCMs, coarse spatial resolutions and uncertain physical processes limit the representation of terrestrial water/energy interactions and the variability in such systems as the Asian monsoon. Despite numerous studies, the regional responses of hydrologic changes resulting from climate change remains inconclusive. In this paper, an attempt at dynamical downsealing of future hydrologic projection under global climate change in Asia is addressed. The authors conducted present and future Asian regional climate simulations which were nested in the results of Atmospheric General Circulation Model (AGCM) experiments. The regional climate model could capture the general simulated features of the AGCM. Also, some regional phenomena such as orographic precipitation, which did not appear in the outcome of the AGCM simulation, were successfully produced. Under global warming, the increase of water vapor associated with the warmed air temperature was projected. It was projected to bring more abundant water vapor to the southern portions of India and the Bay of Bengal, and to enhance precipitation especially over the mountainous regions, the western part of India and the southern edge of the Tibetan Plateau. As a result of the changes in the synoptic flow patterns and precipitation under global warming, the increases of annual mean precipitation and surface runoff were projected in many regions of Asia. However, both the positive and negative changes of seasonal surface runoff were projected in some regions which will increase the flood risk and cause a mismatch between water demand and water availability in the agricul  相似文献   

9.
Hydrological models of the Great Lakes basin were used to study the sensitivity of Great Lakes water supplies to climate warming by driving them with meteorological data from four U.S. climate zones that were transposed to the basin. Widely different existing climates were selected for transposition in order to identify thresholds of change where major impacts on water supplies begin to occur and whether there are non-linear responses in the system. The climate zones each consist of 43 years of daily temperature and precipitation data for 1,000 or more stations and daily evaporation-related variables (temperature, wind speed, humidity, cloud cover) for approximately 20–35 stations. A key characteristic of these selected climates was much larger variability in inter-annual precipitation than currently experienced over the Great Lakes. Climate data were adjusted to simulate lake effects; however, a comparison of hydrologic results with and without lake effects showed that there was only minor effects on water supplies.  相似文献   

10.
We propose an approach for screening future infrastructure and demand management investments for large water supply systems subject to uncertain future conditions. The approach is demonstrated using the London water supply system. Promising portfolios of interventions (e.g., new supplies, water conservation schemes, etc.) that meet London’s estimated water supply demands in 2035 are shown to face significant trade-offs between financial, engineering and environmental measures of performance. Robust portfolios are identified by contrasting the multi-objective results attained for (1) historically observed baseline conditions versus (2) future global change scenarios. An ensemble of global change scenarios is computed using climate change impacted hydrological flows, plausible water demands, environmentally motivated abstraction reductions, and future energy prices. The proposed multi-scenario trade-off analysis screens for robust investments that provide benefits over a wide range of futures, including those with little change. Our results suggest that 60 percent of intervention portfolios identified as Pareto optimal under historical conditions would fail under future scenarios considered relevant by stakeholders. Those that are able to maintain good performance under historical conditions can no longer be considered to perform optimally under future scenarios. The individual investment options differ significantly in their ability to cope with varying conditions. Visualizing the individual infrastructure and demand management interventions implemented in the Pareto optimal portfolios in multi-dimensional space aids the exploration of how the interventions affect the robustness and performance of the system.  相似文献   

11.
Hydrologic Sensitivity of Global Rivers to Climate Change   总被引:12,自引:1,他引:12  
Climate predictions from four state-of-the-art general circulation models (GCMs) were used to assess the hydrologic sensitivity to climate change of nine large, continental river basins (Amazon, Amur, Mackenzie, Mekong, Mississippi, Severnaya Dvina, Xi, Yellow, Yenisei). The four climate models (HCCPR-CM2, HCCPR-CM3, MPI-ECHAM4, and DOE-PCM3) all predicted transient climate response to changing greenhouse gas concentrations, and incorporated modern land surface parameterizations. Model-predicted monthly average precipitation and temperature changes were downscaled to the river basin level using model increments (transient minus control) to adjust for GCM bias. The variable infiltration capacity (VIC) macroscale hydrological model (MHM) was used to calculate the corresponding changes in hydrologic fluxes (especially streamflow and evapotranspiration) and moisture storages. Hydrologic model simulations were performed for decades centered on 2025 and 2045. In addition, a sensitivity study was performed in which temperature and precipitation were increased independently by 2 °C and 10%, respectively, during each of four seasons. All GCMs predict a warming for all nine basins, with the greatest warming predicted to occur during the winter months in the highest latitudes. Precipitation generally increases, but the monthly precipitation signal varies more between the models than does temperature. The largest changes in the hydrological cycle are predicted for the snow-dominated basins of mid to higher latitudes. This results in part from the greater amount of warming predicted for these regions, but more importantly, because of the important role of snow in the water balance. Because the snow pack integrates the effects of climate change over a period of months, the largest changes occur in early to mid spring when snow melt occurs. The climate change responses are somewhat different for the coldest snow dominated basins than for those with more transitional snow regimes. In the coldest basins, the response to warming is an increase of the spring streamflow peak, whereas for the transitional basins spring runoff decreases. Instead, the transitional basins have large increases in winter streamflows. The hydrological response of most tropical and mid-latitude basins to the warmer and somewhat wetter conditions predicted by the GCMs is a reduction in annual streamflow, although again, considerable disagreement exists among the different GCMs. In contrast, for the high-latitude basins increases in annual flow volume are predicted in most cases.  相似文献   

