首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The arbuscular mycorrhizal (AM) fungal status of the 20 most common plant species distributed in 4 vegetation types (meadow steppe, desert steppe, steppe desert and typical desert) on the northern slopes of the Tianshan Mountains was investigated. Samples of the plant species and their rhizosphere soils were collected from the 4 vegetation zones and examined to compare their mycorrhizal status, AM fungal spore densities, biovolumes, and community structures. 28 AM fungal species were isolated from the rhizosphere soils: of these, 5 belonged to Acaulospora, 1 to Archaeospora and 22 to Glomus. 5 AM fungi, Glomus aggregatum, G. claroideum, G. deserticola, G. etunicatum and G. sinuosum, were observed in all 4 zonal types. No significant differences were observed in mean proportion of root length colonized by AM fungi among the plant species within each zonal type. Comparing the 4 zonal types, Plantago minuta (84.5%) in steppe desert and Eremopyrum orientale (83.1%) in typical desert showed the highest root colonizatsion rates. AM fungal spore densities and biovolumes were significantly different in the different zonal types. AM fungal spore densities and biovolumes, species richness and diversity were highest in meadow steppe and lowest in typical desert.  相似文献   

2.
Investigating the spatial and temporal variance in productivity along natural precipitation gradients is one of the most efficient approaches to improve understanding of how ecosystems respond to climate change. In this paper, by using the natural precipitation gradient of the Inner Mongolian Plateau from east to west determined by relatively long-term observations, we analyzed the temporal and spatial dynamics of aboveground net primary productivity (ANPP) of the temperate grasslands covering this region. Across this grassland transect, ANPP increased exponentially with the increase of mean annual precipitation (MAP) (ANPP=24.47e0.005MAP, R2=0.48). Values for the three vegetation types desert steppe, typical steppe, and meadow steppe were: 60.86 gm-2a-1, 167.14 gm-2a-1 and 288.73 gm-2a-1 respectively. By contrast, temperature had negative effects on ANPP. The moisture index (K ), which takes into ac- count both precipitation and temperature could explain the spatial variance of ANPP better than MAP alone (ANPP=2020.34K1.24, R2=0.57). Temporally, we found that the inter-annual variation in ANPP (cal- culated as the coefficient of variation, CV) got greater with the increase of aridity. However, this trend was not correlated with the inter-annual variation of precipitation. For all of the three vegetation types, ANPP had greater inter-annual variation than annual precipitation (PPT). Their difference (ANPP CV/PPT CV) was greatest in desert steppe and least in meadow steppe. Our results suggest that in more arid regions, grasslands not only have lower productivity, but also higher inter-annual variation of production. Climate change may have significant effects on the productivity through changes in precipitation pattern, vegetation growth potential, and species diversity.  相似文献   

3.
Riparian areas are diverse systems where flooding creates new sites for establishment of vegetation. Symbioses with soil microorganisms, such as mycorrhizal fungi, affect vascular plant growth and community composition. It is unknown, however, how mycorrhizal fungi are dispersed along rivers and what potential they have to inoculate roots of plants establishing on recently deposited sedimentary surfaces of flood plains. We measured AMF inocula in sediment deposited by an average spring flood along an expansive riverine flood plain in Montana, USA, to determine whether AMF inocula were present in sediments and what types of propagules (spores, hyphae, or colonized root fragments) contribute to AMF infectivity. Flood-deposited sediments contained sufficient inocula for AMF to colonize host plants (Sorghum sudanense) grown in a greenhouse, and both AMF hyphal lengths and spore densities were correlated with infectivity. Availability of mycorrhizal inocula, which is patchily distributed in this system, may lead to microsites that differ in ability to support establishment and growth of early-successional plants.  相似文献   

