首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monitoring the effects of acidic deposition on aquatic ecosystems in the Northeastern US has generally required regular measurements of stream buffering chemistry (i.e. acid‐neutralizing capacity (ANC) and calcium Ca2+), which can be expensive and time consuming. The goal of this paper was to develop a simple method for predicting baseflow buffering chemistry based on the hydrogeomorphic properties of ten nested watersheds in the Neversink River basin (2·0–176·0 km2), an acid‐sensitive basin in the Catskill Mountains, New York State. The tributaries and main reach watersheds have strongly contrasting mean baseflow ANC values and Ca2+ concentrations, despite rather homogeneous vegetation, bedrock geology, and soils. A stepwise regression was applied to relate 13 hydrogeomorphic properties to the mean baseflow ANC values and Ca2+ concentrations. The regression analysis showed that watersheds with lower ANC values had a higher mean ratio of ‘quickflow’ runoff to precipitation during 20 non‐snowmelt runoff events (referred to as mean runoff ratio). The mean runoff ratio could explain at least 80% of the variability in mean baseflow ANC values and Ca2+ concentrations among the ten watersheds. Greater mean runoff ratios also correlated with steeper slopes and greater drainage densities, thus allowing the prediction of baseflow ANC values (r2 = 0·75) and Ca2+ concentrations (r2 = 0·77) with widely available spatial data alone. These results indicate that hydrogeomorphic properties can predict a watershed's sensitivity to acid deposition in regions where the spatial sources of stream buffering chemistry from the bedrock mineralogy and soils are fairly uniform. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The Krusné hory (Erzgebirge or Ore Mountains) has been heavily affected by high atmospheric pollutant deposition caused by fossil fuel combustion in an adjacent Tertiary coal basin. Long‐term routine sampling of bulk precipitation (1977–1996) and stream water (1977–1998) in a forested area on the south‐eastern slope of the mountains were used to evaluate trends and patterns in solute concentration and flux with respect to controlling processes. From 1977 to 1996, the annual volume‐weighted Ca2+ and SOconcentrations decreased in bulk precipitation. However, after 1989, when a pronounced and continuous decrease occurred in coal production, annual volume‐weighted concentrations decreased for most solutes, except H+. The concentration decreases were marked, with 1996 levels at or below 50% of those in 1989. The lack of a trend in H+ is attributed to similar decreases in both acid anions and neutralizing base cations. Stream water concentrations of most solutes, i.e. H+, Ca2+, Mg2+, SONOwere highest at the onset of sampling in 1977, decreased markedly from 1977 to 1983 and decreased more gradually from 1983 to 1998. The spruce forest die‐back and removal reduced dry deposition of these solutes by reducing the filtering action, which was provided by the forest canopy. A notable decrease in stream water Ca2+ concentrations occurred after 1995 and may be due to the depletion of Ca2+, which was provided by catchment liming in 1986, 1988 and 1989. Solute flux trends in bulk atmospheric deposition and stream water generally were not significant and the lack of trend is attributed to the large interannual variability in precipitation quantity and runoff, respectively. All solutes except Na+ varied seasonally. The average seasonal concentrations varied between the solutes, but for most solutes were highest in winter and spring and lowest in summer, correlating with the seasonal trend in runoff. For Ca2+, Mg2+ and SOthe concentration minimum occurs in September and the maximum occurs in February or March, correlating with the seasonal baseflow. These solutes are primarily controlled by the contribution of soil water and groundwater to stream flow. During snowmelt, the meltwater generally causes concentrations to decrease as soil water and groundwater are diluted. For NO3 , average minimum concentrations occur in August at the end of the growing season concurrent with the lowest stream flow, and the maximum occurs in February and March with high stream flow during snowmelt. Seasonal stream water NOconcentration variations are large compared with the long‐term decrease. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
Hydrological fluxes and associated nutrient budget were studied during a 2 year period (1998–99) in a montane moist evergreen broad‐leaved forest at Ailao Mountain, Yunnan. Water samples of rainfall, throughfall, and stemflow, and of surface runoff, soil water, and stream flow were collected bimonthly to determine the concentration and fluxes of nutrients. Soil budgets were determined from the difference between precipitation input (including nutrient leaching from canopy) and output via runoff and drainage. The forest was characterized by low canopy interception and surface runoff, and high percolation and stream flow. Concentrations of nutrients were increased in throughfall and stemflow compared with precipitation. Surface runoff and drainage water had higher nutrient concentrations than precipitation and stream water. Total nitrogen and NH4+‐N concentrations were higher in soil water than stream water, whereas K+, Ca2+, and Mg2+ concentrations were lower in the former than the latter. Annual nutrient fluxes decreased with soil depth following the pattern of water flux. Annual losses of most nutrient elements via stream flow were less than the corresponding inputs via throughfall and stemflow, except for calcium, for which solute loss was greater than the inputs via precipitation. Leaching losses of that element may be compensated by weathering. Losses of nitrogen, phosphorus, potassium, magnesium, sodium, and sulphur could be replaced through atmospheric inputs. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

4.
