首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
TOHRU OHTA 《Sedimentology》2008,55(6):1687-1701
The present study examines the provenance of the Jurassic Ashikita Group distributed in south‐west Japan, which is composed of the Idenohana, Kyodomari and Sakamoto Formations. Two geochemical diagrams for provenance analysis were utilized, which incorporate full consideration of compositional modifications resulting from weathering (MFW diagram) and hydraulic sorting processes (SiO2/Al2O3–Na2O/K2O diagram). The MFW diagram delineates weathering trends of sedimentary rocks and allows estimation of the original source rock composition by tracing the weathering trends backwards to an unweathered domain. Weathering trends of the Idenohana and Kyodomari Formations extend backward to the domain of intermediate and felsic igneous rocks. In contrast, sediments of the Sakamoto Formation do not fit into a linear weathering trend, indicating that the source rock cannot be approximated to igneous rocks. On the SiO2/Al2O3–Na2O/K2O diagram, sediments are organized into compositional trends, in which the range reflects compositional variations induced by the hydraulic sorting effect. On this diagram, sediments derived from the igneous and recycled sedimentary provenances can be distinguished by reading the inclination of the trend. By utilizing this principle, source rocks of the Idenohana and Kyodomari Formations are interpreted as igneous rocks and those of the Sakamoto Formation are interpreted as recycled sedimentary rocks. Therefore, these diagrams concurrently estimate the source rock composition through quantifying and adjusting the weathering and sorting effects, and reveal a systematic transition in the provenance of the Ashikita Group. The Idenohana and Kyodomari Formations were supplied chiefly from an igneous provenance, which shifted from intermediate to felsic compositions in stratigraphic order. Whereas, sediments of the Sakamoto Formation were sourced primarily from a recycled sedimentary provenance.  相似文献   

2.
Al_2O_3和Ti在风化和热液蚀变等地球化学过程中通常被认为是不活动元素,两者的比值Al_2O_3/Ti常被用来指示地球化学作用过程。通过对中国157件火成岩样品元素含量平均值的统计发现,火成岩样品中Al_2O_3/Ti与SiO_2含量值之间存在着较好的幂函数关系:ln(Al_2O_3/Ti)=0.073×SiO_2-0.89,式中Al_2O_3和SiO_2和Ti含量单位均为%。本文基于得到的经验方程和TAS图解构建了一个新的判别岩石类型的图解——Al_2O_3-Ti图解。该图解可以区分酸性岩、中酸性岩、中性岩、中基性岩-基性岩四类岩性。通过对三个火成岩风化剖面的研究发现,花岗岩风化剖面从新鲜基岩到风化形成的土壤在Al_2O_3-Ti图解中均落在酸性岩区,花岗闪长岩风化剖面从新鲜基岩到风化形成的土壤样品均落在中酸性岩区,玄武质安山岩风化剖面从新鲜基岩到风化形成的土壤样品均落在中基性岩-基性岩区。不同风化程度的风化产物与其母岩在Al_2O_3-Ti图解中所在的区域一致,即Al_2O_3-Ti图解可以用来追溯火成岩风化产物的母岩岩性。通过对胶东焦家金矿和豫西牛头沟金矿两个矿区岩石的研究发现,黑云母花岗岩从新鲜岩石到其蚀变岩及其形成矿石的样品在Al_2O_3-Ti图解中均落在酸性岩区。玄武质安山岩从新鲜岩石到其蚀变岩及其形成矿石的样品在Al_2O_3-Ti图解中均落在中基性岩-基性岩区。即不同蚀变程度的蚀变产物与其原岩在Al_2O_3-Ti图解中所在的区域一致,这表明新构建的Al_2O_3-Ti图解可以用来示踪蚀变岩的原岩性质。  相似文献   