4.
Modern pollen analysis is the basis for revealing the palaeovegetation and palaeoclimate changes from fossil pollen spectra. Many studies pertaining to the modern pollen assemblages on the Tibetan Plateau have been conducted, but little attention has been paid to pollen assemblages of surface lake sediments. In this study, modern pollen assemblages of surface lake sediments from 34 lakes in the steppe and desert zones of the Tibetan Plateau are investigated and results indicate that the two vegetation zones are dominated by non-arboreal pollen taxa and show distinctive characteristics. The pollen assemblages from the desert zone contain substantially high relative abundance of Chenopodiaceae while those from the steppe zone are dominated by Cyperaceae. Pollen ratios show great potential in terms of separating different vegetation zones and to indicate climate changes on the Tibetan Plateau. The Artemisia/Chenopodiaceae ratio and arboreal/non-arboreal pollen ratio could be used as proxies for winter precipitation. Artemisia/Cyperaceae ratio and the sum of relative abundance of xerophilous elements increase with enhanced warming and aridity. When considering the vegetation coverage around the lakes, hierarchical cluster analysis suggests that the studied sites can be divided into four clusters: meadow, steppe, desert-steppe, and desert. The pollen-based vegetation classification models are established using a random forest algorithm. The random forest model can effectively separate the modern pollen assemblages of the steppe zone from those of the desert zone on the Tibetan Plateau. The model for distinguishing the four vegetation clusters shows a weaker but still valid classifying power. It is expected that the random forest model can provide a powerful tool to reconstruct the palaeovegetation succession on the Tibetan Plateau when more pollen data from surface lake sediments are included.  相似文献   

5.
Pollen diversity offers abundant clues into the floristic diversity and history of vegetation change. Few palynological studies investigated modern pollen diversity or the past floristic diversity on the Tibetan Plateau (TP). Based on modern pollen assemblages from 37 topsoils and 63 surface lake sediments in the Nam Co catchment on the central TP, this study quantitatively explored spatial distribution of modern pollen diversity using Shannon-Wiener index (H) and palynological richness (E(T n ), n=600). Pollen diversity indices showed spatial variability among vegetation types, reflecting the differences in terrestrial floristic diversity in the lake catchment. Their values were high in the southeastern region of the lake catchment which is covered by alpine steppe, while values were low for alpine meadow and marsh meadow. The pollen diversity in lacustrine pollen assemblage could be an effective proxy to document past floristic diversity. The past floristic diversity in the lake catchment, recovered from a fossil pollen record of NMLC-1, showed a long-term change of ascending overlaid by several rapid diversity changes during the last 8400 years due to the downward shift of altitudinal vegetation belt driven by a general climatic cooling. The results imply that under the environmental challenge of climate warming and vegetation degradation, alpine vegetation restoration in the Nam Co catchment and the central TP should pay attention to altitudinal vegetation belt and zonal vegetation of alpine steppe, and use the long-term change of floristic diversity as a historical analogue.  相似文献   

6.
Palynological records were selected from the profiles of three research sites in the mountainous interior of southern China(Dajiuhu at Shennongjia in the western part of Hubei Province, Dahu in the Nanling Mountains, and Gantang in the northern part of Fujian Province). It can be inferred that the forest vegetation growing in the south of the Qinling Mountains-Huaihe River was luxuriant during the late glaciation. The species succession with ecological significance in palaeoflora(Abies sp., Fagus sp. and Alnus sp.) revealed that there was a certain amount of precipitation and effective humidity in the mountain lands between Qinling Mountains-Huaihe River and Nanling Mountains. This ecological environment favored the zonal distribution of mountainous forest vegetation. The late glacial maximum featured a cold, wet climate that completely differed from the cold-dry climate on the Loess Plateau, and on the steppe and desert steppe of the Qinghai-Tibet Plateau. Besides being influenced by the predominant factors driving the Northern Hemisphere climate, the cold-wet climate feature of the mountainous interior of southern China was closely associated with some geographical factors such as the latitudinal position, proximity to the ocean, and the topography and landforms.  相似文献   

