首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The present paper mainly with deals the prediction of safe explosive charge used per delay (QMAX) using support vector machine (SVM) incorporating peak particle velocity (PPV) and distance between blast face to monitoring point (D). 150 blast vibration data sets were monitored at different vulnerable and strategic locations in and around a major coal producing opencast coal mines in India. 120 blast vibrations records were used for the training of the SVM model vis-à-vis to determine site constants of various conventional vibration predictors. Rest 30 new randomly selected data sets were used to compare the SVM prediction results with widely used conventional predictors. Results were compared based on coefficient of correlation (R) between measured and predicted values of safe charge of explosive used per delay (QMAX). It was found that coefficient of correlation between measured and predicted QMAX by SVM was 0.997, whereas it was ranging from 0.063 to 0.872 by different conventional predictor equations.  相似文献   

2.
The purpose of this article is to evaluate and predict the blast induced ground vibration using different conventional vibration predictors and artificial neural network (ANN) at a surface coal mine of India. Ground Vibration is a seismic wave that spread out from the blast hole when detonated in a confined manner. 128 blast vibrations were recorded and monitored in and around the surface coal mine at different strategic and vulnerable locations. Among these, 103 blast vibrations data sets were used for the training of the ANN network as well as to determine site constants of various conventional vibration predictors, whereas rest 25 blast vibration data sets were used for the validation and comparison by ANN and empirical formulas. Two types of ANN model based on two parameters (maximum charge per delay and distance between blast face to monitoring point) and multiple parameters (burden, spacing, charge length, maximum charge per delay and distance between blast face to monitoring point) were used in the present study to predict the peak particle velocity. Finally, it is found that the ANN model based on multiple input parameters have better prediction capability over two input parameters ANN model and conventional vibration predictors.  相似文献   

3.
A new site-specific vibration prediction equation was developed based on site measurement performed in a sandstone quarry. Also, several vibration prediction equations were compiled from the blasting literature and used to predict ground vibration for the studied quarry. By this way, site-specific equation created by regression analysis and the equations obtained from the blasting literature were compared in terms of prediction accuracy. Some of the equations obtained from the literature made better predictions than the site-specific equation created for the studied quarry. The prediction equations were grouped, and the effects of the rock formation and mine type on the prediction accuracy were investigated. Suitable error measures for evaluation of ground vibration prediction were examined in detail. A new general prediction equation was created using site factors (K, β) of the examined studies. The general equation was created using 17 prediction equations reported by blast researchers. Prediction capability of the general equation was found to be strong. Diversity of the blast data is one of the strongest features of the general equation.  相似文献   

4.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   

5.
In this paper, we have utilized ANN (artificial neural network) modeling for the prediction of monthly rainfall in Mashhad synoptic station which is located in Iran. To achieve this black-box model, we have used monthly rainfall data from 1953 to 2003 for this synoptic station. First, the Hurst rescaled range statistical (R/S) analysis is used to evaluate the predictability of the collected data. Then, to extract the rainfall dynamic of this station using ANN modeling, a three-layer feed-forward perceptron network with back propagation algorithm is utilized. Using this ANN structure as a black-box model, we have realized the complex dynamics of rainfall through the past information of the system. The approach employs the gradient decent algorithm to train the network. Trying different parameters, two structures, M531 and M741, have been selected which give the best estimation performance. The performance statistical analysis of the obtained models shows with the best tuning of the developed monthly prediction model the correlation coefficient (R), root mean square error (RMSE), and mean absolute error (MAE) are 0.93, 0.99, and 6.02 mm, respectively, which confirms the effectiveness of the developed models.  相似文献   

6.
Monthly scenarios of relative humidity (R H) were obtained for the Malaprabha river basin in India using a statistical downscaling technique. Large-scale atmospheric variables (air temperature and specific humidity at 925 mb, surface air temperature and latent heat flux) were chosen as predictors. The predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis dataset for the period 1978–2000, and (2) simulations of the third generation Canadian Coupled Global Climate Model for the period 1978–2100. The objective of this study was to investigate the uncertainties in regional scenarios developed for R H due to the choice of emission scenarios (A1B, A2, B1 and COMMIT) and the predictors selected. Multi-linear regression with stepwise screening is the downscaling technique used in this study. To study the uncertainty in the regional scenarios of R H, due to the selected predictors, eight sets of predictors were chosen and a downscaling model was developed for each set. Performance of the downscaling models in the baseline period (1978–2000) was studied using three measures (1) Nash–Sutcliffe error estimate (E f), (2) mean absolute error (MAE), and (3) product moment correlation (P). Results show that the performances vary between 0.59 and 0.68, 0.42 and 0.50 and 0.77 and 0.82 for E f, MAE and P. Cumulative distribution functions were prepared from the regional scenarios of R H developed for combinations of predictors and emission scenarios. Results show a variation of 1 to 6% R H in the scenarios developed for combination of predictor sets for baseline period. For a future period (2001–2100), a variation of 6 to 15% R H was observed for the combination of emission scenarios and predictors. The variation was highest for A2 scenario and least for COMMIT and B1 scenario.  相似文献   

