首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L. Li  Q. Yu  Z. Su  C. van der Tol 《水文研究》2009,23(5):665-674
Estimation of evapotranspiration from a crop field is of great importance for detecting crop water status and proper irrigation scheduling. The Penman–Monteith equation is widely viewed as the best method to estimate evapotranspiration but it requires canopy resistance, which is very difficult to determine in practice. This paper presents a simple method simplified from the Penman–Monteith equation for estimating canopy temperature (Tc). The proposed method is a biophysically‐sound extended version of that proposed by Todorovic. The estimated canopy temperature is used to calculate sensible heat flux, and then latent heat flux is calculated as the residual of the surface energy balance. An eddy covariance (EC) system and an infrared thermometer (IRT) were installed in an irrigated winter wheat field on the North China Plain in 2004 and 2005, to measure Tc, and sensible and latent heat fluxes were used to test the modified Todorovic model (MTD). The results indicate that the original Todorovic model (TD) severely underestimates Tc and sensible heat flux, and hence severely overestimates the latent heat flux. However, the MTD model has good capability for estimating Tc, and gives acceptable results for latent heat flux at both half‐hourly and daily scales. The MTD model results also agreed well with the evapotranspiration calculated from the measured Tc. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
Different satellite-based radiation (Makkink) and temperature (Hargreaves-Samani, Penman-Monteith temperature, PMT) reference evapotranspiration (ETo) models were compared with the FAO56-PM method over the Cauvery basin, India. Maximum air temperature (Tmax) required in the ETo models was estimated using the temperature–vegetation index (TVX) and an advanced statistical approach (ASA), and evaluated with observed Tmax obtained from automatic weather stations. Minimum air temperature (Tmin) was estimated using ASA. Land surface temperature was employed in the ETo models in place of air temperature (Ta) to check the potency of its applicability. The results suggest that the PMT model with Ta as input performed better than the other ETo models, with correlation coefficient (r), averaged root mean square error (RMSE) and mean bias error (MBE) of 0.77, 0.80 mm d?1 and ?0.69 for all land cover classes. The ASA yielded better Tmax and Tmin values (r and RMSE of 0.87 and 2.17°C, and 0.87 and 2.27°C, respectively).  相似文献   