7.
The Relative Pollen Productivities(RPPs)of common steppe species are estimated using Extended R-value(ERV)model based on pollen analysis and vegetation survey of 30 surface soil samples from typical steppe area of northern China.Artemisia,Chenopodiaceae,Poaceae,Cyperaceae,and Asteraceae are the dominant pollen types in pollen assemblages,reflecting the typical steppe communities well.The five dominant pollen types and six common types(Thalictrum,Iridaceae,Potentilla,Ephedra,Brassicaceae,and Ulmus)have strong wind transport abilities;the estimated Relevant Source Area of Pollen(RSAP)is ca.1000 m when the sediment basin radius is set at 0.5 m.Ulmus,Artemisia,Brassicaceae,Chenopodiaceae,and Thalictrum have relative high RPPs;Poaceae,Cyperaceae,Potentilla,and Ephedra pollen have moderate RPPs;Asteraceae and Iridaceae have low RPPs.The reliability test of RPPs revealed that most of the RPPs are reliable in past vegetation reconstruction.However,the RPPs of Asteraceae and Iridaceae are obviously underestimated,and those of Poaceae,Chenopodiaceae,and Ephedra are either slightly underestimated or slightly overestimated,suggesting that those RPPs should be considered with caution.These RPPs were applied to estimating plant abundances for two fossil pollen spectra(from the Lake Bayanchagan and Lake Haoluku)covering the Holocene in typical steppe area,using the"Regional Estimates of Vegetation Abundance from Large Sites"(REVEALS)model.The RPPs-based vegetation reconstruction revealed that meadow-steppe dominated by Poaceae,Cyperaceae,and Artemisia plants flourished in this area before 6500–5600 cal yr BP,and then was replaced by present typical steppe.  相似文献   

8.
L&#;  Houyuan  Wang  Sumin  Wu  Naiqin  Tong  Guobang  Yang  Xiangdong  Sheng  Caiming  Li  Shijie  Zhu  Liping  Wang  Luo 《中国科学:地球科学(英文版)》2001,44(1):292-300

A new pollen record from the lake of Co Ngoin in the central Tibetan Plateau provides information on the vegetation and climate changes during the last 2.8 Ma. Seven major significant changes in pollen associations indicate the processes of vegetation change and possible tectonic uplifts. The seven changes in vegetation succession include a temperate montane conifer and broad-leaved mixed forest, cold temperate montane dark conifer forest, alpine shrub-meadow and alpine desert, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine shrub meadow, montane dark coniferous forest and alpine meadow, and alpine desert and meadow. The pollen record provides the evidence of at least five times tectonic uplifts occurring at about 2.58 Ma, 1.87 Ma, 1.17 Ma, 0.83 Ma, and 0.3 Ma ago, respectively. Before 0.8 Ma, this region maintained the altitude below 4000 m a.s.l. Larger amplitude of uplift occurring at about 0.8 Ma ago enforced the plateau rising into cryosphere, shaping the basic topographic pattern of modern plateau. The major successions in vegetation of this area were largely controlled by stepwise uplift of the Tibetan Plateau.

  相似文献   

9.
Changes in the vegetation and climate of the westerly-dominated areas in Central Asia during the Holocene were interpreted using pollen-assemblages and charcoal data from a 300-cm-long sediment core of the Sayram Lake,northern Xinjiang.Accele-rator Mass Spectrometry(AMS) radiocarbon dating methods were applied to bulk organic matter of the samples.Artemisia spp./Chenopodiaceae ratios and results from principal component analysis were used to infer that the lake basin was dominated by desert vegetation before ca.9.6 cal.ka BP,which suggests a warm and dry climate in the early Holocene.Desert steppe/steppe expanded during 9.6-5.5 cal.ka BP,indicating a remarkable increase both in the precipitation and temperature during the mid-Holocene.Desert vegetation dominated between 6.5 and 5.5 cal.ka BP,marking an extreme warmer and drier interval.The steppe/meadow steppe recovered,and temperatures decreased from 5.5 cal.ka BP in the late Holocene,as indicated by the increased abundance of Artemisia and the development of meadows.Holocene temperatures and moisture variations in the Sayram Lake areas were similar to those of adjacent areas.This consistency implies that solar radiation was the main driving factor for regional temperature changes,and that the effect of temperature variations was significant on regional changes in humidity.The evolution of climate and environment in the Sayram Lake areas,which were characterized as dry in the early Holocene and relatively humid in the middle-late Holocene,are clearly different from those in monsoonal areas.Dry conditions in the early Holocene in the Sayram Lake areas were closely related to decreased water vapor advection.These conditions were a result of reduced westerly wind speeds and less evaporation upstream,which in turn were caused by seasonal changes in solar radiation superimposed by strong evaporation following warming and drying local climate.  相似文献   