3.
This paper presents the first detailed multi-element geochemical data from the late Quaternary sediments of the Tecocomulco lake basin (central Mexico) and rocks exposed in the basin catchments to understand the extents of chemical weathering and provenance of the siliciclastic fractions. Ternary diagrams of A-CN-K, A-C-N and A-CNK-FM and elemental ratios suggest that most of the lacustrine sediments were derived from mafic volcanic deposits comprising the Chichicuatla and the Apan-Peñon andesites and the Apan-Tezontepec basaltic-andesites. The felsic tephra layers have chemical compositions comparable to the Acoculco volcanic sequences. The calculated indices of chemical weathering such as chemical index of alteration (CIA), plagioclase index of alteration (PIA) and chemical index of weathering (CIW) indicate low to extreme chemical weathering for the lacustrine sediments and low chemical weathering for tephra layers. The varying degree of chemical weathering in lacustrine sediments is related to the fluctuating average annual precipitation during the late Quaternary. However, the low weathering of tephra layers are due to their higher rate of deposition. The dacite-rhyolitic tephra layers of ca. 31,000 14C yr BP are relatively more weathered compared to the unweathered rhyolitic tephra of ca. 50,000 14C yr BP. This could be due to the rapid deposition of ca. 200 cm of tephra layers during the ca. 50,000 14C yr BP volcanic eruption that might have prevented the interaction between tephra layers and weathering agents.  相似文献   

4.
Naturally weathered olivine occurring as phenocrysts in Hawai’ian volcanic rocks from several volcanic centers and regolith/outcrop settings, and as tectonized olivines from several metadunite bodies in the southern Appalachian Blue Ridge, are all similarly corroded by natural weathering. Conical (funnel-shaped) etch pits occur as individual pits, base-to-base pairs of cone-shaped pits, or en echelon arrays. Etch-pit shapes and orientations in the smallest etch-pit arrays visible in conventional scanning electron microscopy resemble even smaller features previously reported from transmission electron microscope investigations of olivine weathering. Etch pits occur in samples with chemical and/or mineralogical evidence of weathering, and/or are associated with, or proximal or directly connected to, fractures or exposed outcrop surface, and therefore are formed by weathering and not inherited from pre-weathering aqueous alteration (e.g., serpentinization, iddingsitization) of these parent rocks. Many etch pits are devoid of weathering products. Natural weathering of olivine is surface-reaction-limited. Similarity of corrosion forms from naturally weathered olivine from multiple igneous and metamorphic parent-rock bodies suggests that olivine weathers in the same manner regardless of its specific crystallization/recrystallization history, eruption/weathering/exposure ages of the olivine’s host rock, and the local regolith history.  相似文献   

5.
《Applied Geochemistry》2002,17(3):321-336
Mineralogical, petrographical, and geochemical studies of the weathering profile have been carried out at Omai Au mine, Guyana. The area is underlain by felsic to mafic volcanic and sedimentary rocks of the Barama-Mazaruni Supergroup, part of the Paleoproterozoic greenstone belts of the Guiana Shield. Tropical rainy climate has favoured extensive lateritization processes and formation of a deeply weathered regolith. The top of the weathering profile consists of lateritic gravel or is masked by the Pleistocene continental-deltaic Berbice Formation. Mineralogical composition of regolith consists mainly of kaolinite, goethite and quartz, and subordinately sericite, feldspar, hematite, pyrite, smectite, heavy minerals, and uncommon mineral phases (nacrite, ephesite, corrensite, guyanaite). A specific feature of the weathering profile at Omai is the preservation of fresh hydrothermal pyrite in the saprolith horizon. Chemical changes during the weathering processes depend on various physicochemical and structural parameters. Consequently, the depth should not be the principal criterion for comparison purposes of the geochemical behavior within the weathering profile, but rather an index that measures the degree of supergene alteration that has affected each analyzed sample, independently of the depth of sampling. Thus, the mineralogical index of alteration (MIA) can provide more accurate information about the behavior of major and trace elements in regolith as opposed to unweathered bedrock. It can also aid in establishing a quantitative relationship between intensity of weathering and mobility (leaching or accumulation) of each element in each analyzed sample. At Omai, some major and trace elements that are commonly considered as immobile (ex: TiO2, Zr, etc.) during weathering could become mobile in several rock types and cannot be used to calculate the mass and volume balance. In addition, due to higher “immobile element” ratios, the weathered felsic volcanic rocks plotted in identification diagrams are shifted towards more mafic rock types and a negative adjustment of ∼20 units is necessary for correct classification. In contrast, these elements could aid in defining the material source in sedimentary rocks affected by weathering. Generally, the rare-earth element (REE) patterns of the bedrock are preserved in the saprolith horizon. This can represent a potentially useful tool for geochemical exploration in tropical terrains. Strong negative Ce and Tb anomalies are displayed by weathered pillowed andesites, which are explained by the influence of the water/rock ratio.  相似文献   