3.
In this paper two models are presented for calculating the hourly evapotranspiration λE (W m?2) using the Penman–Monteith equation. These models were tested on four irrigated crops (grass, soya bean, sweet sorghum and vineyard), with heights between 0·1 and 2·2 m at the adult growth stage. In the first model (Katerji N, Perrier A. 1983. Modélisation de l'évapotranspiration réelle ETR d'une parcelle de luzerne : rôle d'un coefficient cultural. Agronomie 3(6): 513–521, KP model), the canopy resistance rc is parameterized by a semi‐empirical approach. In the second model (Todorovic M. 1999. Single‐layer evapotranspiration model with variable canopy resistance. Journal of Irrigation and Drainage Engineering—ASCE 125: 235–245, TD model), the resistance rc is parameterized by a mechanistic model. These two approaches are critically analysed with respect to the underlying hypotheses and the limitations of their practical application. In the case of the KP model, the mean slope between measured and calculated values of λE was 1·01 ± 0·6 and the relative correlation coefficients r2 ranged between 0·8 and 0·93. The observed differences in slopes, between 0·96 and 1·07, were not associated with the crop height. This model seemed to be applicable to all the crops examined. In the case of the TD model, the observed slope between measured and calculated values of λE for the grass canopy was 0·79. For the other crops, it varied between 1·24 and 1·34. In all the situations examined, the values of r2 ranged between 0·73 and 0·92. The TD model underestimated λE in the case of grass and overestimated it in the cases of the other three crops. The under‐ or overestimation of λE in the TD model were due: (i) to some inaccuracies in the theory of this model, (ii) to not taking into account the effect of aerodynamic resistance ra in the canopy resistance modelling. Therefore, the values of rc were under‐ or overestimated in consequence of mismatching the crop height. The high value of air vapour pressure deficit also contributed to the overestimation of λE, mainly for the tallest crop. The results clarify aspects of the scientific controversy in the literature about the mechanistic and semi‐empirical approaches for estimating λE. From the practical point of view the results also present ways for identifying the most appropriate approach for the experimental situations encountered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
Accurate estimation of evapotranspiration (ET) is essential in water resources management and hydrological practices. Estimation of ET in areas, where adequate meteorological data are not available, is one of the challenges faced by water resource managers. Hence, a simplified approach, which is less data intensive, is crucial. The FAO‐56 Penman–Monteith (FAO‐56 PM) is a sole global standard method, but it requires numerous weather data for the estimation of reference ET. A new simple temperature method is developed, which uses only maximum temperature data to estimate ET. Ten class I weather stations data were collected from the National Meteorological Agency of Ethiopia. This method was compared with the global standard PM method, the observed Piche evaporimeter data, and the well‐known Hargreaves (HAR) temperature method. The coefficient of determination (R2) of the new method was as high as 0.74, 0.75, and 0.91, when compared with that of PM reference evapotranspiration (ETo), Piche evaporimeter data, and HAR methods, respectively. The annual average R2 over the ten stations when compared with PM, Piche, and HAR methods were 0.65, 0.67, and 0.84, respectively. The Nash–Sutcliff efficiency of the new method compared with that of PM was as high as 0.67. The method was able to estimate daily ET with an average root mean square error and an average absolute mean error of 0.59 and 0.47 mm, respectively, from the PM ETo method. The method was also tested in dry and wet seasons and found to perform well in both seasons. The average R2 of the new method with the HAR method was 0.82 and 0.84 in dry and wet seasons, respectively. During validation, the average R2 and Nash–Sutcliff values when compared with Piche evaporation were 0.67 and 0.51, respectively. The method could be used for the estimation of daily ETo where there are insufficient data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
The backward‐averaged iterative two‐source surface temperature and energy balance solution (BAITSSS) model was developed to calculate evapotranspiration (ET) at point to regional scales. The BAITSSS model is driven by micrometeorological data and vegetation indices and simulates the water and energy balance of the soil and canopy sources separately, using the Jarvis model to calculate canopy resistance. The BAITSSS model has undergone limited testing in Idaho, United States. We conducted a blind test of the BAITSSS model without prior calibration for ET against weighing lysimeter measurements, net radiation, and surface temperature of drought‐tolerant corn (Zea mays L. cv. PIO 1151) in a semiarid, advective climate (Bushland, Texas, United States) in 2016. Later in the season (20 days), BAITSSS consistently overestimated ET by up to 3 mm d?1. For the entire growing season (127 days), simulated versus measured ET resulted in a 7% error in cumulative ET, RMSE = 0.13 mm h?1, and 1.70 mm d?1; r2 = 0.66 (daily) and r2 = 0.84 (hourly); MAE = 0.08 mm h?1 and 1.24 mm d?1; and MBE = 0.02 mm h?1 and 0.58 mm d?1. The results were comparable with thermally driven instantaneous ET models that required some calibration. Next, the initial soil water boundary condition was reduced, and model revisions were made to resistance terms related to incomplete cover and assumption of canopy senescence. The revisions reduced discrepancies between measured and modelled ET resulting in <1% error in cumulative ET, RMSE = 0.1 mm h?1, and 1.09 mm d?1; r2 = 0.86 (daily) and r2 = 0.90 (hourly); MAE = 0.06 mm h?1 and 0.79 mm d?1; and MBE = 0.0 mm h?1 and 0.17 mm d?1 and generally mitigated the previous overestimation. The advancement in ET modelling with BAITSSS assists to minimize uncertainties in crop ET modelling in a time series.  相似文献   

