首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Coastal exposures of Late Pleistocene sediments deposited after 19 000 yr BP near Dublin, Ireland, provide a window into the infill of a subglacially-cut tunnel valley. Exposures close to the steeply dipping bedrock wall of the valley show boulder gravels within multi-storey U-shaped channels cut and filled by subglacial meltwaters driven by a high hydrostatic head. Gravels are truncated by poorly sorted ice-proximal glaciomarine sediments that record the pumping of large volumes of subglacial debris along the tunnel valley to a tidewater ice sheet margin. The sedimentary succession is dominated by sediment gravity flow facies comprising interbedded diamict and massive, poorly sorted gravel facies interpreted as subaqueous debris flow deposits. Gravel beds show local inverse and normal coarse-tail graded facies recording the restricted development of turbulent flow. Sediment gravity flow deposits fill broad (<2 km) shallow (10 m) and overlapping channels. Penetrative deformation structures (e.g. dykes) are common at the base of channels. The same subglacially-eroded topography and glaciomarine infill stratigraphy can be identified on high resolution seismic profiles across nearly 600 km2 of the western Irish Sea. Tunnel valleys are argued to have been exposed to glaciomarine processes by the rapid retreat of a calving tidewater ice sheet margin in response to marine flooding caused by glacio-isostatic downwarping below the last British Ice Sheet. The facies associations described in this paper comprise an event stratigraphy that may be found on other glaciated continental shelves.  相似文献   

2.
This study offers new insights into the origin and depositional history of the mixture of sediments infilling one of the largest offshore, northward‐orientated, clinoform‐structured, tunnel valleys (TVs) of Elsterian age in the southern North Sea (SNS). Specifically, the study sheds light on the provenance of TV deposits based on K‐Ar dating of illite, QEMSCAN® heavy mineral assemblage study, and U‐Pb and fission track dating on single grains of apatite. Early Pleistocene substrate and the TV infill demonstrate provenance from the Scandinavian and Baltic realms as well as from Renish central Europe and the Alps. Prior to Elsterian glaciation fluvial transport to the SNS increasingly switched from Baltic sources to a more central European influence. However, based on similar provenance of both the substrate and TV infill, the episode of subglacial tunnel valley formation interrupted this central European influence. Glacial erosional processes associated with the expansion of the Elsterian ice sheet to the SNS reworked a large amount of sediment from the Early Pleistocene deposits of the SNS. The sediment was eventually deposited as the tunnel valley infill. Taking into account a high uncertainty related to the facies of TV sedimentary infill, which thus far has been inferred from seismic reflection surveys only, this study offers the first comprehensive set of data on the composition and provenance of the offshore Elsterian TV sediment.  相似文献   

3.
Graham, A.G.C., Lonergan, L. & Stoker, M.S. 2010: Depositional environments and chronology of Late Weichselian glaciation and deglaciation in the central North Sea. Boreas, Vol. 39, pp. 471–491. 10.1111/j.1502‐3885.2010.00144.x. ISSN 0300‐9483. Geological constraints on ice‐sheet deglaciation are essential for improving the modelling of ice masses and understanding their potential for future change. Here, we present a detailed interpretation of depositional environments from a new 30‐m‐long borehole in the central North Sea, with the aim of improving constraints on the history of the marine Late Pleistocene British–Fennoscandian Ice Sheet. Seven units characterize a sequence of compacted and distorted glaciomarine diamictons, which are overlain by interbedded glaciomarine diamictons and soft, bedded to homogeneous marine muds. Through correlation of borehole and 2D/3D seismic observations, we identify three palaeoregimes. These are: a period of advance and ice‐sheet overriding; a phase of deglaciation; and a phase of postglacial glaciomarine‐to‐marine sedimentation. Deformed subglacial sediments correlate with a buried suite of streamlined subglacial bedforms, and indicate overriding by the SE–NW‐flowing Witch Ground ice stream. AMS 14C dating confirms ice‐stream activity and extensive glaciation of the North Sea during the Last Glacial Maximum, between c. 30 and 16.2 14C ka BP. Sediments overlying the ice‐compacted deposits have been reworked, but can be used to constrain initial deglaciation to no later than 16.2 14C ka BP. A re‐advance of British ice during the last deglaciation, dated at 13.9 14C ka BP, delivered ice‐proximal deposits to the core site and deposited glaciomarine sediments rapidly during the subsequent retreat. A transition to more temperate marine conditions is clear in lithostratigraphic and seismic records, marked by a regionally pervasive iceberg‐ploughmarked erosion surface. The iceberg discharges that formed this horizon are dated to between 13.9 and 12 14C ka BP, and may correspond to oscillating ice‐sheet margins during final, dynamic ice‐sheet decay.  相似文献   