6.
Petrological and geochemical studies have been carried out on Pulivendla and Gandikota Quartzite from Chitravati Group of Cuddapah Supergroup to decipher the provenance and depositional environment. Both the units are texturally mature with sub-rounded to well-rounded and moderately to well-sorted grains. Majority of the framework grains are quartz, in the form of monocrystalline quartz, followed by feldspars (K-feldspar and plagioclase), mica, rock fragments, heavy minerals, with minor proportion of the matrix and cement. Based on major element geochemical classification diagram, Pulivendla Quartzite is considered as quartz-arenite and arkose to sub-arkose, whereas Gandikota Quartzite falls in the field of lith-arenite and arkose to sub-arkose. Weathering indices like CIA, PIA, CIW, ICV, Th/U ratio and A–CN–K ternary diagram suggest moderate to intense chemical weathering of the source rocks of these quartzites. Whole rock geochemistry of quartzites indicate that they are primarily from the first-cycle sediments, along with some minor recycled components. Also their sources were mostly intermediate-felsic igneous rocks of Archean age. The tectonic discrimination plots, Th–Sc–Zr/10 of both these formations reflect active to passive continental margin setting. Chondrite-normalized rare earth element (REE) patterns, and various trace element ratios like Cr/Th, Th/Co, La/Sc and Th/Cr indicate dominantly felsic source with minor contribution from mafic source. Th/Sc ratios of Pulivendla and Gandikota Quartzite are in close proximity with average values of 2.83, 3.45 respectively, which is higher than AUCC (\(\hbox {Th/Sc}=0.97\)), demonstrating that the contributions from more alkali source rocks than those that contributed to AUCC.  相似文献   

7.
磷灰石广泛分布于火成岩、沉积岩和变质岩中,是一种常见的、包含丰富微量元素的副矿物。磷灰石晶格可容纳丰富的微量元素,且因其形成的物理化学条件不同会表现出差异明显的微量元素特征。利用磷灰石微量元素特征可以追踪物质来源和演化。现在常用的方法是利用磷灰石的微量元素绘制二元判别图解,经典判别图解包括Sr-Y、Sr-Mn、Y-(Eu/Eu^(*))和(Ce/Yb)_(N)-REE图解。随着微区测试技术发展,磷灰石微量元素数据日渐丰富,同时由于磷灰石化学成分的复杂性,传统图解已逐渐无法有效利用这些数据所携带的信息,进而无法准确判别其生成环境。建立能准确判别磷灰石物源的新型判别图解故而迫切。近年来,磷灰石微量元素数据的大量积累,为运用以大数据为依托,准确判别磷灰石物源奠定了数据基础。本研究将大数据技术与地球化学数据相结合,共收集整理了1925个代表性磷灰石测试点的微量元素数据,对富碱性火成岩、超镁铁质岩石、镁铁质火成岩、长英质花岗岩、中-低级变质岩、高级变质岩六种类型中磷灰石微量元素数据进行穷举端元处理,共获得7140个磷灰石物源判别图解端元组合,在轮廓系数限定下,进一步有效筛选并提取出能判别磷灰石物源类型的最优图解端元。本文构建了Eu/Y-Ce磷灰石判别新图解,相较于之前的磷灰石判别图解,其涵盖了更全面的物源类型,可以更准确地判别源区类型。  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987113000352   总被引:1,自引:0,他引:1  
The Yidun Group extends from the Shangri-La region to the south and the Changtai region to the north,and is an important component of the Triassic Yidun arc in the eastern Tibetan plateau.It is composed of the Lieyi,Qugasi,Tumugou and Lanashan Formations from the base upward.Both the Lieyi and Lanashan Formations consist dominantly of black or gray slate and sandstone,whereas the Qugasi and Tumugou Formations have variable amounts of mafic to felsic volcanic rocks and turfs accompanied with gray slate and sandstone.Sandstone from the Yidun Group has variable CIA values from 55 to 76,indicative of mild to moderate weathering condition for the source rocks.All the sandstones define a general weathering trend nearly parallel to the A-CN boundary in the A-CN-K triangular diagram,implying limited effect of diagenetic and post-depositional K-metasomatism.Dominant detrital quartz and feldspar grains of the sandstones suggest predominantly felsic sources.Relatively high Y/Ni and low Cr/V ratios of sandstones from the Yidun Group indicate more contribution from felsic than mafic sources.Similarly,the Yidun sandstones have Co/Th and La/Sc ratios generally similar to upper continental crust (UCC) and cluster between UCC and felsic sources,indicating felsic rocks as primary sources.Granodiorite represents the average chemical composition of sources as evaluated by extending the predicted weathering trend back to the feldspar join in A-CN-K diagram.Prominently high Zr/Sc ratio or Hf concentration and Paleoproterozoic Nd modal ages (1.94-2.21 Ga)point to input of recycling components derived from old sedimentary source in a relatively stable tectonic setting.  相似文献   