Polar Bear Pass is a large High Arctic low‐gradient wetland (100 km2) bordered by low‐lying hills which are notched by a series of v‐shaped valleys. The spring and summer hydrology of two High Arctic hillslope‐wetland catchments, a first‐order stream, 0·2 km2 Landing Strip Creek (LSC) and a larger second‐order basin, 4·2 km2 Windy Creek (WC), is described here. A water balance framework was employed in 2008 to examine the movement of water from upland reaches into the low‐lying wetland. Snowcover was low in both basins (<50 mm in water equivalent units), but they both exhibited nival‐type regimes. After the main snowmelt season ended, runoff ceased in the smaller catchment (LSC), but not at the larger basin (WC) which continued to flow throughout the summer. Both basins responded to summer rains in different ways. At LSC, late‐summer continuous streamflow occurred only when rainfall satisfied the large soil moisture deficit in the upper bowl‐shaped zone of the basin. At WC, the presence of thinly thawed, ice‐rich polygonal terrain within the stream channel and in the upper reaches of the catchment likely limited infiltration in these near‐stream zones and enhanced runoff in response to both moderate and high rainfall. Subsequently, seasonal runoff ratios differed between the two sites (0·19 vs 0·68) as did the seasonal storage + residual (+16 vs ?50 mm). This suggests that the post‐snowmelt season runoff response to summer precipitation is very much modified by the unique basin characteristics (soil‐type, vegetation, ground ice) and their location within each stream order type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This study uses stable isotopes and major ions to examine the seasonal evolution of penitentes on the surface of Tapado Glacier, in the Norte Chico region of the Chilean Andes. A snow pit was sampled in November 2011, and penitentes were sampled during the summer (December 2011 and January 2012). The major ion load of the winter snowpack is dominated by Ca2+ (60%), SO42? (16%) and NO3? (13%), and there is little influence from marine air masses at the site, with most SO42?, Mg2+, Ca2+ and Na+, derived from non‐sea salt sources. During the early ablation season we observe increases in stable isotope ratios and major ion concentrations (particularly lithic ions Na+, Mg2+ and Ca2+) in the upper reaches of penitentes, which is attributed to sublimation and the aeolian deposition of dust particles. In the late‐summer, melt replaces sublimation as the dominant ablation process and results in smoothing of the stable isotope profile and the elution of major ions within the penitente snow and ice matrix. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Modelling nutrient transport during snowmelt in cold regions remains a major scientific challenge. A key limitation of existing nutrient models for application in cold regions is the inadequate representation of snowmelt, including hydrological and biogeochemical processes. This brief period can account for more than 80% of the total annual surface runoff in the Canadian Prairies and Northern Canada and processes such as atmospheric deposition, overwinter redistribution of snow, ion exclusion from snow crystals, frozen soils, and snow‐covered area depletion during melt influence the distribution and release of snow and soil nutrients, thus affecting the timing and magnitude of snowmelt runoff nutrient concentrations. Research in cold regions suggests that nitrate (NO3) runoff at the field‐scale can be divided into 5 phases during snowmelt. In the first phase, water and ions originating from ion‐rich snow layers travel and diffuse through the snowpack. This process causes ion concentrations in runoff to gradually increase. The second phase occurs when this snow ion meltwater front has reached the bottom of the snowpack and forms runoff to the edge‐of‐the‐field. During the third and fourth phases, the main source of NO3 transitions from the snowpack to the soil. Finally, the fifth and last phase occurs when the snow has completely melted, and the thawing soil becomes the main source of NO3 to the stream. In this research, a process‐based model was developed to simulate hourly export based on this 5‐phase approach. Results from an application in the Red River Basin of southern Manitoba, Canada, shows that the model can adequately capture the dynamics and rapid changes of NO3 concentrations during this period at relevant temporal resolutions. This is a significant achievement to advance the current nutrient modelling paradigm in cold climates, which is generally limited to satisfactory results at monthly or annual resolutions. The approach can inform catchment‐scale nutrient models to improve simulation of this critical snowmelt period.  相似文献   

7.
