首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Teplá–Barrandian unit (TBU) of the Bohemian Massif shared a common geological history throughout the Neoproterozoic and Cambrian with the Avalonian–Cadomian terranes. The Neoproterozoic evolution of an active plate margin in the Teplá–Barrandian is similar to Avalonian rocks in Newfoundland, whereas the Cambrian transtension and related calc-alkaline plutons are reminiscent of the Cadomian Ossa–Morena Zone and the Armorican Massif in western Europe. The Neoproterozoic evolution of the Teplá–Barrandian unit fits well with that of the Lausitz area (Saxothuringian unit), but is significantly distinct from the history of the Moravo–Silesian unit.The oldest volcanic activity in the Bohemian Massif is dated at 609+17/−19 Ma (U–Pb upper intercept). Subduction-related volcanic rocks have been dated from 585±7 to 568±3 Ma (lower intercept, rhyolite boulders), which pre-dates the age of sedimentation of the Cadomian flysch ( t chovice Group). Accretion, uplift and erosion of the volcanic arc is documented by the Neoproterozoic Dob í conglomerate of the upper part of the flysch. The intrusion age of 541+7/−8 Ma from the Zgorzelec granodiorite is interpreted as a minimum age of the Neoproterozoic sequence. The Neoproterozoic crust was tilted and subsequently early Cambrian intrusions dated at 522±2 Ma (T ovice granite), 524±3 Ma (V epadly granodiorite), 523±3 Ma (Smr ovice tonalite), 523±1 Ma (Smr ovice gabbro) and 524±0.8 Ma (Orlovice gabbro) were emplaced into transtensive shear zones.  相似文献   

2.
Neoproterozoic rocks in the Saxo-Thuringian part of Armorica formed in an active margin setting and were overprinted during Cadomian orogenic processes at the northern margin of Gondwana. The Early Palaeozoic overstep sequence in Saxo-Thuringia was deposited in a Cambro-Ordovician rift setting that reflects the separation of Avalonia and other terranes from the Gondwana mainland. Upper Ordovician and Silurian to Early Carboniferous shelf sediments of Saxo-Thuringia were deposited at the southern passive margin of the Rheic Ocean. SHRIMP U/Pb geochronology on detrital and inherited zircon grains from pre-Variscan basement rocks of the northern part of the Bohemian Massif (Saxo-Thuringia, Germany) demonstrates a distinct West African provenance for sediments and magmatic rocks in this part of peri-Gondwana. Nd-isotope data of Late Neoproterozoic to Early Carboniferous sedimentary rocks show no change in sediment provenance from the Neoproterozoic to the Lower Carboniferous, which implies that Saxo-Thuringia did not leave its West African source before the Variscan Orogeny leading to the Lower Carboniferous configuration of Pangea. Hence, large parts of the pre-Variscan basement of Western and Central Europe often referred to as Armorica or Armorican Terrane Assemblage may have remained with Africa in pre-Pangean time, which makes Armorica a remnant of a Greater Africa in Gondwanan Europe. The separation of Armorica from the Gondwana mainland and a long drift during the Palaeozoic is not supported by the presented data.  相似文献   

3.
Nd model ages using depleted mantle (TDM) values for the sedimentary rocks in the Inner Zone of the SW Japan and western area of Tanakura Tectonic Line in the NE Japan allow classification into five categories: 2.6–2.45, 2.3–2.05, 1.9–1.55, 1.45–1.25, and 1.2–0.85 Ga. The provenance of each terrane/belt/district is interpreted on the basis of the TDMs, 147Sm / 144Nd vs. 143Nd / 144Nd relation, Nd isotopic evolution of the source rocks in East China and U–Pb zircon ages. The provenance of 2.6–1.8 Ga rocks, which are reported from Hida–Oki and Renge belts and Kamiaso conglomerates, is inferred to be the Sino–Korean Craton (SKC). The 2.3–1.55 Ga rocks, mostly from Ryoke, Mino and Ashio belts, are originally related with the SKC and/or Yangtze Craton (YC). The provenances of the sedimentary rocks with 1.45–0.85 Ga, from the Suo belt, Higo and some districts in the Mino and Ashio belts, are different from the SKC and YC. Especially, the Higo with 1.2–0.85 Ga is considered as a fragment of collision zone in East China. Akiyoshi belt probably belongs to the youngest age category of 1.2–0.85 Ga.Some metasedimentary rocks from the Ryoke belt have extremely high 147Sm / 144Nd and 143Nd / 144Nd ratios, whose main components are probably derived from mafic igneous rocks within the Ryoke belt itself and from the adjacent Tamba belt.  相似文献   