9.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

10.
Major element compositions of 36 bulk samples and 41 clay samples, which were obtained from 47 topsoils collected in monsoonal eastern China, were investigated with conventional wet chemistry and X-ray fluorescence (XRF) spectrometry, respectively. Based on major element analyses, the mobility of major elements and latitudinal distributions of SiO2/Al2O3 ratio, chemical index of alteration (CIA), chemical index of weathering (CIW) and weathering index of Parker (WIP) were analyzed. Meanwhile, the suitability of these chemical weathering indices to topsoils in monsoonal eastern China and its controls were discussed.These investigations indicate that Na, K, Ca, Mg, and Si are relatively depleted, while Mn, P, Fe and Ti are relatively enriched in topsoils of the study area by comparison with their contents in the upper continent crust (UCC), and that alkali metal (Na, K) and alkaline earth metal (Ca, Mg) elements are generally easier to be depleted from their parent materials than other major elements during chemical weathering. The latitudinal distributions of CIA, CIW and WIP show that they are suitable to both bulk and clay samples, but SiO2/Al2O3 is only suitable to clay samples, not suitable in bulk ones. All these investigations indicate a significant dependence of grain-size in major element abundance and latitudinal distributions of SiO2/Al2O3, CIA, CIW and WIP, but parent rock type has little effect on them, except its impact on the latitudinal distribution of WIP in clay samples. The significant grain-size dependence probably indicates the presence of unaltered minerals in bulk samples, thus we suggest that clay samples are more suitable to investigating chemical weathering of sediments on continents than bulk samples. The trivial effect of parent rock type probably indicates a relatively uniform chemical weathering on various parent rocks. Correlation analyses indicate that climate is the dominant control of chemical weathering of topsoils in the study area, and the significant latitude effect indicated by the spatial distributions of chemical weathering indices actually reflect the climate control on chemical weathering of topsoils.Chemical weathering indices actually reflect the integrated weathering history in the study area. Besides the dominant control of climate, other factors like tectonics, parent rock, biology, landform and soil depth and age might also have some effect on the chemical weathering of topsoils in the study area, which needs further research.  相似文献   