K.S. Reinhardt  T. Furman 《水文研究》2008,22(18):3759-3771
This study examined the stream chemistry changes in Staunton River (a second‐order headwater stream with an average annual discharge 704 m3 ha?1 yr?1, Shenandoah National Park, Virginia) resulting from a catastrophic flood in June 1995. This flood, which followed after 800 mm of rain in a 4‐day period, caused large‐scale debris flows and complete scouring of riparian soils down to bedrock in the lower 2 km of the stream, and has been estimated to be a 1000‐year flood. The flood affected stream chemistry on both short‐ and long‐term time scales. The primary short‐term response was elevations in stream concentration of Ca2+, Mg2+, and K+ by 59%, 87%, and 49%, respectively, for 6 months immediately following the flood. The long‐term impact of decreased concentration of all base cations and SiO2 during summer months (8% average) lasted about 2 years. At the episodic time scale, Ca2+, Mg2+, and K+ flushed from soil sources during pre‐flood storms while Na+ and SiO2 diluted; these trends generally reversed during post‐flood storms for 2 years. Short‐term effects are attributed to the leaching of unconsolidated soil and upturned organic matter that clogged the streambed after the flood. The long‐term and superimposed episodic impacts may have resulted from the loss of riparian soils and vegetation in the flood. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Factors controlling the partitioning of old and new water contributions to stream flow were investigated for three events in four catchments (three of which were nested) at Sleepers River Research Watershed in Danville, Vermont. In the 1993 snowmelt period, two‐component isotopic hydrograph separations showed that new water (meltwater) inputs to the stream ranged widely from 41 to 74%, and increased with catchment size (41 to 11 125 ha) (with one exception) and with open land cover (0–73%). Peak dissolved organic carbon concentrations and relative alkalinity dilution in stream water ranked in the same order among catchments as the new water fractions, suggesting that new water followed shallow flow paths. During the 1994 snowmelt, despite similar timing and magnitude of melt inputs, the new‐water contribution to stream flow ranged only from 30 to 36% in the four catchments. We conclude that the uncommonly high and variable new water fractions in streamwater during the 1993 melt were caused by direct runoff of meltwater over frozen ground, which was prevalent in open land areas during the 1993 winter. In a high‐intensity summer rainstorm in 1993, new water fractions were smaller relative to the 1993 snowmelt, ranging from 28 to 46%, but they ranked in the identical catchment order. Reconciliation of the contrasting patterns of new–old water partitioning in the three events appears to require an explanation that invokes multiple processes and effects, including:
  • 1. topographically controlled increase in surface‐saturated area with increasing catchment size;
  • 2. direct runoff over frozen ground;
  • 3. low infiltration in agriculturally compacted soils;
  • 4. differences in soil transmissivity, which may be more relevant under dry antecedent conditions.
These data highlight some of the difficulties faced by catchment hydrologists in formulating a theory of runoff generation at varying basin scales. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Processes controlling streamflow generation were determined using geochemical tracers for water years 2004–2007 at eight headwater catchments at the Kings River Experimental Watersheds in southern Sierra Nevada. Four catchments are snow‐dominated, and four receive a mix of rain and snow. Results of diagnostic tools of mixing models indicate that Ca2+, Mg2+, K+ and Cl? behaved conservatively in the streamflow at all catchments, reflecting mixing of three endmembers. Using endmember mixing analysis, the endmembers were determined to be snowmelt runoff (including rain on snow), subsurface flow and fall storm runoff. In seven of the eight catchments, streamflow was dominated by subsurface flow, with an average relative contribution (% of streamflow discharge) greater than 60%. Snowmelt runoff contributed less than 40%, and fall storm runoff less than 7% on average. Streamflow peaked 2–4 weeks earlier at mixed rain–snow than snow‐dominated catchments, but relative endmember contributions were not significantly different between the two groups of catchments. Both soil water in the unsaturated zone and regional groundwater were not significant contributors to streamflow. The contributions of snowmelt runoff and subsurface flow, when expressed as discharge, were linearly correlated with streamflow discharge (R2 of 0.85–0.99). These results suggest that subsurface flow is generated from the soil–bedrock interface through preferential pathways and is not very sensitive to snow–rain proportions. Thus, a declining of the snow–rain ratio under a warming climate should not systematically affect the processes controlling the streamflow generation at these catchments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

11.