6.
ABSTRACT

The impact of climate variables on monthly reference evapotranspiration (ETo) is a critical issue in water resources management and irrigation planning. The spatio-temporal contribution of climate variables to ETo in the Pearl River Basin (PRB), China, from 1960 to 2016 were calculated based on sensitivity and relative change of each climatic variable. The results show that annual ETo total decreased by 1.64% and diminished in magnitude from the southeast to the northwest. Sunshine duration, wind speed and relative humidity decreased by 15.5%, 7.4%, and 4.0%, respectively, while average temperature increased by 4.25%. The ETo showed a positive sensitivity to all variables except relative humidity, which showed a negative sensitivity. Sunshine duration had the highest contribution of ?4.26%, and the overall decrease in ETo was mainly caused by the declines in sunshine duration and wind speed, which offset the positive impact of rises in average temperature and reduction in relative humidity.  相似文献   

7.
Hiroki Oue 《水文研究》2005,19(8):1567-1583
Observations made in a paddy field were analysed to show the influences of meteorological and vegetational factors on the crop's energy budget. Energy budget in the paddy field was characterized by the major partitioning to latent heat flux LE and by the negative Bowen ratio B mostly in the afternoon. Canopy resistance rc, estimated with the Penman–Monteith equation, was related to the influences of solar radiation SR, vapour pressure deficit VPD and plant height. The results demonstrated that rc could not directly account for B but that critical canopy resistance rcc, defined as the canopy resistance when B = 0, could be used to standardize rc, and that rcrcc proved to be a good parameter to account for B. Influences of bulk stomatal response on energy partitioning were assessed as follows: the Bowen ratio dropped below zero, while the bulk stomatal aperture dwindled with the increase of VPD. In addition, stomata of a big leaf acted to promote the partitioning to LE against the rise of SR in the condition of higher VPD. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The Food and Agriculture Organizations' (FAO) Penman–Monteith reference evapotranspiration (ET0) is a crucial index in the research of water and energy balance. Temporal and spatial variations in ET0 from 1981–2017 were investigated in the Hengduan Mountains, China. The results showed a change point around the year 2000 in ET0 series. ET0 decreased and increased significantly by +3.200 mm/year (p < 0.01) from 1981–2000 and by +4.109 mm/year (p < 0.01) from 2001–2017, respectively. The contribution analysis shows that the positive significant contribution of air temperature (TA) was offset by negative effects of decreases in downward shortwave radiation (Rs) and wind speed (WS) and an increase in actual vapour pressure (ea), causing the decrease in ET0 from 1981 to 2000. WS was the largest contributing factor for the decrease in ET0 from 1981 to 2000 during spring, winter and annually, while Rs and ea were the largest negative contributors in summer and autumn, respectively. An increase in TA was responsible for the increase in ET0 in all seasons except winter and the annual scale in 2001–2017. The sensitivity analysis shows that ET0 was most sensitive to TA, and WS was the least sensitive variable. The trends of ET0 increased with elevation; we denote this as the elevation-dependence of ET0 changes. The elevation-dependence was also noted for the trends of WS and ea, with higher elevations showing larger changes in WS and lower changes in ea. Besides, the sensitivities of TA, Rs and ea decreased with elevation, while that of WS increased slightly with elevation. A comprehensive investigation into the trends of climatic drivers and their sensitivities revealed complex trends of the contributions of climatic variables on ET0 with elevation, with no uniform trend existed in seasons. The results will contribute to our understanding of the response of ET0 to climate change in a mountainous area, and provide a guideline for the water resources management under climate change.  相似文献   