4.
Tunnel valleys are elongated incisions formed by meltwater underneath ice sheets that rest on unlithified bed materials. The formation of tunnel valleys is commonly believed to be influenced by the properties of the preglacial bed; however, a detailed analysis of this relationship has not been performed to date. To determine whether tunnel‐valley location and morphology are controlled by the substratum, a 3D seismic survey was combined with lithological data from the Wadden Sea area in the Dutch sector of the southern North Sea Basin. This study shows that tunnel‐valley floors often coincide with seismic reflectors that mark lithological boundaries in the substratum, and that the location and depth of tunnel‐valley incision vary as a function of the properties of the substratum as expressed by lithological and geophysical‐log variations. Tunnel valleys are incised preferentially into fine‐grained layers, while the top of coarser‐grained units commonly coincide with the tunnel‐valley floor. These observations indicate that the geometry and orientation of tunnel valleys in the study area are controlled by contrasts in lithological properties of the bed. An explanation for the observed lithological control might lie in large water‐pressure differences over fine‐grained and impermeable layers along the flow‐path of subglacial meltwater flowing through the substratum, from areas with high pore‐water pressure towards areas with relatively low pressures in the vicinity of meltwater channels. These pressure differences might have been sufficient for the fracturing and fluidization of these layers. The concepts presented here have implications for existing genetic models and for the prediction of tunnel‐valley morphology in understudied areas.  相似文献   