12.
Livelihoods in drylands are already challenged by the demands of climate variability, and climate change is expected to have further implications for water resource availability in these regions. This paper characterizes the vulnerability of an irrigation-dependent agricultural community located in the Elqui River Basin of Northern Chile to water and climate-related conditions in light of climate change. The paper documents the exposures and sensitivities faced by the community in light of current water shortages, and identifies their ability to manage these exposures under a changing climate. The IPCC identifies potentially increased aridity in this region with climate change; furthermore, the Elqui River is fed by snowmelt and glaciers, and its flows will be affected by a warming climate. Community vulnerability occurs within a broader physical, economic, political and social context, and vulnerability in the community varies amongst occupations, resource uses and accessibility to water resources, making some more susceptible to changing conditions in the future. This case study highlights the need for adaptation to current land and water management practices to maintain livelihoods in the face of changes many people are not expecting.  相似文献   

13.
Sevinc Ozkul 《Climatic change》2009,97(1-2):253-283
IPCC Fourth Assessment Report (AR4) discloses that the global climate system is undoubtedly warming. Observations have shown that many natural systems, including hydrologic systems and water resources, are being affected by regional climate changes, particularly temperature increases. Eventually, these effects will have to be considered in water resources planning and management. Accordingly, need is indicated to evaluate the impact of expected climate change on hydrology and water resources at regional and local levels. The presented paper summarizes the results of the sub-project studies under the United Nations Development Program-Global Environment Facility (UNDP-GEF) Project. The studies cover the generation of climate change scenarios, modeling of basin hydrology, and testing the sensitivity of runoff to changes in precipitation and temperature. Simulation results of the water budget model have shown that nearly 20% of the surface waters in the studied basins will be reduced by the year of 2030. By the years 2050 and 2100, this percentage will increase up to 35% and more than 50%, respectively. The decreasing surface water potential of the basins will cause serious water stress problems among water users, mainly being agricultural, domestic and industrial water users.  相似文献   

14.
Challenged by insufficient water resources and by degraded water quality caused by widespread pollution, China faces an imbalance between the supply and the demand of water for supporting the rapid social and economic development while protecting the natural environment and ecosystems. Climate change is expected to further stress freshwater resources and widen the gap between the demand for and supply of water. As a legacy of the earlier planned economy, water resources management has been primarily supply-driven, which largely fails to account for the economic nature of water resources in relation to their natural characteristics. This paper presents a historical perspective on the water resources management policies and practices in China, and recommends demand management and pollution control as key measures for improving water resources management to adapt to climate change based on the current political, socio-economic and water resources conditions. The past and future impacts of climate change on water resources in China and the general adaptation strategies are also presented. How demand management through increasing water use efficiency, improving water rights and rights trade, and effective regulation enforcement, along with pollution control could improve China’s water resources management are discussed in details. Ultimately, China should develop a sustainable water resources management strategy based on both supply- and demand-side management options to make the limited water supplies meet the demands of economic development, social well-being and the conservation of ecosystems in the context of global climate change.  相似文献   

15.
Is the prospect of possible climate change relevant to water resources decisions being made today? And, if so, how ought that prospect be considered? These questions can be addressed by decision analysis, which we apply to two investments in the Great Lakes region: a regulatory structure for Lake Erie, and breakwaters to protect Presque Isle State Park, PA. These two decisions have the elements that potentially make climate change relevant: long lived, "one shot" investments; benefits or costs that are affected by climate-influenced variables; and irreversibilities. The decision analyses include the option of waiting to obtain better information, using Bayesian analysis to detect whether climate change has altered water supplies. The analyses find that beliefs about climate change can indeed affect optimal decisions. Furthermore, ignoring the possibility of climate change can lead to significant opportunity losses—in the cases here, as much as 10% or more of the construction cost. Yet the consequences of climate uncertainty for Great Lakes management do not appear to be qualitatively different from those of other risks, and thus do not deserve different treatment. The methods of sensitivity analysis, scenario planning, and decision analysis, all of which are encouraged under US federal guidelines for water planning, are applicable. We recommend increased use of decision trees and Bayesian analysis to consider not only climate change risks, but also other important social and environmental uncertainties.  相似文献   

16.
Using China as a case study, a methodology is presented to estimate the changes in yields and costs of present and future water production systems under climate change scenarios. Yield is important to consider because it measures the actual supply available from a river basin. Costs are incurred in enhancing the natural yield of river basins by the construction and operation of reservoirs and ground water pumping systems. The interaction of ground and surface waters within a river basin and instream flow maintenance are also modeled. The water demands considered are domestic, irrigation, and instream flow needs. We found that under climate change the maximum yields of some basins in China may increase or decrease, depending upon location, and that in some basins it may cost significantly more or it may not be possible to meet the demands. While our results for China could be improved with more hydrologic and economic data, we believe that the cost curves developed have suitable accuracy for initial analysis of water supply costs in Integrated Assessment Models.  相似文献   

