首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Energy harvesting is a topic of global interest in both academic research and practical application across many fields. The main concept in energy harvesting is to convert wasted ambient energy into useful electrical energy. In particular, piezoelectric materials can be used to convert strain energy into electric power directly, and piezoelectric materials can be used to harvest external vibration forces.This paper proposes and develops a highly flexible piezoelectric energy device (FPED) to harvest flow-induced vibration by converting ambient kinetic energy such as ocean, current and wind energy into electric power. The energy harvesting device uses piezoelectric layers (e.g. PVDF) and elastomer materials (e.g. rubber or silicone) to achieve high electric performance and efficiency. The design of the FPED was optimized by considering the aspect ratio, support system, initial tension and incorporates a bluff body to generate turbulence. A theoretical model based on the transfer matrix method was used with the initial tension force and natural frequency of the harvester. The model demonstrated the maximum electric performance and optimized the structural layers and size under the parameter studies. Numerical and experimental results proved the potential of the highly flexible piezoelectric energy device to convert ambient kinetic energy from flow-induced vibration into useful electrical energy.  相似文献   

2.
An expedient piezoelectric coupled buoy energy harvester from ocean waves is developed. The harvester is made of several piezoelectric coupled cantilevers attached to a floating buoy structure, which can be easily suspended in the intermediate and deep ocean for energy harvesting. In the buoy structure, a slender cylindrical floater is attached on a large sinker. The energy harvesting process is realized by converting the transverse ocean wave energy to the electrical energy via the piezoelectric patches mounted on the cantilevers fixed on the buoy. A smart design of the buoy structure is developed to increase the energy harvesting efficiency by investigation of the effects of the sizes of the floater and the sinker. A numerical model is presented to calculate the generated electric power from buoy energy harvester. The research findings show that up to 24 W electric power can be generated by the proposed expedient buoy harvester with the length of the piezoelectric cantilevers of 1 m and the length of the buoy of 20 m. The technique proposed in this research can provide an expedient, feasible and stable energy supply from the floating buoy structure.  相似文献   

3.
The Energy Harvesting Eel (Eel) is a new device that uses piezoelectric polymers to convert the mechanical flow energy, available in oceans and rivers, to electrical power. Eel generators make use of the regular trail of traveling vortices behind a bluff body to strain the piezoelectric elements; the resulting undulating motion resembles that of a natural eel swimming. Internal batteries are used to store the surplus energy generated by the Eel for later use by a small, unattended sensor or robot. Because of the properties of commercially available piezoelectric polymers, Eels will be relatively inexpensive and are easily scaleable in size and have the capacity to generate from milli-watts to many watts depending on system size and flow velocity of the local environment. A practical Eel structure has been developed that uses the commercially available piezoelectric polymer, PVDF. Future Eels may use more efficient electrostrictive polymer. Every aspect of the system from the interactions between the hydrodynamics of the water flow and structural elements of the Eel, through the mechanical energy input to the piezoelectric material, and finally the electric power output delivered through an optimized resonant circuit has been modeled and tested. The complete Eel system, complete with a generation and storage system, has been demonstrated in a wave tank. Future work on the Eel will focus on developing and then deploying a small, lightweight, one-watt power generation unit, initially in an estuary and then subsequently in the ocean. Such Eels will have the ability to recharge batteries or capacitors of a distributed robotic group, or remote sensor array, thus extending the mission life indefinitely in regions containing flowing water  相似文献   

4.
A renewable energy harvester using the piezoelectric effect is developed for the ocean tidal and wind flow. The harvester is made of connected driving blades to an octo-generator, which has a rotator with n blades and a stator attached by eight mass-spring-piston-cylinder-piezoelectricity devices. The resonance and force magnification are utilized to increase the power output of the harvester. A corresponding mathematical model is developed to calculate the root mean square of the generated electric power. The simulation results indicate that the generated power is largely enhanced when the near-resonant condition is established. The power increases with increases in the magnetic flux density, the large-to-small diameter ratio of the cylinder, the size of magnetic bar face, and decreases in the gap between two magnetic faces and the size of the piezoelectric bar face. A generated power of 5 kW is realized by the harvester working under an ocean tidal speed, V = 1.75 m/s, and its geometric and material properties of driving length L = 7.5 m, spring constant kv = 65000 N/m, gap between the two magnets s = 0.0015 m, large to small diameter ratio of the cylinder z = 6, and magnetic flux density Br = 1.45 T.  相似文献   