5.
A 1250 km2 3D seismic volume is used to provide a detailed spatial and geometrical analysis of fifteen Pleistocene tunnel valleys in the Danish North Sea. All the valleys are buried; they are up to 39 km long, 3–4 km wide and up to 350 m deep. The valleys are part of a vast tunnel valley province covering an area of some 0.5 million km2 of the formerly glaciated lowland areas of North West Europe. The valleys consist of non‐branching, non‐anastomosing troughs; they exhibit strongly undulating bottom profiles with numerous sub‐basins and thresholds, and are characterised by adverse end slopes. Cross‐cutting relationships and theoretical considerations suggest the occurrence of seven major episodes of valley incision attributed to ice marginal oscillations within a few glacials. Calculations considering the valley end gradients and theoretical ice‐surface profiles suggest that the valleys were formed by pressurised subglacial meltwater erosion. Given a range of theoretical ice‐surface profiles, the adverse end slopes are well beyond the supercooling threshold, which suggests that the water was not in thermal equilibrium with the basal ice and that flow was concentrated in substantial conduits with sufficient mass and flux to maintain water temperature well above the freezing point. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Three‐dimensional (3D) seismic datasets, 2D seismic reflection profiles and shallow cores provide insights into the geometry and composition of glacial features on the continental shelf, offshore eastern Scotland (58° N, 1–2° W). The relic features are related to the activity of the last British Ice Sheet (BIS) in the Outer Moray Firth. A landsystem assemblage consisting of four types of subglacial and ice marginal morphology is mapped at the seafloor. The assemblage comprises: (i) large seabed banks (interpreted as end moraines), coeval with the Bosies Bank moraine; (ii) morainic ridges (hummocky, push and end moraine) formed beneath, and at the margins of the ice sheet; (iii) an incised valley (a subglacial meltwater channel), recording meltwater drainage beneath former ice sheets; and (iv) elongate ridges and grooves (subglacial bedforms) overprinted by transverse ridges (grounding line moraines). The bedforms suggest that fast‐flowing grounded ice advanced eastward of the previously proposed terminus of the offshore Late Weichselian BIS, increasing the size and extent of the ice sheet beyond traditional limits. Complex moraine formation at the margins of less active ice characterised subsequent retreat, with periodic stillstands and readvances. Observations are consistent with interpretations of a dynamic and oscillating ice margin during BIS deglaciation, and with an extensive ice sheet in the North Sea basin at the Last Glacial Maximum. Final ice margin retreat was rapid, manifested in stagnant ice topography, which aided preservation of the landsystem record. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
The Late Devensian (<20 ka BP) glacial geology of the Irish Sea Basin (4000 km2) is an event stratigraphy recording the entry of marine waters into a glacio-isostatically-depressed basin, and the rapid retreat of the Irish Sea Glacier as a tidewater ice margin. Marine limits occur up to 140 m O.D. Across much of the central basin, the ice margin was uncoupled from its bed exposing a subglacially-scoured topography to glaciomarine processes. The Irish Sea Glacier was a major drainage conduit of the last British Ice Sheet; calving of the marine ice margin resulted in fast flow (surging) of ice streams recorded by drumlin fields around the northern basin margin and tunnel valleys. Rapid evacuation of the basin may have stranded large areas of dead ice in peripheral zones (e.g. Cheshire/Shropshire Lowlands) and initiated the collapse of the ice sheet.Thick wedges of ice-contact glaciomarine sediments were deposited during ice retreat as morainal bank complexes by successive tidewater ice margins stabilized at pinning points around the Irish Sea coast. Where morainal banks occur on the seaward side of drumlin swarms there is a clear sequential relationship between rapid ice loss from calving ice margins, the development of fast flowing ice streams, drumlinization and the pumping of subglacial sediment to tidewater. Raised delta complexes are locally associated with marine limits along the high relief coastal margins of Wales, east central Ireland, and the Lake District. Associated valley infill complexes record downslope resedimentation of heterogenous sediments into the marine environment during ice retreat. Co-eval offshore deposits are represented by well-stratified glaciomarine complexes that infill a subglacially-scoured topography that shows networks of tunnel valleys. Glaciomarine mud drapes occur well to the south of the maximum limit of grounded ice in the basin (e.g. North Devon, Scilly Islands, Southern Ireland). The age of these distal sediments, previously mapped as pre-Devensian tills, is constrained by amino acid ratios.Basin rebound following deglaciation was rapid, with over 100 m recovery in 3 ka, and was followed by a low marine still stand. Peat, accumulating in offshore areas now as much as 55 m below sea level has been drowned by the postglacial eustatic rise in sea level.The glacio-sedimentary model identified in this paper, involving rapid ice retreat and related sedimentation triggered by rising relative sea level, suggests that isotatic downwarping is an important mechanism for deglaciating continental shelves.  相似文献   

8.
Tunnel valleys are assumed to form near the margin of ice sheets. Hence, they can be used to reconstruct the dynamics of former ice margins. The detailed formation and infill of tunnel valleys, however, are still not well understood. Here, we present a dense grid of high-resolution 2D multi-channel reflection seismic data from the German sector of the southeastern North Sea imaging tunnel valleys in very great detail. Three tunnel valley systems were traced over distances ranging between 11 and 21 km. All tunnel valleys are completely filled and buried. They differ in incision depth, incision width and number of incisions. The tunnel valleys cut 130–380 m deep into Neogene, Palaeogene and Cretaceous sediments; they show a lower V-shaped and an upper U-shaped morphology. For individual tunnel valleys, the overall incision direction ranges from east–west to northeast–southwest. Two tunnel valleys intersect at an oblique angle without reuse of the thalweg. These valleys incise into a pre-existing glaciotectonic complex consisting of thrust sheets in the northwest of the study area. The analysis of the glaciotectonic complex and the tunnel valleys leads us to assume that we identified several marginal positions of (pre-)Elsterian ice lobes in the southeastern North Sea.  相似文献   