Water sources and flow paths contributing to stream chemistry were evaluated in four Japanese forested watersheds with steep topography (slopes ≥30°). Stream chemistry during periods without rainfall and during events with less than 100 mm of precipitation was similar to seepage water chemistry, but markedly different from that of soil water which had higher concentrations of NO3 and Ca2+ and lower concentrations of Na+ and HCO3. Also, stream Cl concentrations in a Cl‐treated watershed did not increase either during events with less than 100 mm of total rainfall or at baseflow conditions, even three years after the Cl treatment. These results suggest that groundwater within bedrock fissures of Paleozoic strata had a long residence time and was a major contributor to steam water under baseflow conditions and even during small precipitation events (≤100 mm). In contrast, for large precipitation events (≥100 mm), stream chemistry became more similar to soil water chemistry, especially within the steepest watershed. Also, for large precipitation events, stream Cl concentrations in the Cl‐treated watershed increased markedly. These results suggest that soil water was a major contributor to stream waters only during these large events. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

12.
淮北临涣矿采煤沉陷区不同水体水化学特征及其影响因素   总被引:3,自引:0,他引:3  
为研究淮北临涣矿采煤沉陷区不同水体的补给水源及溶质来源,在现场调查的基础上,系统采集丰水期、平水期、枯水期沉陷区积水、地表河水和浅层地下水样进行测试分析,采用Piper三线图、Gibbs图和因子分析方法,对不同水体水化学特征及其影响因素进行讨论.结果表明:地表水水体总溶解性固体(TDS)质量浓度表现为枯水期丰水期平水期,浅层地下水表现为枯水期平水期丰水期,地表水TDS质量浓度明显高于浅层地下水.地表水中主要阴阳离子为Na~+、Cl~-和SO_4~(2-),水化学类型主要为SO_4~(2-)-Cl~--Na~+型;浅层地下水离子以HCO_3~-、Ca~(2+)和Mg~(2+)为主,表现为HCO_3~--Ca~(2+)-Mg~(2+)型.结合Gibbs图和因子分析可知,地表水受蒸发作用、地表径流以及采煤活动等因素影响,浅层地下水在一定程度上体现出大气降水和地表水补给的特点,受岩石风化作用影响较为明显.  相似文献   

13.
The hydrochemistry of naled and upwelling water sampled from the forefields of Finsterwalderbreen, Svalbard, during spring are used for the first time to infer the hydrology of overwinter meltwaters at a polythermal‐based glacier. Hydrochemical variations in naled are explained in terms of different water sources and their chemical alteration during freezing. Two water sources to naled are identified: surficially routed snowmelt and subglacial water. Naled that results from the freezing of the former is enriched in atmospherically derived ions such as Na+ and Cl, and is believed to be formed during winter warm periods. Naled of subglacial origin contains relatively high proportions of crustally derived solute. It reflects the freezing of subglacial meltwaters that continue to issue from a subterranean upwellling during winter. An increasing dominance of SO2−4 Mg2+, Na+ and Cl in subglacial naled with increasing distance from the upwelling reflects the progressive freezing of this water body and the associated removal of Ca2+ and HCO by calcite precipitation. These spatial trends are accentuated by the leaching of soluble ions from the naled close to its source by subsequent upwelling waters. The chemistry of spring upwelling waters, also of subglacial origin, strongly reflects this process. Meltwater produced by geothermal heating of glacier basal ice is believed to be the principal source of water to the subglacial drainage system during winter. Solute acquisition by this meltwater is limited by a scarcity of proton suppliers. Evolution of this dilute meltwater carries an imprint of ion exchange processes. Some stored subglacial water from the end of the previous ablation season may supplement the basal meltwater component in early winter. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

14.