5.
为了解决振动水柱式波浪能转换装置收集多向波浪问题,本文设计了半球形多向聚合波道振荡水柱气室结构,以适合远海单点波浪能采集和发电。在规则波正向入射条件下,基于流体仿真分析软件(FLUENT)、流体动力学连续性假设和粘性不可压缩流体动量守恒的运动方程(Navier-Stokes方程)建立半球形振荡气室和三维数值波浪水槽模型。仿真结果表明:增设气室后壁,合理设计波道开口角度实现多向迎波捕获波浪能,优化前壁形状可降低波浪触底反射带来的能量耗散,同时提高了气室内空气压强和出气口速度,有效提升波浪能俘获效率,为后续发电的二次能量转换提供高效的空气动力。  相似文献   

6.
The hydrostatic energy of high-pressure seawater is a renewable and green energy source for ocean exploration and have been used to replace underwater electrical energy transmission through the cable and underwater battery pack to power seafloor equipment. The advantage of the energy supply method is the cost-effective and the robustness. In the paper, the energy performance of the existing hydrostatic seafloor sediment samplers powered by seawater hydrostatic energy are modelled and analyzed and compared. In view of the common shortcoming of existing technology, a novel hydrostatic seafloor sediment sampler is proposed. The model of energy conversion of the new sampler is built, and its energy performance is obtained. The analysis results indicate that the energy conversion efficiency of the novel sediment sampler is much higher than the existing ones, which means that the new sampler can collect much longer sample with the limited amount of hydrostatic energy. The seawater hydrostatic energy conversion system of the new sampler can also be used to power other seafloor equipment.  相似文献   

7.
基于上海海洋大学研制的卧式海流能发电装置,在对叶片受力进行分析的基础上,采用雷诺平均N-S方程和滑移网格技术,对不同工况下的叶轮运动进行了数值模拟,获得了力矩系数、能量转换效率及功率等性能参数。通过分析比较不同工况下的各性能参数的变化规律,发现叶轮运动具有周期性,一个周期内的相邻极大、极小值之间相差72°相位角;随着海流速度和叶轮转速的增大,输出功率逐渐增大;而力矩系数和能量利用效率却呈现先增大后减小的趋势,在海流速度v=1.5 m/s,尖速比λ=2.46时,能量转换效率最大,可达到34.6%,输出功率为373 W,并与海试结果进行了对比分析。  相似文献   

8.
黄炎晨  黄方平  刘静 《海洋工程》2022,40(2):118-129
通过水轮机捕能是当前常用的海洋能利用方式之一。桨叶作为水轮机关键部件,其性能一直是研究的重点。针对目前波浪条件下带负载运转的Savonius型水轮机相关捕能性能研究较少的情况,采用数值仿真方法,结合对应工况条件的物理试验,研究了一种Savonius型水轮机在不同波浪环境下带负载运转的捕能性能。采用Star CCM+仿真软件,建立数值波浪水池,设置环境参数,划分网格调整变量进行水轮机运转的水动力模型数值研究。在造波试验水池中利用推板改变波浪周期与波高,进行水轮机运转的物理试验。采集在不同负载下水轮机桨叶的转速和扭矩数据,计算并分析功率等参数,总结变化趋势,评价捕能效果。研究发现水轮机在1.6 s的波浪周期条件下,桨叶承受1.5 N·m负载时达到最佳捕能效果,其功率为23 W。为实际海域中水轮机桨叶的结构设计研究和相关工程应用提供参考。  相似文献   

9.
Liu  Heng-xu  Liu  Ming  Chai  Yuan-chao  Shu  Guo-yang  Jing  Feng-mei  Wang  Li-quan 《中国海洋工程》2019,33(3):279-287
This paper mainly describes the influence factors of the captured energy power by huge wave energy harvesters, in which the vertical motion of buoy can transform ocean’s potential energy into piezoelectric energy power by undulating waves. Firstly, related environmental coefficients are analyzed by means of the incident wave theory. Besides, the geometric structural parameters are also analyzed and compared under optimal environmental coefficients with semi-analytical solutions. Thirdly, the numerical results also show the impact trend of hydrodynamic parameters and geometric volume on motion, voltage and power with qualitative agreement. The numerical simulation confirms that the improved structure parameters could markedly deliver sufficient power under the same conditions with long-time stability.  相似文献   