11.
陈兵  熊富浩  马昌前  陈越  黄虎 《地球科学》2021,46(6):2057-2072
壳-幔岩浆相互作用如何影响长英质火成岩的岩石学多样性是当前岩石学研究的焦点问题之一.以岩石类型丰富的东昆仑白日其利长英质岩体和暗色微粒包体为研究对象,开展系统的锆石U-Pb年代学、矿物学、全岩元素地球化学和Sr-Nd-Hf同位素研究,探讨和解析这一重要科学问题.LA-ICPMS锆石U-Pb年代学研究表明,暗色微粒包体(247.8±2.0 Ma)与二长花岗岩(247.5±1.4 Ma)、花岗闪长岩(248.8±2.1 Ma)和石英闪长岩(248.8±1.5 Ma)均侵位结晶于早三叠世.岩相学和矿物学研究表明,白日其利长英质岩石与包体的成因机制与壳-幔岩浆的机械或化学混合作用密切相关.元素地球化学和Sr-Nd-Hf同位素组成研究揭示,幔源镁铁质岩浆端元起源于受俯冲板片流体交代的富集地幔熔融,而壳源长英质岩浆端元则起源于东昆仑古老的变质杂砂岩基底.岩石成因分析揭示,幔源镁铁质岩浆侵入长英质晶粥岩浆房,促使长英质晶粥发生活化,随后壳-幔岩浆端元以不同比例和不同方式发生机械和化学混合等相互作用,从而形成镁铁质岩墙、包体、石英闪长岩和花岗闪长岩等多种岩石类型.晶粥状态下壳-幔岩浆相互作用是控制东昆仑长英质火成岩多样性和大陆地壳生长演化的重要方式.   相似文献   

12.
骆文娟  张招崇  侯通  王萌 《岩石学报》2011,27(10):2947-2962
茨达复式岩体位于中国西南扬子地台西缘的攀西裂谷内,其岩性从基性到酸性连续变化,SiO2含量为40.06% ~68.54%,但以基性和酸性岩石为主,中性岩石较少,而且非常不均匀,通常具有斑杂构造特征.从基性岩到酸性岩,各岩石样品由轻稀土弱富集型变为较强富集型.微量元素表现为酸性岩中Rb、Th、K、La、Ce、Pb、Nd、Zr、Hf、Sm呈正异常和Ba、Nb、Ta、Sr、P、Ti的负异常;基性岩除Ti负异常和Pb正异常外,其它异常不明显;中性岩具有Ti、Sr负异常和Pb正异常,其它特征介于基性岩和酸性岩石之间.野外和岩相学特征明显指示出中性岩石具有混合特征.酸性端元岩浆准铝质的特征以及相对低的SiO2含量指示其起源于玄武质下地壳的部分熔融,而基性端元岩浆的地球化学特征以及高温特征暗示着其起源于地幔柱源区.锆石U-Pb年龄数据表明,该复式岩体中基性端元LA-MC-ICP-MS U-Pb锆石年龄为243.76±0.77Ma,酸性端元年龄为240.5±0.76Ma,可能代表了峨眉山大火成岩省岩浆活动的尾声阶段.  相似文献   

13.
The characteristics of source rocks and weathering of Palaeoproterozoic phyllitic rock of Mahakoshal Group and Mesoproterozoic shales and siliciclastics of Vindhyan Supergroup exposed in Son Valley, Central India have been investigated by analyzing their chemical compositions. The investigations pertaining to the relationship between major-elements were carried out along Parshoi, Chitrangi, and Markundi areas of Son valley, Central, India. The studied rock strata have been classified into three categories namely phyllitic rocks, shales and sandstone.The A-CN-K ternary diagram, CIW, CIA, MIA, and ICV values indicate about the similar provenance or source rocks subjected to severe chemical weathering, under dry and hot-humid climates in a basic and acidic environment with changing lower to higher PCO2 of continental flora. Various geochemical discriminantts diagrams, elemental ratios suggest that rocks are derived from post-Archaean-Proterozoic igneous source. The igneous source was mainly granite with a minor contribution of granodioritic rock, in a passive margin setting. The sediments responsible for formation of shale and sandstones were most likely deposited in the interglacial period in between the Mesoproterozoic and Neoproterozoic glacial times. Compositionally the sandstones is distinctive of cratonic environments with their passive continental margin setting. However, the phyllities of Mahakoshal Group suggests their formation under lower weathering conditions in dry climatic conditions which were operating on more intermediate to basic igneous rocks with abundance of mafic minerals.  相似文献   

14.
A technique employing Ti, Zr and Cr to aid in the identification of primary igneous rock type in deeply weathered situations is described. The method is based on Ti/Zr ratio which is little affected either by primary alteration or weathering and adequately defines compositional fields for major igneous rock types. For volcanic rocks Ti/Zr ratios are rhyolite <4< dacite <12< andesite <60< basalt. Ultramafic rocks cannot be discriminated from mafic rocks by Ti/Zr ratio but are generally distinguished by high Cr.  相似文献   