10.
Reconstructing the spatial patterns of regional climate and vegetation during specific intervals in the past is important for assessing the possible responses of the ecological environment under future global warming scenarios. In this study, we reconstructed the history of regional vegetation and climate based on six radiocarbon-dated pollen records from the North China Plain. Combining the results with existing pollen records, we reconstruct the paleoenvironment of the North China Plain during the Last Glacial Maximum(LGM) and the Holocene Climatic Optimum(HCO). The results show that changes in the regional vegetation since the LGM were primarily determined by climatic conditions, the geomorphic landscape and by human activity.During the LGM, the climate was cold and dry; mixed broadleaf-coniferous forest and deciduous-evergreen broadleaf forest developed in the southern mountains, and cold-resistant coniferous forest and mixed broadleaf-coniferous forest were present in the northern mountains. The forest cover was relatively low, with mesophytic and hygrophilous meadow occupying the southern part of the plain, and temperate grassland and desert steppe were distributed in the north; Chenopodiaceae-dominated halophytes grew on the exposed continental shelf of the Bohai Sea and Yellow Sea. During the HCO, the climate was warm and wet;deciduous broadleaf forest and deciduous-evergreen broadleaf forest, with subtropical species, developed in the southern mountains, and deciduous broadleaf forest with thermophilic species was present in northern mountains. Although the degree of forest cover was greater than during the LGM, the vegetation of the plain area was still dominated by herbs, while halophytes had migrated inland due to sea level rise. In addition, the expansion of human activities, especially the intensification of cultivation,had a significant influence on the natural vegetation. Our results provide data and a scientific basis for paleoclimate modelling and regional carbon cycle assessment in north China, with implications for predicting changes in the ecological environment under future global warming scenarios.  相似文献   

11.
The long‐term and large‐scale soil moisture (SM) record is important for understanding land atmosphere interactions and their impacts on the weather, climate, and regional ecosystem. SM products are one of the parameters used in some Earth system models, but these records require evaluation before use. The water resources on the Qinghai–Tibet Plateau (QTP) are important to the water security of billions of people in Asia. Therefore, it is necessary to know the SM conditions on the QTP. In this study, the evaluation metrics of multilayer (0–10, 10–40, and 40–100 cm) SM in different reanalysis datasets of the European Centre for Medium‐Range Weather Forecasts interim reanalysis (ERA‐Interim [ERA]), National Centers for Environmental Prediction Climate Forecast System and the Climate Forecast System version 2 (CFSv2), and China Meteorological Administration Land Data Assimilation System (CLDAS) are compared with in situ observations at 5 observation sites, which represent alpine meadow, alpine swamp meadow, alpine grassy meadow, alpine desert steppe, and alpine steppe environments during the thawing season from January 1, 2011, to December 31, 2013, on the QTP. The ERA SM remains constant at approximately 0.2 m3?m?3 at all observation sites during the entire thawing season. The CLDAS and CFSv2 SM products show similar patterns with those of the in situ SM observations during the thawing season. The CLDAS SM product performs better than the CFSv2 and ERA for all vegetation types except the alpine swamp meadow. The results indicate that the soil texture and land cover types play a more important role than the precipitation to increase the biases of the CLDAS SM product on the QTP.  相似文献   

12.
Influence of variation of soil spatial heterogeneity on vegetation restoration   总被引:23,自引:0,他引:23  
Ecological restoration as a new research field of applied ecology can be traced back to the 1950s, it mainly focuses on the studies of ecological restoration of mine fields, tropical forests, wetlands and indus-try-polluted ecosystems[1-4]. Following the raising of the conception of “restoration ecology”[5], the holding of a series of international conferences and the found-ing of the International Association for Restoration Ecology, the studies of ecological restoration has be-come a quit…  相似文献   

13.
The modern pollen assemblages of surface lake sediments and topsoils in northwestern China were studied to understand the relationship of modern pollen data with contemporary vegetation and climate, and the differences between the pollen assemblages of surface lake sediments and topsoils. The results show that Chenopodiaceae and Artemisia are dominant elements in the pollen assemblages of northwestern China. Additionally, Ephedra, Cyperaceae, Asteraceae, Poaceae, Picea, Pinus, and Betula are also important pollen taxa. Both pollen assemblages and principal component analysis indicate that pollen data from surface lake sediments and topsoils can be used to differentiate the main vegetation types of this region(desert, steppe, meadow and forest). However, differences exist between modern pollen assemblages of the two types of sediments due to the different relevant source areas of pollen and degrees of pollen preservation. For example, the larger relevant source area of surface lake sediment results in a higher abundance of Betula in pollen assemblage from surface lake sediment, whereas the tendency to disintegrate thin-walled pollen types in topsoil leads to a higher proportion of resistant pollen, such as Asteraceae. Linear regression analysis indicates that the Artemisia/Chenopodiaceae(A/C) ratio in pollen assemblages of surface lake sediments can be used to indicate humidity changes in the study area. However, the A/C ratio in topsoils should be used carefully. Our results suggest that pollen data from surface lake sediments would be better references for interpreting the fossil pollen assemblages of lake cores or lacustrine profiles.  相似文献   