9.
Sensitivity analysis is crucial in assessing the impact of climatic variables on reference evapotranspiration estimations. The sensitivity of the standardized ASCE–Penman–Monteith evapotranspiration equation for daily estimations to climatic variables has not yet been studied in Spain. Andalusia is located in southern Spain where almost 1 million ha are irrigated under quite different conditions; it has a high inter‐annual variability in rainfall. In this study, sensitivity analyses for this equation were carried out for temperature, relative humidity, solar radiation and wind speed data from 87 automatic weather stations, including coastal and inland locations, from 1999 to 2006. Topography and Mediterranean climate characterize the heterogeneous landscape and vegetation of this region. Simulated random and systematic errors have been added to meteorological data to obtain ET0 deviations and sensitivity coefficients for different time periods. BIAS and SEE (standard error of estimate) have been used to evaluate the effect of both types of errors. The results showed a large degree of daily and seasonal variability, especially for temperature and relative humidity. In general, the effect on ET0 values of introduced random errors was larger than that of systematic errors. ET0 overestimations were produced using positive errors in temperature, solar radiation and wind speed data, while these errors in relative humidity resulted in ET0 underestimations. The sensitivity of ET0 to the same climatic variables showed significant differences among locations. The geographical distribution of sensitivity coefficients across this region was also studied. As an example, during spring months, ET0 equation was more sensitive to temperature in stations located along the Guadalquivir Valley. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

11.
X. Mo  S. Liu  Z. Lin  S. Wang  S. Hu 《水文科学杂志》2013,58(12):2163-2177
Abstract

Using satellite observations of Normalized Difference Vegetation Index (NDVI) from NOAA-AVHRR and Terra-MODIS, together with climatic data in a physical evapotranspiration (ET) model, the spatio-temporal variability of ET is investigated in terrestrial China from 1981 to 2010. The model predictions of actual ET (ETa) are validated with ET values from in situ eddy covariance flux measurements and from basin water balance calculations. The national averaged crop reference ET (ETp) and ETa values are 916 ± 21 and 415 ± 12 mm year-1, respectively. The annual ETa pattern is closely associated with vegetation conditions in the eastern part of China, whereas ETa is low in the sparsely-vegetated areas and deserts in the northwestern region, corresponding to scarce rainfall events and amounts. The trends of ETp and ETa are remarkably different over the country, and the complementary relationship between ETp and ETa is revealed for the study period. Averaged over the whole country, ETa showed an increasing trend from the 1980s to the mid-1990s, followed by a decreasing trend, consistent with the precipitation anomaly. Across the main vegetation types, annual ETa amounts are found to correspond clearly with the bands of precipitation and ETp.  相似文献   

12.
Evapotranspiration (ET) plays an important role in integrated water resource planning, development and management. This process is particularly relevant in semiarid regions. The aim of this study is, hence, to compare spatial and temporal patterns of actual ET, as well as the temporal trends in two different semiarid forests, Caatinga (Brazil) and Tierra de Pinares (Spain). We used the surface energy balance algorithm for land (SEBAL) to assess actual evapotranspiration (ETa) in both areas. In the Brazilian semiarid forest, Caatinga is the main vegetation, while it is Pinares in Spain. For this purpose, 69 Landsat-5 and 42 Landsat-8 images (1995–2019) were used. The Mann–Kendall test was applied to assess the occurrence of trends in precipitation, temperature and potential ET data; and the Temporal Stability Index (TSI) to know which areas have greater seasonal ETa. The annual amplitude of the potential evapotranspiration (ET0) is the same in both areas, however, the Caatinga values are higher. In the Caatinga forest, when ET0 presents its highest values throughout the year, ETa presents the lowest, and vice versa. In the Pinares forest, ETa follows the ET0 dynamics during the year, and the difference between ET0 and ETa is maximum during the summer. The Caatinga forest showed a greater spatial variation of ETa than the Pinares forest as well as a greater extension with lower temporal stability of ETa than the Pinares forest. Both the Caatinga forest and the Pinares forest showed significant positive trends in annual ET0 and ETa. We estimate that the value of ETa increases more rapidly in Pinares than in the Brazilian Caatinga. Taking Caatinga as a hydrological mirror, some consequences are expected to Pinares, such as significant changes in the water balance, increase of biodiversity vulnerability, and reduction of water availability in soil and reservoirs.  相似文献   