4.
The end of the Proterozoic–beginning of the Cambrian is marked by some of the most dramatic events in the history of Earth. The fall of the Ediacaran biota, followed by the Cambrian Explosion of skeletonised bilaterians, a pronounced shift in oceanic and atmospheric chemistry and rapid climatic change from ‘snowball earth’ to ‘greenhouse’ conditions all happened within a rather geologically short period of time. These events took place against a background of the rearrangement of the prevailing supercontinent; some authors view this as a sequence of individual supercontinents such as Mesoproterozoic Midgardia, Neoproterozoic Rodinia and Early Cambrian Pannotia. Assembled in the Mesoproterozoic, this supercontinent appears to have existed through the Neoproterozoic into the Early Cambrian with periodic changes in configuration. The final rearrangement took place during the Precambrian–Cambrian transition with the Cadomian and related phases of the Pan-African orogeny. The distribution of Early Cambrian molluscs and other small shelly fossils (SSF) across all continents indicates a close geographic proximity of all major cratonic basins that is consistent with the continued existence of the supercontinent at that time. Subsequently, Rodinia experienced breakup that led to the amalgamation of Gondwana, separation of Laurentia, Baltica, Siberia and some small terranes and the emergence of oceanic basins between them. Spreading oceanic basins caused a gradual geographic isolation of the faunal assemblages that were united during the Vendian–Early Cambrian.  相似文献   

5.
In this paper, laser ablation ICP-MS U–Pb detrital zircon ages are used to discuss provenance and early Palaeozoic palaeogeography of continental fragments that originated in the Cadomian–Avalonian active margin of Gondwana at the end of Precambrian, were subsequently extended during late Cambrian to Early Ordovician opening of the Rheic Ocean, and finally were incorporated into and reworked within the European Variscan belt. The U–Pb detrital zircon age spectra in the analysed samples, taken across a late Neproterozoic (Ediacaran) to Early/Middle Devonian metasedimentary succession of the southeastern Teplá–Barrandian unit, Bohemian Massif, are almost identical and exhibit a bimodal age distribution with significant peaks at about 2.1–1.9 Ga and 650–550 Ma. We interpret the source area as an active margin comprising a cratonic (Eburnean) hinterland rimmed by Cadomian volcanic arcs and we suggest that this source was available at all times during deposition. The new detrital zircon ages also corroborate the West African provenance of the Teplá–Barrandian and correlative Saxothuringian and Moldanubian units, questioned in some palaeogeographic reconstructions. Finally, at variance with the still popular concept of the Cadomian basement units as far-travelled terranes, we propose that early Palaeozoic basins, developed upon the Cadomian active margin, were always part of a wide Gondwana shelf and drifted northwards together before involvement in the Variscan collisional belt.  相似文献   

6.
Petrographic, geochemical and field studies in low grade metamorphic areas (Ciudad Rodrigo-Hurdes-Sierra de Gata domain, CRHSG, central-western Spain) show that Neoproterozoic-Lowermost Cambrian series in the Central Iberian Zone (CIZ) record two kinds of provenance sources including: (1) detrital material derived from recycled orogens and (2) a Cadomian coeval juvenile contribution that governs their isotopic signature. Evidence of magmatism contemporaneous with Neoproterozoic-Cambrian sedimentation is provided by the presence of coherent, massive volcanic rocks (metabasalts, metaandesites, and metarhyolites), volcaniclastic shales, sandstones, conglomerates and breccias. The appearance of volcanogenic lithic fragments and crystals mixed in different proportions with siliciclastic constituents and also present within calcareous components in the sedimentary succession, reinforces this evidence. Although most of the selected volcanic and volcaniclastic samples appear to show tholeiitic affinity, some of them display calc-alkaline affinity. Different trace element ratios, such as Sm/Nd, Nb/Yb and Ta/Yb, suggest a magmatic evolution in the same tectonic setting. The geochemical results reported here support the existence of an active geodynamic setting as a direct contributor to the synsedimentary and magmatic content of the Neoproterozoic–Lowermost Cambrian successions in the CIZ. In particular, the relatively high Nd (T) values and the high range of f Sm/Nd ratios are consistent with an active margin during the Neoproterozoic–Early Cambrian. The existence of tectonic activity is also confirmed by the presence of synsedimentary deformation and volcanic rocks. All of these traits favour a geodynamic model in which the Iberian Cadomian segment represented in the CIZ would have been part of an active northern margin of Gondwana, with an associated magmatic arc and related basins during Neoproterozoic–Lower Cambrian times. A proposed link between the Ossa Morena and the Central Iberian Zones might account for late Cadomian pull-apart basins developed on both sides of the magmatic arc, sharing the same scenario and involving similar magmatic activity during the Neoproterozoic–Cambrian transition.
M. D. Rodríguez-AlonsoEmail: Phone: +34-923-294498Fax: +34-923-294514
  相似文献   