14.
ABSTRACT

Soil infiltration processes were evaluated under field conditions by double-ring infiltrometers with different underlying surfaces in permafrost regions of the Tibetan Plateau. The results show that initial infiltration rates, stable soil infiltration rates and cumulative soil infiltration are strongly dependent on the underlying surface types, with the highest initial and stable soil infiltration rates in the alpine desert steppe, and the lowest in alpine meadow. The effects of soil moisture and texture on infiltration processes were also assessed. Within the same underlying surfaces, the values of infiltration parameters increased with the amount of vegetation cover, while soil moisture and soil infiltration rates displayed opposing trends, with fitting slopes of ?0.03 and ?0.01 for the initial and stable soil infiltration rates, respectively. The accuracies of the five models in simulating soil infiltration rates and seven models in predicting cumulative infiltration rates were evaluated against data generated from field experiments at four sites. Based on a comparative analysis, the Horton model provided the most complete understanding of the underlying surface effects on soil infiltration processes. Altogether, these findings show that different underlying surfaces can alter soil infiltration processes. This study provides a useful reference for understanding the parameterization of land surface processes for simulating changes in hydrological processes under global warming conditions in the permafrost region on the Tibetan Plateau.  相似文献   

15.
Normalized Difference Vegetation Index (NDVI) is widely recognized as a good indicator of vegetation productivity. Diagnosing the NDVI trend and understanding climatic factors influences on NDVI can predict the productivity changes under different climatic scenarios. This paper examined NDVI dynamic and its response to climate factors during a 10 year period (1998–2008) in Inner Mongolia. The main findings are as follows: (1) The NDVI multi-scale characters can be revealed well by wavelet transform, and the average NDVI and the NDVI amplitude show a gradually decreased trend from northeast to southwest in Inner Mongolia during the past 10 years, furthermore, this trend is consistent with the heat and water distribution caused by latitude difference in north–south direction and Asia monsoon effect in east–west direction. (2) The relation between NDVI and temperature is the most close, followed by precipitation, sunshine hours and relative humidity. Different vegetation cover types show different strengths in correlation between NDVI and climate variables with the correlation values decreasing from forest, meadow steppe to desert steppe in whole. (3) The precipitation and temperature have the same change cycle, both nearly 290 days in the 20 selected stations. The NDVI has the same change cycle with the precipitation and temperature or either 10 days earlier or later than precipitation and temperature, which supports the significant correlation between NDVI and its climatic factors from a new perspective. The nearly 290 days change cycle implies that the vegetation growth cycle is nearly 10 months and there are no obvious differences change cycles in different vegetations. (4) Vegetation dynamic is significantly correlated to the temperature and precipitation at the time scale of 10, 20, 40, 80, 160, and 320-day, respectively, and the S3 scale (i.e., the time scale of 80-day), nearly 3 months (one season), is most significant and suitable for evaluating the vegetation dynamic to climatic factors.  相似文献   

16.
The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.  相似文献   

17.
Desertification and aridification in the inland of Asia are the important scientific issues pertaining to the existing environment of mankind and the sustain-able development of society in western China. The onset and evolution sequence, development and proc-ess of history and the mechanism of this transition are thought to be one of the most attractive hot objects of research on climatic changes in the Northern Hemi-sphere during the Cenozoic, which may have involved glaciation in the North…  相似文献   