15.
徐则民  黄润秋 《中国地质》2013,40(6):1942-1948
提要:岩石化学风化程度评价指标应该同时满足以下三个基本条件,即与风化程度之间的关系简单明确、对风化程度变化具有足够的敏感性和易于确定和不易受到人为因素影响。作为铁镁质岩石的主要代表,(峨眉山)玄武岩风化程度评价除考虑可引起组分淋失与富集的水解反应外,还应充分考虑二价铁的氧化反应。新鲜峨眉山玄武岩中并存的二价铁和三价铁的含量总体稳定,910个样品的FeO、Fe2O3平均含量分别为8.45%和5.15%,以均匀、随机的方式赋存于辉石、橄榄石、杏仁体中的绿泥石、磁铁矿及火山玻璃中。风化玄武岩、玄武岩斜坡地下水及新鲜玄武岩浸泡液的地球化学研究结果表明,FeO及Fe2O3含量对峨眉山玄武岩风化程度的敏感性明显高于其他组分,同时铁又是玄武岩风化过程中活动性最差的元素之一。三价铁和二价铁的摩尔数比值(FF)适合于峨眉山玄武岩整个风化过程的风化程度判别,比既有风化指数具有更高的分辨率,尤其是对风化初期玄武岩。  相似文献   

16.
通过对内蒙古西乌皡穆沁旗和青海沱沱河等地不同基性火成岩的稀土特征研究,形成了主要依据重稀土特征的高度相似来判断火成岩样品是否同源的观点,这点特别适合于中基性的岩石,而对于酸性岩石则常常轻稀土和重稀土都是基本平行或者重合的。这一稀土特征有利于以后更好地判断火成岩的同源性。此外,后期的蚀变及风化也对同源火成岩(尤其是基性岩)的轻稀土影响较大,这点也要求尽量以重稀土特征相似来判断岩石的同源性。  相似文献   

17.
Based on the volume magnetic susceptibility and specific gravity measurements and mineral and lithologic identification results for 540 samples,the rock type,density,and magnetic susceptibility of rocks from northern Borneo were analyzed,and the applicability of gravity and magnetic data to the lithologic identification of the Mesozoic strata in the southern South China Sea was assessed accordingly.The results show that there are 3 types and 25 subtypes of rocks in northern Borneo,mainly intermediate-mafic igneous rocks and exogenous clastic sedimentary rocks,with small amounts of endogenous sedimentary rocks,felsic igneous rocks,and metamorphic rocks.The rocks that are very strongly-strongly magnetic and have high-medium densities are mostly igneous rocks,tuffaceous sandstones,and their metamorphic equivalents.The rocks that are weakly magnetic-non-magnetic and have medium-very low densities are mostly conglomerates,sandstones,siltstones,mudstones,and coal.The rocks that are weakly magnetic-diamagnetic and have highmedium densities are mostly limestones and siliceous rocks.The Cenozoic rocks are characterized by low densities and medium susceptibilities;the Mesozoic rocks are characterized by medium densities and medium-high susceptibilities;and the pre-Mesozoic rocks are characterized by high densities and low magnetism.Based on these results and the distribution characteristics of the various rock types,it was found that the pre-Mesozoic rocks produce weak regional gravity anomalies;the Mesozoic sedimentary rocks produce negative regional gravity anomalies;whereas the Mesozoic igneous rocks produce positive regional gravity anomalies;and the Cenozoic igneous rocks produce positive regional gravity anomalies.The regional high magnetic anomalies in the southern part of the South China Sea originate from the Mesozoic mafic igneous rocks and their metamorphic equivalents;and the regional medium magnetic anomalies may be produced by the felsic igneous rocks and their metamorphic equivalents.Accordingly,the identification of the Mesozoic lithology in the southern South China Sea shows that the Mesozoic sedimentary rocks are distributed over a large area of the southern South China Sea.Thus,it is concluded that the Mesozoic strata in this area have the potential for oil and gas exploration.  相似文献   