Groundwater is a very significant water source used for irrigation and drinking purposes in the karst region, and therefore understanding the hydrogeochemistry of karst water is extremely important. Surface water and groundwater were collected, and major chemical compositions and environmental isotopes in the water were measured in order to reveal the geochemical processes affecting water quality in the Gaoping karst basin, southwest China. Dominated by Ca2+, Mg2+, HCO3? and SO42?, the groundwater is typically characterized by Ca? Mg? HCO3 type in a shallow aquifer, and Ca? Mg? SO4 type in a deeper aquifer. Dissolution of dolomite aquifer with gypsiferous rocks and dedolomitization in karst aquifers are important processes for chemical compositions of water in the study basin, and produce water with increased Mg2+, Ca2+ and SO42? concentrations, and also increased TDS in surface water and groundwater. Mg2+/Ca2+ molar ratios in groundwater decrease slightly due to dedolomitization, while the mixing of discharge of groundwater with high Mg2+/Ca2+ ratios may be responsible for Mg2+/Ca2+ ratios obviously increasing in surface water, and Mg2+/Ca2+ ratios in both surface water and groundwater finally tending to a constant. In combination with environmental isotopic analyses, the major mechanism responsible for the water chemistry and its geochemical evolution in the study basin can be revealed as being mainly from the water–rock interaction in karst aquifers, the agricultural irrigation and its infiltration, the mixing of surface water and groundwater and the water movement along faults and joints in the karst basin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Inorganic ions and nutrients were measured at different depths of the Xiangxi and Daninghe Rivers to explore the mixing processes of representative bays in the Three Gorges Reservoir (TGR). HCO3 and Ca2+ are the dominant ions. Carbonate weathering is the most important mechanism controlling the ion water chemistry; however, important differences exist between the main channel and its tributaries. Major ion levels in the TGR bays depend on hydrological mixing. Results show that the major ions of Ca2+, Mg2+, Na+, K+, Sr2+, SO42− and Cl show chemically conservative behaviour during transit through the bays of the TGR. This means the ions can be used as tracers in the same way that salinity is used in estuaries to explore behaviour of other non‐conservative elements and to indicate specific source waters. In contrast, nutrients are not conserved in the mixing zone. The mixing of the main channel and tributaries and biological utilization in backwater reaches were the key factor controlling nutrient distributions in Xiangxi and Daninghe Bays. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Long-term ecosystem studies are valuable for understanding integrated ecosystem response to global changes in atmospheric deposition and climate. We examined trends for a 35-year period (1982/83–2017/18) in concentrations of a range of solutes in precipitation and stream water from nine headwater catchments spanning elevation and surficial geology gradients at the Turkey Lakes watershed (TLW) in northeastern Ontario, Canada. Average annual water year (WY, October to September) concentrations in precipitation significantly declined over the period for sulphate (SO42−), nitrate (NO3) and chloride (Cl), while calcium (Ca2+) and potassium (K+) concentrations increased, resulting in a significant pH increase from 4.2 to 5.7. Trends in stream chemistry through time are generally consistent with expectations associated with acidification recovery. Concentration of many stream water solutes (SO42−, Cl, calcium [Ca2+], magnesium [Mg2+] and NH4+ generally decreased, while others (silica [SiO2] and dissolved organic carbon [DOC]) generally increased. Increases were also observed for alkalinity (six of nine catchments), acid neutralizing capacity ([ANC]; six of nine catchments) and pH (eight of nine catchments), while conductivity declined (six of nine catchments). Variability in trends among catchments are associated with differences in surficial geology and wetland cover. While absolute solute concentrations were generally lower at bedrock dominated high-elevation catchments compared to till dominated lower elevation catchments, the rate of change of concentration was often greater for high elevation catchments. This study confirms continued, but non-linear stream chemistry recovery from acidification, particularly at the less buffered high and moderate elevation sites. The heterogeneity of responses among catchments highlights our incomplete understanding of the relative importance of different mechanisms influencing stream chemistry and the consequences for downstream ecosystems.  相似文献   

17.