10.
随着海洋波浪能发电技术的发展和成熟,其在海洋观测领域的应用受到关注和研究。自主设计并研制了一种集波浪能发电、海表/海底同步观测、实时4G 通信传输、远程无线控制于一体的海洋立体观测系统,于2021 年7 月在珠江口万山岛海域通过锚泊系留方式布放,开展海上波浪能供电和观测应用试验。海试期间连续获取了海底原位观测视频数据,以及海表波浪变化和波浪能发电参数等监测数据,并对波浪能发电电流、电压和功率进行了统计分析,讨论了波浪能发电水平受波浪变化的影响,分析了两者之间的相关性。试验结果表明:利用波浪能供电的海洋观测系统具备连续、长周期、全天候观测的优势和潜力,源源不断的波浪能可保障海洋观测系统的稳定观测和数据可靠传输,实现了海洋观测系统长期独立运行所需的绿色高效供能,验证了波浪能在海洋观测领域应用的可行性和先进性。  相似文献   

11.
The realistic assessment of an ocean wave energy resource that can be converted to an electrical power at various offshore sites depends upon many factors, and these include estimating the resource recognizing the random nature of the site-specific wave field, and optimizing the power conversion from particular wave energy conversion devices. In order to better account for the uncertainty in wave power resource estimates, conditional probability distribution functions of wave power in a given sea-state are derived. Theoretical expressions for the deep and shallow water limits are derived and the role of spectral width is studied. The theoretical model estimates were compared with the statistics obtained from the wave-by-wave analysis of JONSWAP based ocean wave time-series. It was shown that the narrow-band approximation is appropriate when the variability due to wave period is negligible. The application of the short-term models in evaluating the long-term wave power resource at a site was illustrated using wave data measured off the California coast. The final example illustrates the procedure for incorporating the local wave data and the sea-state model together with a wave energy device to obtain an estimate of the potential wave energy that could be converted into a usable energy resource.  相似文献   

12.
为了解决北极海域海洋观测与通讯导航节点浮标的供电问题,提出利用北极海域冰面上冷空气与冰下海水之间的温差能转换为电能,为冰基浮标供电。根据北极温差的时空分布特性与冰基浮标的应用场景,提出了一种基于有机朗肯循环的冰基浮标温差能发电系统,并对其进行了建模与仿真分析。根据5 种工质的热力循环性能计算结果,确定R124 工质作为系统的循环工质。仿真结果表明:温差能发电系统在北极冬季两个月的总发电量为745 kWh,相当于3.72 t 能量密度为200 Wh/kg 的锂电池。因此,北极海域温差能转换发电系统能输出相当可观的功率与电能,显著提升冰基浮标的供能水平,提高其观测能力,延长其持续工作时间,减少破冰船对其的维护频率,从而打造冰下观测网络的关键节点,支撑北极冰下移动观测网络的构建。  相似文献   

13.
Renewable energy from the ocean   总被引:3,自引:0,他引:3  
Growing concern over the threat of global climate change has led to an increased interest in research and development of renewable energy technologies. The ocean provides a vast source of potential energy resources, and as renewable energy technology develops, investment in ocean energy is likely to grow. Research in ocean thermal energy conversion, wave energy, tidal energy, and offshore wind energy has led to promising technologies and in some cases, commercial deployment. These sources have the potential to help alleviate the global climate change threat, but the ocean environment should be protected while these technologies are developed. Renewable energy sources from the ocean may be exploited without harming the marine environment if projects are sited and scaled appropriately and environmental guidelines are followed.  相似文献   

14.
为解决海洋监测微型传感器供能问题,设计新型波浪能捕获装置,在海面振荡浮筒气室产生空气气柱,驱动介电弹性体形变发电为传感器供能。建立振荡浮子式气柱数值模型,研究新型振荡水柱发电计算理论。利用水动力仿真软件AQWA求解浮子所受波浪力作用振荡幅值、辐射阻尼和附加质量。基于Simulink软件分别计算波浪作用下浮子位移和气室内水柱位移,根据两者的位移差计算气室体积变化所产生的空气压强、介电弹性体发电薄膜形变量和系统输出电能,单次循环周期最大发电量达到24.6 mJ。分析波浪周期、发电薄膜几何参数等对输出电能的影响。  相似文献   

15.
针对海洋能发电装置的研究现状和未来发展,预计并网型海洋能发电装置会成为重要发展方向,主要是在用户侧并网。发电装置与本地负载会产生孤岛效应,对电网和发电装置的安全性和稳定性产生严重影响。因此,并网前对海洋能发电装置进行防孤岛能力的检测成为必然环节。文中设计了一种适用于并网型海洋能发电装置的防孤岛检测系统,介绍了系统的功能与结构,参考分布式发电装置接入电网的相关标准,探讨了适合并网型海洋能发电装置的防孤岛检测方法,为检测工作的开展打下基础。  相似文献   