13.
F. Ashkar 《水文科学杂志》2013,58(6):1092-1106
Abstract

The potential is investigated of the generalized regression neural networks (GRNN) technique in modelling of reference evapotranspiration (ET0) obtained using the FAO Penman-Monteith (PM) equation. Various combinations of daily climatic data, namely solar radiation, air temperature, relative humidity and wind speed, are used as inputs to the ANN so as to evaluate the degree of effect of each of these variables on ET0. In the first part of the study, a comparison is made between the estimates provided by the GRNN and those obtained by the Penman, Hargreaves and Ritchie methods as implemented by the California Irrigation Management System (CIMIS). The empirical models were calibrated using the standard FAO PM ET0 values. The GRNN estimates are also compared with those of the calibrated models. Mean square error, mean absolute error and determination coefficient statistics are used as comparison criteria for the evaluation of the model performances. The GRNN technique (GRNN 1) whose inputs are solar radiation, air temperature, relative humidity and wind speed, gave mean square errors of 0.058 and 0.032 mm2 day?2, mean absolute errors of 0.184 and 0.127 mm day?1, and determination coefficients of 0.985 and 0.986 for the Pomona and Santa Monica stations (Los Angeles, USA), respectively. Based on the comparisons, it was found that the GRNN 1 model could be employed successfully in modelling the ET0 process. The second part of the study investigates the potential of the GRNN and the empirical methods in ET0 estimation using the nearby station data. Among the models, the calibrated Hargreaves was found to perform better than the others.  相似文献   

14.
Thus far, measurements and estimations of actual evapotranspiration (ET) from high‐altitude grassland ecosystems in remote areas like the Qinghai‐Tibetan plateau are still insufficient. To address these issues, a comparison between the results of the eddy covariance (EC) measurements and the estimates, considering the Katerji and Perrier (KP), the Todorovic (TD) and the Priestley–Taylor (PT) models, was carried out over an alpine grassland (38o03'1.7'' N, 100o 27’ 26'' E; 3032 m a.s.l.) during the growing seasons in 2008 and 2009. The results indicated that the KP model after a particularly simple calibration gave the most effective ET values in different time scales, the PT model slightly underestimate ET at night and the TD model significantly overestimated ET at noon. In addition, the canopy resistance calculated by the TD model was completely different from that calculated using the inverted EC‐measured data and the KP model, which may be due to some unrealistic assumptions made by the TD model. The KP parameters were a = 0.17 and b = 1.50 for the alpine grassland and appeared to be interannually stable. However, the PT parameter showed some interannual variations (α = 0.83 and 0.74 for 2008 and 2009, respectively). Therefore, the KP model was preferred to estimate the actual ET at both hourly and daily time scales. The PT model, being the simplest approach and field condition dependent, was recommended when available weather data were rare. On the contrary, the TD model always overestimated the actual ET and should be avoided in case of the alpine grassland ecosystems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
The eddy covariance (EC) method was used in a 30‐month study to quantify evapotranspiration (ET) and vegetation coefficient (KCW) for a wetland on a ranch in subtropical south Florida. To evaluate the errors in ET estimates, the EC‐based ET (ETC‐EC) and the Food and Agricultural Organization (FAO) Penman–Monteith (PM) based ET (ETC‐PM) estimates (with literature crop coefficient, KC) were compared with each other. The ETC‐EC and FAO‐PM reference ET were used to develop KCW. Regression models were developed to estimate KCW using climatic and hydrologic variables. Annual and daily ETC‐EC values were 1152 and 3.27 mm, respectively. The FAO‐PM model underestimated ET by 25% with ETC‐EC being statistically higher than ETC‐PM. The KCW varied from 0.79 (December) to 1.06 (November). The mean KCW for the dry (November–April) season (0.95) was much higher than values reported for wetlands in literature; whereas for the wet (May–October) season, KCW (0.97) was closer to literature values. Higher than expected KCW values during the dry season were due to higher temperature, lower humidity and perennial wetland vegetation. Regression analyses showed that factors affecting the KCW were different during the dry (soil moisture, temperature and relative humidity) and wet (net radiation, inundation and wind speed) seasons. Separate regression models for the dry and wet seasons were developed. Evapotranspiration and KCW from this study, one of the first for the agricultural wetlands in subtropical environment, will help improve the ET estimates for similar wetlands. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Estimation of daily evapotranspiration (ET) over cloudy regions highly desires models which rely on meteorological data only. Notwithstanding, the conventional crop coefficient (Kc) method requires detailed knowledge of geo/biophysical properties of the coupled land-vegetation system, precipitation, and soil moisture. Six Eddy Covariance (EC) towers in Iowa, California and New Hampshire of the USA (covering corn, soybeans, prairie, and deciduous forest) were selected. Investigation on 6 years (2007–2012) 15-min micrometeorological records of these sites revealed that there is an indubitable strong interaction between relative humidity (RH), reference ET (ETo), and actual ET at different timescales. This allowed to bypass the need for the non-meteorological inputs and express Kc as a second-order polynomial function of RH and ETo, the ambient regression evapotranspiration model (AREM). The coefficients of the empirical function are crop-specific and may require calibration over different soil types. The mean absolute percentage error (MAPE) of the regression against daily EC observations was 17% during the growing season, and 32% throughout the year with root mean square error (RMSE) of 0.74 mm day−1 and coefficient of determination of 0.71. The model was fully operational (MAPE of 34% and RMSE of 0.82 mm day−1) over the four Iowan sites based on inputs from local weather stations and NLDAS-2 forcing data of NASA. AREM was capable of capturing the dynamics of ET at 15-min and daily timescales irrespective of varying complexities associated with biophysical, geophysical and climatological states.  相似文献   