17.
Forest-driven water and energy cycles are poorly integrated into regional, national, continental and global decision-making on climate change adaptation, mitigation, land use and water management. This constrains humanity’s ability to protect our planet’s climate and life-sustaining functions. The substantial body of research we review reveals that forest, water and energy interactions provide the foundations for carbon storage, for cooling terrestrial surfaces and for distributing water resources. Forests and trees must be recognized as prime regulators within the water, energy and carbon cycles. If these functions are ignored, planners will be unable to assess, adapt to or mitigate the impacts of changing land cover and climate. Our call to action targets a reversal of paradigms, from a carbon-centric model to one that treats the hydrologic and climate-cooling effects of trees and forests as the first order of priority. For reasons of sustainability, carbon storage must remain a secondary, though valuable, by-product. The effects of tree cover on climate at local, regional and continental scales offer benefits that demand wider recognition. The forest- and tree-centered research insights we review and analyze provide a knowledge-base for improving plans, policies and actions. Our understanding of how trees and forests influence water, energy and carbon cycles has important implications, both for the structure of planning, management and governance institutions, as well as for how trees and forests might be used to improve sustainability, adaptation and mitigation efforts.  相似文献   

18.
SOME ADVANCES IN CLIMATE WARMING IMPACT RESEARCH IN CHINA SINCE 1990   总被引:1,自引:0,他引:1  
Increasing the concentration of greenhouse gases in the atmosphere will strengthen the naturalgreenhouse effect,which could lead to global climate warming and more other changes.China is alargely agricultural country with a large size of population and the relative shortages of farminglands and water resources,thus increasing the importance of climate warming for national economydevelopment.Therefore,Chinese government and scientists have paid great attention to theimpact-assessment of climate warming on national economy in China,especially during the past 10years.This presentation will briefly describe some major issues of climate warming impact researchon national vegetation,agriculture,forest,water resources,energy use and regional sea level forChina,etc.As a result,all climate change scenarios derived by GCMs suggest a substantial change in thecharacteristic natural vegetation types.It is also shown that comparing with the distributionsimulated under the normal time period 1951—1980 as the present climate,by 2050 large changesin cropping systems would occur almost everywhere in China.Climate warming would lead toincrease cropping diversification and multiplication.Unfortunately,the possible net balancebetween precipitation and evapotranspiration would be negative and it would lead to reduce thegrain production in China significantly due to enhanced moisture stress in soil.The most evidentinfluence of climate warming on water resources would happen in Huanghe-Huaihe-Haihe Basin andthe water supply-demand deficit would be substantially enhanced in this area.And also,a warmerclimate for China will alter the energy requirement for domestic heating and cooling,that is,reduce energy use for heating in northern China and increase energy consumption for cooling insouthern China.  相似文献   

19.
Climate Warming and Water Management Adaptation for California   总被引:1,自引:3,他引:1  
The ability of California's water supply system to adapt to long-term climatic and demographic changes is examined. Two climate warming and a historical climate scenario are examined with population and land use estimates for the year 2100 using a statewide economic-engineering optimization model of water supply management. Methodologically, the results of this analysis indicate that for long-term climate change studies of complex systems, there is considerable value in including other major changes expected during a long-term time-frame (such as population changes), allowing the system to adapt to changes in conditions (a common feature of human societies), and representing the system in sufficient hydrologic and operational detail and breadth to allow significant adaptation. While the policy results of this study are preliminary, they point to a considerable engineering and economic ability of complex, diverse, and inter-tied systems to adapt to significant changes in climate and population. More specifically, California's water supply system appears physically capable of adapting to significant changes in climate and population, albeit at a significant cost. Such adaptation would entail large changes in the operation of California's large groundwater storage capacity, significant transfers of water among water users, and some adoption of new technologies.  相似文献   

20.
The availability of electric power is an important prerequisite for the development or maintenance of high living standards. Global change, including socio-economic change and climate change, is a challenge for those who have to deal with the long-term management of thermoelectric power plants. Power plants have lifetimes of several decades. Their water demand changes with climate parameters in the short and medium term. In the long term, the water demand will change as old units are retired and new generating units are built. The present paper analyses the effects of global change and options for adapting to water shortages for power plants in the German capital Berlin in the short and long term. The interconnection between power plants, i.e. water demand, and water resources management, i.e. water availability, is described. Using different models, scenarios of socio-economic and climate change are analysed. One finding is that by changing the cooling system of power plants from a once-through system to a closed-circuit cooling system the vulnerability of power plants can be reduced considerably. Such modified cooling systems also are much more robust with respect to the effects of climate change and declining streamflows due to human activities in the basin under study. Notwithstanding the possible adaptations analysed for power plants in Berlin, increased economic costs are expected due to declining streamflows and higher water temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号