16.
In this article, we investigate the energy absorption performance of a fixed-bottom pressure-differential wave energy converter. Two versions of the technology are considered: one has the moving surfaces on the bottom of the air chambers whereas the other has the moving surfaces on the top. We developed numerical models in the frequency domain, thereby enabling the power absorption of the two versions of the device to be assessed. It is observed that the moving surfaces on the top allow for easier tuning of the natural period of the system. Taking into account stroke limitations, the design is optimized. Results indicate that the pressure-differential wave energy converter is a highly efficient technology both with respect to energy absorption and selected economic performance indicators.  相似文献   

17.
18.
Raft-type wave energy converter (WEC) is a multi-mode wave energy conversion device, using the relative pitch motion to drive its hydraulic power take-off (PTO) units for capturing energy from the ocean waves. The hydraulic PTO unit as its energy conversion module plays a significant role in storing large qualities of energy and making the output power smooth. However, most of the previous investigations on the raft-type WECs treat the hydraulic PTO unit as a linear PTO unit and do not consider the dynamics of the hydraulic circuit and components in their investigations. This paper is related to a two-raft-type WEC consisting of two hinged rafts and a hydraulic PTO unit. The aim of this paper is to make an understanding of the dynamics of the hydraulic PTO unit and how these affect the performance of the two-raft-type WEC. Therefore, a combined hydrodynamic and hydraulic PTO unit model is proposed to investigate and optimize the performance of the two-raft-type WEC; and based on the simulation of the combined model, the relationships between the optimal power capture ability, the optimal magnitude of the hydraulic PTO force and the wave states are numerically revealed. Results show that an approximately square wave type hydraulic PTO force is produced by the hydraulic PTO unit, which causes the performance of the two-raft-type WEC not to be sinusoidal and the energy capturing manner different from that of the device using a linear PTO unit; moreover, there is an optimal magnitude of the hydraulic PTO force for obtaining an optimal power capture ability, which can be achieved by adjusting the parameters of the hydraulic PTO unit; in regular waves, the optimal power capture ability as well as the optimal magnitude of the hydraulic PTO force normalized by the wave height presents little relationship with the wave height, mainly depends on the wave period; in irregular waves, the trends of the optimal power capture ability and the normalized optimal magnitude of the hydraulic PTO force against the peak wave periods at different significant wave heights are generally identical and show a good correlation. All means that the hydraulic PTO unit of the two-raft-type WEC can be tuned to the wave states, and these would provide a valuable guidance for the optimal design of its hydraulic PTO unit.  相似文献   

19.
一种新型鲸鱼式潮流能发电装置的设计与试验研究   总被引:1,自引:0,他引:1  
王世明  李泽宇  申玉  陈炳 《海洋工程》2019,37(3):128-135
为了进一步提高潮流能的利用率,提出了一种新型鲸鱼式潮流能发电装置。借鉴风机叶片设计方法及水平轴水轮机的设计原理,利用结构力学、流体力学和CFD相关方法,对该装置的螺旋桨叶、导流筒和固定桩等部件进行了设计研究,从获能效果、装置可靠性和发电功率等方面进行了优化设计,并通过900 W样机试验验证了设计的有效性。试验结果显示,海流高潮期装置最大发电功率可达到980 W,一天内大约有4个缓潮期,此间发电功率明显下降,但持续时间不长,总体平均发电功率在800 W上下;同时潮流能轮机启动流速在0.41 m/s左右,有着良好的低速启动性能。  相似文献   

20.
Tidal current energy is prominent and renewable. Great progress has been made in the exploitation technology of tidal current energy all over the world in recent years, and the large scale device has become the trend of tidal current turbine (TCT) for its economies. Instead of the similarity to the wind turbine, the tidal turbine has the characteristics of high hydrodynamic efficiency, big thrust, reliable sealing system, tight power transmission structure, etc. In this paper, a 1/5th scale horizontal axis tidal current turbine has been designed, manufactured and tested before the full scale device design. Firstly, the three-blade horizontal axis rotor was designed based on traditional blade element momentum theory and its hydrodynamic performance was predicted in numerical model. Then the power train system and stand-alone electrical control unit of tidal current turbine, whose performances were accessed through the bench test carried out in workshop, were designed and presented. Finally, offshore tests were carried out and the power performance of the rotor was obtained and compared with the published literatures, and the results showed that the power coefficient was satisfactory, which agrees with the theoretical predictions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号