7.
Excavation of coal, overburden, and mineral deposits by blasting is dominant over the globe to date, although there are certain undesirable effects of blasting which need to be controlled. Blast-induced vibration is one of the major concerns for blast designers as it may lead to structural damage. The empirical method for prediction of blast-induced vibration has been adopted by many researchers in the form of predictor equations. Predictor equations are site specific and indirectly related to physicomechanical and geological properties of rock mass as blast-induced ground vibration is a function of various controllable and uncontrollable parameters. Rock parameters for blasting face and propagation media for blast vibration waves are uncontrollable parameters, whereas blast design parameters like hole diameter, hole depth, column length of explosive charge, total number of blast holes, burden, spacing, explosive charge per delay, total explosive charge in a blasting round, and initiation system are controllable parameters. Optimization of blast design parameters is based on site condition and availability of equipment. Most of the smaller mines have predesigned blasting parameters except explosive charge per delay, total explosive charge, and distance of blast face from surface structures. However, larger opencast mines have variations in blast design parameters for different benches based on strata condition: Multivariate predictor equation is necessary in such case. This paper deals with a case study to establish multivariate predictor equation for Moher and Moher Amlohri Extension opencast mine of India. The multivariate statistical regression approach to establish linear and logarithmic scale relation between variables to predict peak particle velocity (PPV) has been used for this purpose. Blast design has been proposed based on established multivariate regression equation to optimize blast design parameters keeping PPV within legislative limits.  相似文献   

8.
Digital soil mapping relies on field observations, laboratory measurements and remote sensing data, integrated with quantitative methods to map spatial patterns of soil properties. The study was undertaken in a hilly watershed in the Indian Himalayan region of Mandi district, Himachal Pradesh for mapping soil nutrients by employing artificial neural network (ANN), a potent data mining technique. Soil samples collected from the surface layer (0–15 cm) of 75 locations in the watershed, through grid sampling approach during the fallow period of November 2015, were preprocessed and analysed for various soil nutrients like soil organic carbon (SOC), nitrogen (N) and phosphorus (P). Spectral indices like Colouration Index, Brightness Index, Hue Index and Redness Index derived from Landsat 8 satellite data and terrain parameters such as Terrain Wetness Index, Stream Power Index and slope using CartoDEM (30 m) were used. Spectral and terrain indices sensitive to different nutrients were identified using correlation analysis and thereafter used for predictive modelling of nutrients using ANN technique by employing feed-forward neural network with backpropagation network architecture and Levenberg–Marquardt training algorithm. The prediction of SOC was obtained with an R2 of 0.83 and mean squared error (MSE) of 0.05, whereas for available nitrogen, it was achieved with an R2 value of 0.62 and MSE of 0.0006. The prediction accuracy for phosphorus was low, since the phosphorus content in the area was far below the normal P values of typical Indian soils and thus the R2 value observed was only 0.511. The attempts to develop prediction models for available potassium (K) and clay (%) failed to give satisfactory results. The developed models were validated using independent data sets and used for mapping the spatial distribution of SOC and N in the watershed.  相似文献   