18.
The original spectral features of felsic rocks are often intermingled with other surface objects, which results in difficulty of detecting felsic rocks using remote sensing techniques. Few felsic rock indices were proposed and visual interpretation with RGB false color composition is widely used to detect felsic rocks. This paper aims to construct a two-dimensional spectral feature space model to extract felsic rocks using ASTER thermal infrared radiance data. The study area is located in northern Qinghai Province, western China with average altitude of approximately 4200 m. A large number of training pixels of mafic–ultramafic rock, quartz-rich rock, felsic rock, carbonate rock and vegetation were selected from the ASTER images as samples of these surface objects. Then we used a quartz-rich rock index (QI, QI = band14  0.844 × band12  1.897) and a mafic–ultramafic rock index (MI, MI = 0.915 × band10  band13 + 1.437) to generate a two-dimensional scatter plot. The plot was named after quartzose–mafic spectral feature space (QMFS). The samples show an approximate triangular shape in the QMFS. Mafic–ultramafic rock, quartz-rich rock and carbonate rock are located in separate locations in the three vertex regions, respectively, while felsic rock is located in the central region of the triangle. Next, we calculated a linear belt of silicate rocks in which silicate rocks vary regularly by using a linear regression analysis in the QMFS. Statistical characteristics of the felsic rock samples are analyzed. Afterwards, a polygon which delineates the distribution of felsic rock samples was constructed from the linear belt of silicate rocks. Then we generated a system of inequalities based on the equations of the edges of the polygon. The application of the inequalities to the ASER images shows a good performance of the QMFS for extracting felsic rocks.  相似文献   

19.
The mineralogy and geochemistry of the Upper Cretaceous Duwi black shales of Nile Valley district, Aswan Governorate, Egypt, have been investigated to identify the source rock characteristics, paleoweathering, and paleoenvironment of the source area. The Duwi Formation consists mainly of phosphorite and black shales and is subdivided into three members. The lower and upper members composed mainly of phosphorite beds intercalated with thin lenses of gray shales, while the middle member is mainly composed of gray shale, cracked, and filled with gypsum. Mineralogically, the Duwi black shales consist mainly of smectite and kaolinite. The non-clay minerals are dominated by quartz, calcite, phosphate, dolomite, feldspar, with little gypsum, anhydrite, iron oxides, and pyrite. Based on the CIA, PIA, and CIW values (average?=?84, 94, 95, respectively), it can be concluded that the litho-components of the studied shales were subjected to intense chemical weathering and reflect warm/humid climatic conditions in the depositional basin. The provenance discrimination diagram indicates that the nature of the source rocks probably was mainly intermediate and mafic igneous sources with subordinate recycled sedimentary rocks (Nubia Formation). Geochemical characteristics indicate that the Duwi black shales in Nile Valley district were deposited under anoxic reducing marine environments.  相似文献   

20.
Fayalite, hypersthene, basalt, and obsidian were dissolved in buffered solutions (25°C; pH 4.5 and 5.5) under air, N2 or O2 atmospheres, in order to follow the kinetics of dissolution. Each dissolved more rapidly at lower pH values, dissolving most rapidly in the initial few days, followed by slower dissolution for periods up to six months. Dissolution was more rapid when air was excluded. In oxygen atmospheres an Fe(OH)3 precipitate armors mineral surfaces, thus inhibiting further dissolution, and further affects the solution by scavenging dissolved silica and cations. Dissolution reactions include initial exchange between cations and H+, incongruent dissolution of silicate structures, oxidation of Fe2+ in solution, precipitation of Fe(OH)3, and scavenging of dissolved silica and cations by Fe(OH)3. Dissolution kinetics may explain weathering of mafic rocks and minerals at the Earth's surface, the formation of Fe-oxide coatings on mineral grains, weathering of submarine mafic rocks and intrastratal solution of mafic minerals in buried sandstones. Early Precambrian weathering would have been more rapid before the appearance of large amounts of oxygen in the atmosphere, and continental denudation rates may have been higher than at present because of this effect and the predominance of mafic igneous rocks at an early stage of continent formation and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号