9.
Deep, elongated incisions, often referred to as tunnel valleys, are among the most characteristic landforms of formerly glaciated terrains. It is commonly thought that tunnel valleys were formed by meltwater flowing underneath large ice sheets. The sedimentary infill of these features is often highly intricate and therefore difficult to predict. This study intends to improve the comprehension of the sedimentology and to establish a conceptual model of tunnel‐valley infill, which can be used as a predictive tool. To this end, the densely sampled, Pleistocene tunnel valleys in Hamburg (north‐west Germany) were investigated using a dataset of 1057 deep wells containing lithological and geophysical data. The stratigraphic correlations and the resulting three‐dimensional lithological model were used to assess the spatial lithological distributions and sedimentary architecture. The sedimentary succession filling the Hamburg area tunnel valleys can be subdivided into three distinct units, which are distinguished by their inferred depositional proximity to the ice margin. The overall trend of the succession shows a progressive decrease in transport energy and glacial influence through time. The rate of glacial recession appears to have been an important control on the sedimentary architecture of the tunnel‐valley fill. During periods of stagnation, thick ice‐proximal deposits accumulated at the ice margin, while during rapid recession, only a thin veneer of such coarse‐grained sediments was deposited. Ice‐distal and non‐glaciogenic deposits (i.e. lacustrine, marine and terrestrial) fill the remaining part of the incision. The infill architecture suggests formation and subsequent infill of the tunnel valleys at the outer margin of the Elsterian ice sheet during its punctuated northwards recession. The proposed model shows how the history of ice‐sheet recession determines the position of coarse‐grained depocentres, while the post‐glacial history controls the deposition of fines through a progressive infill of remnant depressions.  相似文献   

10.
Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.  相似文献   

11.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

12.
A combination of a dense reflection seismic grid and up to 50‐m‐long records from sediment cores and cone penetration tests was used to study the geometry and infill lithology of an E–W‐trending buried tunnel valley in the south‐eastern North Sea. In relation to previously known primarily N–S‐trending tunnel valleys in this area, the geometry and infill of this 38‐km‐long and up to 3‐km‐wide valley is comparable, but its E–W orientation is exceptional. The vertical cross‐section geometry may result from subglacial sediment erosion of advancing ice streams and secondary incision by large episodic meltwater discharges with high flow rates. The infill is composed of meltwater sands and reworked till remnants on the valley flanks that are overlain by late Elsterian rhythmic, laminated, lacustrine fine‐grained sediments towards the centre of the valley. A depression in the valley centre is filled with sediments most likely from the Holsteinian transgression and a subsequent post‐Holsteinian lacustrine quiet‐water setting. The exceptional axis orientation of this tunnel valley points to a regional N–S‐oriented ice front during the late Elsterian. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Buried palaeo‐valley systems have been identified widely beneath lowland parts of the UK including eastern England, central England, south Wales and the North Sea. In the Midland Valley of Scotland palaeo‐valleys have been identified yet the age and genesis of these enigmatic features remain poorly understood. This study utilizes a digital data set of over 100 000 boreholes that penetrate the full thickness of deposits in the Midland Valley of Scotland. It identified 18 buried palaeo‐valleys, which range from 4 to 36 km in length and 24 to 162 m in depth. Geometric analysis has revealed four distinct valley morphologies, which were formed by different subglacial and subaerial processes. Some palaeo‐valleys cross‐cut each other with the deepest features aligning east–west. These east–west features align with the reconstructed ice‐flow direction under maximum conditions of the Main Late Devensian glaciation. The shallower features appear more aligned to ice‐flow direction during ice‐sheet retreat, and were therefore probably incised under more restricted ice‐sheet configurations. The bedrock lithology influences and enhances the position and depth of palaeo‐valleys in this lowland glacial terrain. Faults have juxtaposed Palaeozoic sedimentary and igneous rocks and the deepest palaeo‐valleys occur immediately down‐ice of knick‐points in the more resistant igneous bedrock. The features are regularly reused and the fills are dominated by glacial fluvial and glacial marine deposits. This suggests that the majority of infilling of the features happened during deglaciation and may be unrelated to the processes that cut them.  相似文献   