9.
Blasting is one of the primary mining operations for extracting minerals and ores however, if not designed properly, may have a varying degree of environmental and socio-economic impact in and around mining areas. In Indian mining industry, blast designs are fundamentally based on the experience and capability of the blasting crew and its assessment is more qualitative in nature, based on conventional trial and error basis. With the change in site geology and geotechnical parameters, the blast design parameters also require alterations, which can be standardized with the development of an intelligent system such as neural network. In this paper, the concept of artificial neural network and random forest algorithm has been used for better blast designs. Over 120 blast results from an opencast coal mine have been used for prediction of burden and energy factor with blast hole diameter, bench height to stemming ratio, nature of strata and average fragment size as input parameters. Out of 120 data sets 85 data sets recorded at a surface coal mine was used to train the model and 20 for the validation. Co-efficient of determination and root mean square error was chosen as the indicators to identify the optimum neural network and random forest model. The root mean square values obtained for energy factor is 0.153 while it is 0.1947 for burden. Similarly, the RMSE values obtained using random forest tree algorithm is 0.48 for burden while 50.76 for energy factor. The results revealed that random forest tree network system has potential to design better blast that is not generic and can be a potential tool for blasting engineers to design optimum blast for the mines.  相似文献   

10.
Environmental impact of blasting at Drenovac limestone quarry (Serbia)   总被引:1,自引:1,他引:0  
In present paper, the blast-induced ground motion and its effect on the neighboring structures are analyzed at the limestone quarry "Drenovac" in central part of Serbia. Ground motion is examined by means of existing conventional predictors, with scaled distance as a main influential parameter, which gave satisfying prediction accuracy (R > 0.8), except in the case of Ambraseys–Hendron predictor. In the next step of the analysis, a feed-forward three-layer back-propagation neural network is developed, with three input units (total charge, maximum charge per delay and distance from explosive charge to monitoring point) and only one output unit (peak particle velocity). The network is tested for the cases with different number of hidden nodes. The obtained results indicate that the model with six hidden nodes gives reasonable predictive precision (R ≈ 0.9), but with much lower values of mean-squared error in comparison to conventional predictors. In order to predict the influence level to the neighboring buildings, recorded peak particle velocities and frequency values were evaluated according to United States Bureau of Mines, USSR standard, German DIN4150, Australian standard, Indian DMGS circular 7 and Chinese safety regulations for blasting. Using the best conventional predictor, the relationship between the allowable amount of explosive and distance from explosive charge is determined for every vibration standard. Furthermore, the effect of air-blast overpressure is analyzed according to domestic regulations, with construction of a blasting chart for the permissible amount of explosive as a function of distance, for the allowable value of air-blast overpressure (200 Pa). The performed analysis indicates only small number of recordings above the upper allowable limit according to DIN4150 and DMGS standard, while, for all other vibration codes the registered values of ground velocity are within the permissible limits. As for the air-blast overpressure, no damage is expected to occur.  相似文献   

11.
Flooding is one of the most destructive natural hazards that cause damage to both life and property every year, and therefore the development of flood model to determine inundation area in watersheds is important for decision makers. In recent years, data mining approaches such as artificial neural network (ANN) techniques are being increasingly used for flood modeling. Previously, this ANN method was frequently used for hydrological and flood modeling by taking rainfall as input and runoff data as output, usually without taking into consideration of other flood causative factors. The specific objective of this study is to develop a flood model using various flood causative factors using ANN techniques and geographic information system (GIS) to modeling and simulate flood-prone areas in the southern part of Peninsular Malaysia. The ANN model for this study was developed in MATLAB using seven flood causative factors. Relevant thematic layers (including rainfall, slope, elevation, flow accumulation, soil, land use, and geology) are generated using GIS, remote sensing data, and field surveys. In the context of objective weight assignments, the ANN is used to directly produce water levels and then the flood map is constructed in GIS. To measure the performance of the model, four criteria performances, including a coefficient of determination (R 2), the sum squared error, the mean square error, and the root mean square error are used. The verification results showed satisfactory agreement between the predicted and the real hydrological records. The results of this study could be used to help local and national government plan for the future and develop appropriate (to the local environmental conditions) new infrastructure to protect the lives and property of the people of Johor.  相似文献   

12.
An intelligent approach to prediction and control ground vibration in mines   总被引:8,自引:0,他引:8  
Drilling and Blasting are still considered to be the most economical method for rock excavation either on surface or underground. The explosive energy, which breaks the rockmass, is not fully utilized for this purpose. Only 20–30% of explosive energy is utilized for fragmenting the rockmass and the rest wasted away in the form of ground vibration, air blast, noise, fly rock, back breaks, etc. Among them, ground vibration is considered to have the most damaging effect. A number of predictor equations have been proposed by various researchers to predict ground vibration prior to blasting. Still, it is difficult to recommend any one predictor for a particular ground condition because ground vibration is influenced by a number of parameters. These parameters are either controllable or non-controllable like blast geometry, explosive types, rock strength properties, joints patterns, etc. In the present paper, an attempt has been made to predict the ground vibration using an Artificial Neural Network incorporating large number of parameters, which affect the ground vibration. Results are also compared with the values obtained from regression analysis and observed field data sets. Finally, it is found that the neural network approach is more accurate and able to predict the value of blast vibration without increasing error with increasing number of inputs and non-linearity among these.  相似文献   