18.
Quantitative relationship between pollen and vegetation in northern China   总被引:14,自引:0,他引:14  
205 surface pollen samples from different communities in Northern China were analyzed to understand the quantitative relationship between pollen and its original vegetation. Pollen analysis and vegetation investigation show that the pollen assemblages differ a lot in different vegetation regions. Arboreal pollen account for more than 30% in temperate broad-deciduous forests region. In temperate steppe regions, herb pollen percentages are more than 90%, where Artemisia and Chenopodiaceae are domi- nant pollen types with Artemisia percentages more than 30%. In temperate desert, Chenopodiaceae pollen percentages are more than Artemisia, where ferns are rare. Cyperaceae pollen percentages are more than 20% in sub-alpine or cold meadows. The relations between pollen percentages and vegeta- tion cover indicate that most arboreal pollen shows a close relationship with parent plant covers, most shrubby pollen types have more or less correlations, but most herbs do not show clear correlations. For arboreal pollen types, Picea pollen shows the closest correlation with spruce trees coverage, then is Quercus and Carpinus. Betula, Larix and Juglans have also high correlation coefficients with their plants coverage, but Betula pollen is of overrepresented pollen type and more than 40% in birch forest, while Larix and Juglans pollen is underrepresented and pollen percentages are more than 10% in Larix or Juglans pure forests. Pinus is of overrepresented pollen type, and pollen percentages have some relations with plants cover. Pine forest might present when Pinus pollen percentages are more than 30%. The relations between Ulmus and Populus pollen percentages and vegetation cover are not close, where they are mixed with other arbors, they cannot be recorded easily, but if their pollen percentages are more than 1%, Ulmus or Populus trees should exist. For shrubby pollen types, the correlation be- tween Vitex pollen percentages and vegetation cover is the highest, then is Corylus, Tamariaceae and Nitraria, and their pollen percentages are less than 1% where original plant are absent. Caragana and Spiraea pollen percentages have some relations with vegetation cover. The relations between pollen percentages and vegetation cover are not clear for Rosaceae and Saxifragaceae. For herb pollen types, Cyperaceae pollen has the closest correlation with vegetation cover, where pollen percentages are more than 20% when Cyperaceae are constructive or dominant species in vegetation, and pollen per- centages are less than 5% where Cyperaceae are not constructive or dominant species (cover less than 30%). Artemisia and Chenopodiaceae pollen percentages mainly have close relations with ecological regions. The relations between pollen percentages and cover are not clear for Gramineae, Legumi- nosae and Compositae.  相似文献   

19.
Shrub species are considered the dominant plants in arid desert ecosystems, unlike in semiarid steppe zones or in grassland ecosystems. On the Alxa Plateau, northern China, sparse vegetation with cover ranging from 15% to 30% is characterized mainly by multifarious shrubs because herbaceous species are strongly restricted by the extreme drought climate, wind erosion, overgrazing and sand burial. Patterns in shrub species richness and species abundance in relation to environmental conditions were examined by DCA (detrended correspondence analysis) and interpreted by a biplot. The relationships between species diversity and environmental factors were examined using regression analyses. Our results show that the distributions of the shrub species in response to environmental conditions can be grouped into four ecological types, corresponding with the biological traits of the shrubs and their responses to the gradients of soil texture and soil water content. Patterns in species richness and species abundance were mainly determined by the deeper soil water content, instead of the soil texture as hypothesized by numerous studies in semiarid grasslands. With exception of the deeper soil water content, soil organic matter and total N content were positively correlated with species abundance, while pH was negatively correlated with it. These findings imply that it is vital for current shrub diversity conservation to reduce agricultural water use in the middle reaches of the Heihe River, which supplies water for the lower reaches in the western parts of the plateau, and to reduce the amount of groundwater exploitation and urban and oasis water use, to increase the water supply from Helan Mountain to the eastern desert of the Alxa Plateau. Supported by National Key Technology R & D Program (Grant Nos. 2007BAD46B03, 2006BAD26B0201) and National Natural Science Foundation of China (Gant No. 40825001)  相似文献   

20.
通过210Pb测年建立年代标尺,利用黑龙江省连环湖阿木塔泡高分辨率的孢粉记录,探讨了研究区约220年的环境变化与人类活动.研究表明,1790-1820 AD期间,植被类型可能是以禾本科为主的草甸草原植被,沙地类型以固定沙地为主,气候相对较凉湿或环境几乎不受人类活动的破坏,湖泊营养较丰富.1820-1930 AD期间,草...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号