17.
The White method is a simple but the most frequently applied approach to estimate groundwater evapotranspiration (ETg) from groundwater level diurnal signals. Because of a lack of direct measurements of ETg, it is difficult to evaluate the performance of the White method, particularly in field environments with variable groundwater fluctuations. A 2‐year field observation in a hyper‐arid riparian tamarisk (Tamarix spp.) stand with deep groundwater depth in the lower Tarim River basin of China was conducted to measure the surface evapotranspiration (ETs) and groundwater table. The performance of the White method and the influences of the variable groundwater fluctuations on the determinations of the specific yield (Sy) and recharge rate of groundwater (r) in the White method were investigated. The results showed that the readily available Sy determined by Loheide's method was feasible but must be finely determined based on the soil textures in the layers in which the groundwater level fluctuated. A constant Sy value for a defined porous medium could be assumed regardless of the discharge or recharge processes of groundwater. The time span of 0000 h to 0600 h for r estimation for the White method worked best than other time spans. A 2‐day moving average of r values further enhance ETg estimation. Slight effects of environmental or anthropogenic disturbances on the diurnal fluctuations of groundwater level did not influence the ETg estimations by the White method. Our results provide valuable references to the application of the White method for estimating daily ETg in desert riparian forests with deep groundwater depth. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
ABSTRACT

The Hargreaves method provides reference evapotranspiration (ETo) estimates when only air temperature data are available, although it requires previous local calibration for an acceptable performance. This method was evaluated using the data from 71 meteorological stations in the Seolma-cheon basin (8.48 km2), South Korea, comparing daily estimates against those from the Penman‐Monteith (PM) method, which was used as the standard. To estimate reference ETo more exactly, considering the climatological characteristics in South Korea, parameter regionalization of the Hargreaves equation is carried out. First, the modified Hargreaves equation is presented after an analysis of the relationship between solar radiation and temperature. Second, parameter (KET) optimization of the regional calibration of the Hargreaves equation (RCH) is performed using the PM method and the modified equation at 71 meteorological stations. Next, an application was carried out to evaluate the evapotranspiration methods (PM, original Hargreaves and RCH) in the SWAT (Soil and Water Assessment Tool) model by comparing these with the measured actual evapotranspiration (AET) in the basin. The SWAT model was calibrated using 3 years (2007–2009) of daily streamflow at the watershed outlet and 3 years (2007–2009) of daily AET measured at a mixed forest. The model was validated with 3 years (2010‐2012) of streamflow and AET. RCH will contribute to a better understanding of evapotranspiration of an ungauged watershed in areas where meteorological information is scarce.
EDITOR D. Koutsoyiannis ASSOCIATE EDITOR Not assigned  相似文献   