13.
In this study, based on the least square criterion, the process of calculating the unknown parameters (k, α) in Sodev’s empirical formula is demonstrated. By using substitution to linearize the Sodev’s empirical formula, the cause of error is illustrated. Three improved methods are presented. Also, according to the monitoring data obtained from the blast engineering, these four methods have been applied to fit the monitoring data and to predict blast vibration velocity. The compared results indicate all of these four methods have high precision in the blast vibration velocity prediction; the least square method, new least squares method and nonlinear regression secant method are all based on the empirical formula which just involves two blast parameters, so they are not as accurate as artificial neural network analysis.  相似文献   

14.
Coal, as an initial source of energy, requires a detailed investigation in terms of ultimate analysis, proximate analysis, and its biological constituents (macerals). The rank and calorific value of each type of coal are managed by the mentioned properties. In contrast to ultimate and proximate analyses, determining the macerals in coal requires sophisticated microscopic instrumentation and expertise. This study emphasizes the estimation of the concentration of macerals of Indian coals based on a hybrid imperialism competitive algorithm (ICA)–artificial neural network (ANN). Here, ICA is utilized to adjust the weight and bias of ANNs for enhancing their performance capacity. For comparison purposes, a pre-developed ANN model is also proposed. Checking the performance prediction of the developed models is performed through several performance indices, i.e., coefficient of determination (R 2), root mean square error and variance account for. The obtained results revealed higher accuracy of the proposed hybrid ICA-ANN model in estimating macerals contents of Indian coals compared to the pre-developed ANN technique. Results of the developed ANN model based on R 2 values of training datasets were obtained as 0.961, 0.955, and 0.961 for predicting vitrinite, liptinite, and inertinite, respectively, whereas these values were achieved as 0.948, 0.947, and 0.957, respectively, for testing datasets. Similarly, R 2 values of 0.988, 0.983, and 0.991 for training datasets and 0.989, 0.982, and 0.985 for testing datasets were obtained from developed ICA-ANN model.  相似文献   

15.
Ground vibration due to blasting causes damages in the existence of the surface structures nearby the mine. The study of vibration control plays an important role in minimizing environmental effects of blasting in mines. Ground vibration regulations primarily rely on the peak particle velocity (PPV, mm/s). Prediction of maximum charge weight per delay (Q, kg) by distance from blasting face up to vibration monitoring point as well as allowable PPV was proposed in order to perform under control blasting and therefore avoiding damages on structures nearby the mine. Various empirical predictor equations have proposed to determine the PPV and maximum charge per delay. Maximum charge per delay is calculated by using PPV predictors indirectly or Q predictor directly. This paper presents the results of ground vibration measurement induced by bench blasting in Sungun copper mine in Iran. The scope of this study is to evaluate the capability of two different methods in order to predict maximum charge per delay. A comparison between two ways of investigations including empirical equations and artificial neural network (ANN) are presented. It has been shown that the applicability of ANN method is more promising than any under study empirical equations.  相似文献   

16.
The unconfined compressive strength (UCS) of intact rocks is an important geotechnical parameter for engineering applications. Determining UCS using standard laboratory tests is a difficult, expensive and time consuming task. This is particularly true for thinly bedded, highly fractured, foliated, highly porous and weak rocks. Consequently, prediction models become an attractive alternative for engineering geologists. The objective of study is to select the explanatory variables (predictors) from a subset of mineralogical and index properties of the samples, based on all possible regression technique, and to prepare a prediction model of UCS using artificial neural networks (ANN). As a result of all possible regression, the total porosity and P-wave velocity in the solid part of the sample were determined as the inputs for the Levenberg–Marquardt algorithm based ANN (LM-ANN). The performance of the LM-ANN model was compared with the multiple linear regression (REG) model. When training and testing results of the outputs of the LM-ANN and REG models were examined in terms of the favorite statistical criteria, which are the determination coefficient, adjusted determination coefficient, root mean square error and variance account factor, the results of LM-ANN model were more accurate. In addition to these statistical criteria, the non-parametric Mann–Whitney U test, as an alternative to the Student’s t test, was used for comparing the homogeneities of predicted values. When all the statistics had been investigated, it was seen that the LM-ANN that has been developed, was a successful tool which was capable of UCS prediction.  相似文献   