This paper aims to identify the spatial distribution of exchangeable base cations in soils on an acid hillslope and to investigate possible cation release processes from slope soils to the stream. The basic assumption underlying this research is that the amount of exchangeable cations in soils reflects the nutrient stores and cation leaching processes across the slope where vegetation and parent materials are similar. The distribution of exchangeable Ca2+, Mg2+, K+ and Na+ has been investigated on a three-dimensional hillslope on the Quantock Hills, Somerset, UK. A two-way ANOVA shows that soil depth is predominant in explaining the total variance of exchangeable bases, despite the steep slope gradient and clear podzolic catena development. Major nutrient base cations, such as Ca2+, Mg2+ and K+, display homogeneous topsoil storage right across the slope. This spatial pattern may indicate that the spatial distribution of major nutrient cations is tightly controlled by the soil–vegetation system in nutrient-poor heathland environments. Na+ is an exception to this vegetation-controlled spatial distribution, because of its small involvement in the soil–vegetation and soil exchangeable systems. In subsurface soils, cations liberated from the soil–vegetation system are subject to redistribution over the slope according to the hydrological flowpaths operating on the slope, with some eventually released into the stream. The saturated wedge developed at the base of the slope plays a key role in the storage and release processes of base cations from slope soils to the stream. Ca2+, Mg2+ and Na+ carried by throughflow are stored in the saturated wedge and gradually released into the stream at times of high flow. K+, however, shows an apparently different spatial behaviour, being deficient in the saturated wedge. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns.  相似文献   

19.
Preferential subsurface flow paths known as water tracks are often the principal hydrological pathways of headwater catchments in permafrost areas, exerting an influence on slope physical and biogeochemical processes. In polar deserts, where water resources depend on snow redistribution, water tracks are mostly found in hydrologically active areas downslope from snowdrifts. Here, we measured the flow through seeping water track networks and at the front of a perennial snowdrift, at Ward Hunt Island in the Canadian High Arctic. We also used stable isotope analysis to determine the origin of this water, which ultimately discharges into Ward Hunt Lake. These measurements of water track hydrology indicated a glacio‐nival run‐off regime, with flow production mechanisms that included saturation overland flow (return flow) in a low sloping area, throughflow or pipe‐like flow in most seepage locations, and infiltration excess overland flow at the front of the snowdrift. Each mechanism delivered varying proportions of snowmelt and ground water, and isotopic compositions evolved during the melting season. Unaltered snowmelt water contributed to >90% of total flow from water track networks early in the season, and these values fell to <5% towards the end of the melting season. In contrast, infiltration excess overland flow from snowdrift consisted of a steady percentage of snowmelt water in July (mean of 69%) and August (71%). The water seeping at locations where no snow was left in August 2015 was isotopically enriched, indicating a contribution of the upper, ice‐rich layer of permafrost to late summer discharge during warmer years. Air temperature was the main driver of snowmelt, but the effect of slope aspect on solar radiation best explained the diurnal discharge variation at all sites. The water tracks in this polar desert are part of a patterned ground network, which increases connectivity between the principal water sources (snowdrifts) and the bottom of the slope. This would reduce soil–water interactions and solute release, thereby favouring the low nutrient status of the lake.  相似文献   

20.
The source and hydrochemical makeup of a stream reflects the connectivity between rainfall, groundwater, the stream, and is reflected to water quantity and quality of the catchment. However, in a semi-arid, thick, loess covered catchment, temporal variation of stream source and event associated behaviours are lesser known. Thus, the isotopic and chemical hydrographs in a widely distributed, deep loess, semi-arid catchment of the northern Chinese Loess Plateau were characterized to determine the source and hydrochemical behaviours of the stream during intra-rainfall events. Rainfall and streamflow were sampled during six hydrologic events coupled with measurements of stream baseflow and groundwater. The deuterium isotope (2H), major ions (Cl, SO42−, NO3, Ca2+, K+, Mg2+, and Na+) were evaluated in water samples obtained during rainfall events. Temporal variation of 2H and Cl measured in the groundwater and stream baseflow prior to rainfall was similar; however, the isotope compositions of the streamflow fluctuated significantly and responded quickly to rainfall events, likely due to an infiltration excess, overland dominated surface runoff during torrential rainfall events. Time source separation using 2H demonstrated greater than 72% on average, the stream composition was event water during torrential rainfall events, with the proportion increasing with rainfall intensity. Solutes concentrations in the stream had loglinear relationships with stream discharge, with an outling anomaly with an example of an intra-rainfall event on Oct. 24, 2015. Stream Cl behaved nonconservative during rainfall events, temporal variation of Cl indicated a flush and washout at the onset of small rainfall events, a dilution but still high concentration pattern in high discharge and old water dominated in regression flow period. This study indicates rainfall intensity affects runoff responses in a semi-arid catchment, and the stored water in the thick, loess covered areas was less connected with stream runoff. Solute transport may threaten water quality in the area, requiring further analysis of the performance of the eco-restoration project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号