14.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

15.
Lithostratigraphy and chronostratigraphy of samples from 18 deep boreholes in Vendsyssel have resulted in new insight into the Late Weichselian glaciation history of northern Denmark. Prior to the Late Weichselian Main advance c. 23–21 kyr BP, Vendsyssel was part of an ice‐dammed lake where the Ribjerg Formation was deposited c. 27–23 kyr BP. The timing of the Late Weichselian deglaciation is well constrained by the Main advance and the Lateglacial marine inundation c. 18 kyr BP, and thus spans only a few millennia. Rapid deposition of more than 200 m of sediments took place mainly in a highly dynamic proglacial and ice‐marginal environment during the overall ice recession. Mean retreat rates have been estimated as 45–50 m/yr in Vendsyssel with significantly higher retreat rates between periods of standstill and re‐advance. The deglaciation commenced in Vendsyssel c. 20 kyr BP, and the Troldbjerg Formation was deposited c. 20–19 kyr BP in a large ice‐dammed lake in front of the receding ice sheet, partly as glaciolacustrine sediments and partly as rapid and focused sedimentation in prominent ice‐contact fans, which make up the Jyske Ås and Hammer Bakker moraines. In the northern part of central Vendsyssel, at least four generations of north–south orientated tunnel valleys are identified, each generation related to a recessional ice margin. This initial deglaciation was interrupted by a major re‐advance from the east c. 19 kyr BP, which covered most of Vendsyssel. An ice‐dammed lake formed in front of the ice sheet as it retreated towards the east; the Morild Formation was deposited here c. 19–18 kyr BP. Related to this stage of deglaciation, eight ice‐marginal positions have been identified based on the distribution of large tunnel‐valley systems and pronounced recessional moraines. The Morild Formation consists of glaciolacustrine sediments, including the sediment infill of more than 190 m deep tunnel valleys, as well as the sediments in recessional moraines, which were formed as ice‐contact sedimentary ridges, possibly in combination with glaciotectonic deformation. The character of the tunnel‐valley infill sediments was determined by proximity to the ice margin. During episodes of rapid retreat of the ice margin, tunnel valleys were quickly abandoned and filled with fine‐grained sediments in a distal setting. During slow retreat of the ice margin, tunnel valleys were filled in an ice‐proximal environment, and the infill consists of alternating layers of fine‐ to coarse‐grained sediments. At c. 18 kyr BP, Vendsyssel was inundated by the sea, when the Norwegian Channel Ice Stream broke up, and a succession of marine sediments (Vendsyssel Formation) was deposited during a forced regression.  相似文献   

16.
The Wicklow Trough is one of several Irish Sea bathymetric deeps, yet unusually isolated from the main depression, the Western Trough. Its formation has been described as proglacial or subglacial, linked to the Irish Sea Ice Stream (ISIS) during the Last Glacial Maximum. The evolution of the Wicklow Trough and neighbouring deeps, therefore, help us to understand ISIS dynamics, when it was the main ice stream draining the former British–Irish Ice Sheet. The morphology and sub-seabed stratigraphy of the 18 km long and 2 km wide Wicklow Trough is described here from new multibeam echosounder data, 60 km of sparker seismic profiles and five sediment cores. At a maximum water depth of 82 m, the deep consists of four overdeepened sections. The heterogeneous glacial sediments in the Trough overlay bedrock, with indications of flank mass-wasting and subglacial bedforms on its floor. The evidence strongly suggests that the Wicklow Trough is a tunnel valley formed by time-transgressive erosional processes, with pressurised meltwater as the dominant agent during gradual or slow ice sheet retreat. Its location may be fault-controlled, and the northern end of the Wicklow Trough could mark a transition from rapid to slow grounded ice margin retreat, which could be tested with modelling.  相似文献   

17.
Using extensive data sets from three separate areas in the German North Sea sector, consisting of seismic grids, cores and in‐situ cone penetration tests (CPT), we have established a revised stratigraphical framework for the mid to late Quaternary deposits of the German North Sea sector. This framework consists of four regional unconformities and 15 other local unconformities derived from seismic profiles. Using these unconformities, along with lithological and geotechnical data, it was possible to define and correlate 14 major units and 21 subunits within the framework. The Quaternary cover in the area is characterized by a variety of environmental settings ranging from glacial terrestrial and fluvial to lacustrine as well as brackish and marine environments with associated erosion, reworking and deposition. The complexity of Quaternary deposits within the area is explained by its history of repeated ice advances interrupted by marine transgressions and exposed periglacial landscapes. Within the framework, eight buried tunnel valleys and two shallow buried river valleys are identified from seismic profiles with four phases of tunnel valley generation inferred. These phases of tunnel valley generation are associated with the Elsterian (three) and Saalian (one) glacial stages. Infill of these tunnel valleys consists of glaciofluvial sands, thick sequences of marine and lacustrine fine‐grained sediments and some reworked till remnants. Elsewhere, extensive tabular units have formed consisting of marine and fluvial sediments. We compare this new stratigraphy with previous stratigraphies for the German North Sea sector, attribute informal stratigraphical names and offer preliminary correlations with established stratigraphies from other sectors of the North Sea.  相似文献   