17.
Accurate laboratory measurement of geo-engineering properties of intact rock including uniaxial compressive strength (UCS) and modulus of elasticity (E) involves high costs and a substantial amount of time. For this reason, it is of great necessity to develop some relationships and models for estimating these parameters in rock engineering. The present study was conducted to forecast UCS and E in the sedimentary rocks using artificial neural networks (ANNs) and multivariable regression analysis (MLR). For this purpose, a total of 196 rock samples from four rock types (i.e., sandstone, conglomerate, limestone, and marl) were cored and subjected to comprehensive laboratory tests. To develop the predictive models, physical properties of studied rocks such as P wave velocity (Vp), dry density (γd), porosity, and water absorption (Ab) were considered as model inputs, while UCS and E were the output parameters. We evaluated the performance of MLR and ANN models by calculating correlation coefficient (R), mean absolute error (MAE), and root-mean-square error (RMSE) indices. The comparison of the obtained results revealed that ANN outperforms MLR when predicting the UCS and E.  相似文献   

18.
Most blasting operations are associated with various forms of energy loss, emerging as environmental side effects of rock blasting, such as flyrock, vibration, airblast, and backbreak. Backbreak is an adverse phenomenon in rock blasting operations, which imposes risk and increases operation expenses because of safety reduction due to the instability of walls, poor fragmentation, and uneven burden in subsequent blasts. In this paper, based on the basic concepts of a rock engineering systems (RES) approach, a new model for the prediction of backbreak and the risk associated with a blast is presented. The newly suggested model involves 16 effective parameters on backbreak due to blasting, while retaining simplicity as well. The data for 30 blasts, carried out at Sungun copper mine, western Iran, were used to predict backbreak and the level of risk corresponding to each blast by the RES-based model. The results obtained were compared with the backbreak measured for each blast, which showed that the level of risk achieved is in consistence with the backbreak measured. The maximum level of risk [vulnerability index (VI) = 60] was associated with blast No. 2, for which the corresponding average backbreak was the highest achieved (9.25 m). Also, for blasts with levels of risk under 40, the minimum average backbreaks (<4 m) were observed. Furthermore, to evaluate the model performance for backbreak prediction, the coefficient of correlation (R 2) and root mean square error (RMSE) of the model were calculated (R 2 = 0.8; RMSE = 1.07), indicating the good performance of the model.  相似文献   

19.
Estimation of Elastic Modulus of Intact Rocks by Artificial Neural Network   总被引:2,自引:0,他引:2  
The modulus of elasticity of intact rock (E i) is an important rock property that is used as an input parameter in the design stage of engineering projects such as dams, slopes, foundations, tunnel constructions and mining excavations. However, it is sometimes difficult to determine the modulus of elasticity in laboratory tests because high-quality cores are required. For this reason, various methods for predicting E i have been popular research topics in recently published literature. In this study, the relationships between the uniaxial compressive strength, unit weight (γ) and E i for different types of rocks were analyzed, employing an artificial neural network and 195 data obtained from laboratory tests carried out on cores obtained from drilling holes within the area of three metro lines in Istanbul, Turkey. Software was developed in Java language using Weka class libraries for the study. To determine the prediction capacity of the proposed technique, the root-mean-square error and the root relative squared error indices were calculated as 0.191 and 92.587, respectively. Both coefficients indicate that the prediction capacity of the study is high for practical use.  相似文献   

20.
为了提高机器学习对深基坑地面沉降的预测能力,本文提出了一种基于Stacking集成学习方式的多模型融合的地面沉降预测方法,并以深圳某深基坑为例,采用斯皮尔曼相关性系数对基坑地面沉降的影响因子进行筛选;运用筛选后的8个影响因子建立Stacking深基坑地面沉降预测模型,以验证该方法的适用性。结果表明:Stacking预测模型的平均绝对误差为0.34、平均绝对误差百分比为2.22%,均方根误差为0.13,相较于传统基模型(随机森林、支持向量机和人工神经网络),Stacking预测模型的平均绝对误差、平均绝对误差百分比和均方根误差值皆为最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号