19.
The scenario assumed for this study was that of a region with a complete or first‐order weather station surrounded by a network of second‐order stations, where only monthly air temperature data were available. The objective was to evaluate procedures to estimate the monthly α parameter of the Priestley–Taylor equation in the second‐order stations by adjusting and extrapolating α values determined at the first‐order station. These procedures were applied in two climatic zones of north‐east Spain with semi‐arid continental and semi‐arid Mediterranean climates, respectively. Procedure A assumed α to be constant over each zone for each month (direct extrapolation). Procedure B accounted for differences in vapour pressure deficit and available energy for evapotranspiration between the first‐ and second‐order stations. Procedure C was based on equating the Penman–Monteith (P–M) and Priestley–Taylor (P–T) equations on a monthly basis to solve for α. Methods to estimate monthly mean vapour pressure deficit, net radiation and wind speed were developed and evaluated. A total of 11 automated first‐order weather stations with a minimum period of record of 6 years (ranging from 6 to 10 years) were used for this study. Six of these stations were located in the continental zone and five in the Mediterranean zone. One station in each zone was assumed to be first‐order whereas the remainder were taken as second‐order stations. Monthly α parameters were calibrated using P–M reference crop evapotranspiration (ET0) values, calculated hourly and integrated for monthly periods, which were taken as ‘true’ values of ET0. For the extrapolation of monthly α parameters, procedure A was found to perform slightly better than procedure B in the Mediterranean zone. The opposite was true in the continental zone. Procedure C had the worst performance owing to the non‐linearity of the P–M equation and errors in the estimation of monthly available energy, vapour pressure deficit and wind speed. Procedures A and B are simpler and performed better. Overall, monthly P–T ET0 estimates using extrapolated α parameters and Rn?G values were in a reasonable agreement with P–M ET0 calculated on an hourly basis and integrated for monthly periods. The methods presented for the spatial extrapolation of monthly available energy, vapour pressure deficit and wind speed from first‐ to second‐order stations could be useful for other applications. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
Ozgur Kisi 《水文研究》2008,22(14):2449-2460
The potential of three different artificial neural network (ANN) techniques, the multi‐layer perceptrons (MLPs), radial basis neural networks (RBNNs) and generalized regression neural networks (GRNNs), in modelling of reference evapotranspiration (ET0) is investigated in this paper. Various daily climatic data, that is, solar radiation, air temperature, relative humidity and wind speed from two stations, Pomona and Santa Monica, in Los Angeles, USA, are used as inputs to the ANN techniques so as to estimate ET0 obtained using the FAO‐56 Penman–Monteith (PM) equation. In the first part of the study, a comparison is made between the estimates provided by the MLP, RBNN and GRNN and those of the following empirical models: The California Irrigation Management Information System (CIMIS) Penman (1985), Hargreaves (1985) and Ritchie (1990). In this part of the study, the empirical models are calibrated using the standard FAO‐56 PM ET0 values. The estimates of the ANN techniques are also compared with those of the calibrated empirical models. Mean square errors, mean absolute errors and determination coefficient statistics are used as comparing criteria for the evaluation of the models' performances. Based on the comparisons, it is found that the MLP and RBNN techniques could be employed successfully in modelling the ET0 process. In the second part of the study, the potential of ANN techniques and the empirical methods in ET0 estimation using nearby station data is investigated. Among the models, the calibrated Hargreaves model is found to perform better than the others. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号