18.
Quaternary sedimentary successions are described from the Linda Valley, a small valley in western Tasmania that was dammed by ice during Early and Middle Pleistocene glaciations. Mapping and logging of exposures suggest that an orderly sequence of deposits formed during ice incursion, occupation and withdrawal from tributary valleys. Four principal sediment assemblages record different stages of ice occupation in the valley. As the glacier advanced, a proglacial, lacustrine sediment assemblage dominated by laminated silts and muds deposited from suspension accumulated in front of the glacier. A subglacial sediment assemblage consisting of deformed lacustrine deposits and lodgement till records the overriding of lake-bottom sediments as the glacier advanced up the valley into the proglacial lake. As the glacier withdrew from the valley, a supraglacial sediment assemblage of diamict, gravel, sand and silt facies formed on melting ice in the upper part of the valley. A lacustrine regression in the supraglacial assemblage is inferred on the basis of a change from deposits mainly resulting from suspension in a subaqueous setting to relatively thin and laterally discontinuous laminated sediments, occurrence of clastic dykes, and increasing complexity of the geometry of deposits that indicate deposition in a subaerial setting. A deltaic sediment assemblage deposited during the final stage of ice withdrawal from the valley consists of steeply dipping diamict and normally graded gravel facies formed on delta foresets by subaqueous sediment gravity flows. The sediment source for the delta, which prograded toward the retreating ice margin, was the supraglacial sediment assemblage previously deposited in the upper part of the valley. A depositional model developed from the study of the Linda Valley may be applicable to other alpine glaciated areas where glaciers flowed through or terminated in medium- to high-relief topography.  相似文献   

19.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

20.
Subglacial landsystems in and around Okanagan Valley, British Columbia, Canada are investigated in order to evaluate landscape development, subglacial hydrology and Cordilleran Ice Sheet dynamics along its southern margin. Major landscape elements include drumlin swarms and tunnel valleys. Drumlins are composed of bedrock, diamicton and glaciofluvial sediments; their form truncates the substrate. Tunnel valleys of various scales (km to 100s km length), incised into bedrock and sediment, exhibit convex longitudinal profiles, and truncate drumlin swarms. Okanagan Valley is the largest tunnel valley in the area and is eroded >300 m below sea level. Over 600 m of Late Wisconsin-age sediments, consisting of a fining-up sequence of cobble gravel, sand and silt fill Okanagan Valley. Landform–substrate relationships, landform associations, and sedimentary sequences are incompatible with prevailing explanations of landsystem development centred mainly on deforming beds. They are best explained by meltwater erosion and deposition during ice sheet underbursts.During the Late-Wisconsin glaciation, Okanagan Valley functioned as part of a subglacial lake spanning multiple connected valleys (few 100s km) of southern British Columbia. Subglacial lake development started either as glaciers advanced over a pre-existing sub-aerial lake (catch lake) or by incremental production and storage of basal meltwater. High geothermal heat flux, geothermal springs and/or subglacial volcanic eruptions contributed to ice melt, and may have triggered, along with priming from supraglacial lakes, subglacial lake drainage. During the underburst(s), sheetflows eroded drumlins in corridors and channelized flows eroded tunnel valleys. Progressive flow channelization focused flows toward major bedrock valleys. In Okanagan Valley, most of the pre-glacial and early-glacial sediment fill was removed. A fining-up sequence of boulder gravel and sand was deposited during waning stages of the underburst(s) and bedrock drumlins in Okanagan Valley were enhanced or wholly formed by this underburst(s).Subglacial lake development and drainage had an impact on ice sheet geometry and ice volumes. The prevailing conceptual model for growth and decay of the CIS suggests significantly thicker ice in valleys compared to plateaus. Subglacial lake development created a reversal of this ice sheet geometry where grounded ice on plateaus thickened while floating valley ice remained thinner (due to melting and enhanced sliding, with significant transfer of ice toward the ice sheet margin). Subglacial lake drainage may have hastened deglaciation by melting ice, lowering ice-surface elevations, and causing lid fracture. This paper highlights the importance of ice sheet hydrology: its control on ice flow dynamics, distribution and volume in continental ice masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号