7.
The Ossa-Morena Zone (SW Iberian Massif) was affected by continuous orogen-parallel transcurrent continental tectonics from the Neoproterozoic to the Carboniferous times, involving transtension (TT) and transpression (TP) processes that co-existed together, occurred separately in neighbouring regions by the means of strain partitioning or even worked diachronically. A first stage of transpression TP1 took place during the Late Neoproterozoic–Lower Cambrian as a result of Cadomian arc-continent collisional processes. Structures generated by transtension TT1 from Cambrian to Lower Devonian were related to strong lithosphere stretching responsible for the development of basins controlled by major detachments, tilting, rifting and important tectono–thermal diachronic processes. Denudation phenomena and inhibition of sedimentation related with thermal uplift (asthenosphere upwelling) and consequent subsidence caused by isostatic equilibrium, involving generalized transgressions, were processes responsible for major unconformities. The Variscan TP2-TT2 episodes that followed diachronically TP1-TT1, by maintaining the orogen-parallel transport direction, were concomitant with syntectonic deposition of continental basins in the OMZ and foreland basins in the SPZ. TT2 local transtension and tectonic exhumation of deep crustal rocks along major shear zones, favoured the opening of tectonic troughs filled up by sediments and volcanism. TP2 shortening have generated fold axes parallel to the orogen-strike and composite dissymmetric flower structures.  相似文献   

8.
The igneous complex of Neukirchen–Kdyn is located in the southwestern part of the Teplá–Barrandian unit (TBU) in the Bohemian Massif. The TBU forms the most extensive surface exposure of Cadomian basement in central Europe. Cambrian plutons show significant changes in composition, emplacement depth, isotopic cooling ages, and tectonometamorphic overprint from NE to SW. In the NE, the V epadly granodiorite and the Smr ovice diorite intruded at shallow crustal levels (<ca. 7 km depth) as was indicated by geobarometric data. K–Ar age data yield 547±7 and 549±7 for hornblende and 495±6 Ma for biotite of the Smr ovice diorite, suggesting that this pluton has remained at shallow crustal levels (T<ca. 350 °C) since its Cambrian emplacement. A similar history is indicated for the V epadly granodiorite and the Stod granite. In the SW, intermediate to mafic plutons of the Neukirchen–Kdyn massif (V eruby and Neukirchen gabbro, Hoher–Bogen metagabbro), which yield Cambrian ages, either intruded or were metamorphosed at considerably deeper structural levels (>20 km). The Teufelsberg ( ert v kámen) diorite, on the other hand, forms an unusual intrusion dated at 359±2 Ma (concordant U–Pb zircon age). K–Ar dating of biotite of the Teufelsberg diorite yields 342±4 Ma. These ages, together with published cooling ages of hornblende and mica in adjacent plutons, are compatible with widespread medium to high-grade metamorphism and strong deformation fabrics, suggesting a strong Variscan impact under elevated temperatures at deeper structural levels. The plutons of the Neukirchen area are cut by the steeply NE dipping Hoher–Bogen shear zone (HBSZ), which forms the boundary with the adjacent Moldanubian unit. The HBSZ is characterized by top-to-the-NE normal movements, which were particularly active during the Lower Carboniferous. A geodynamic model is presented that explains the lateral gradients in Cambrian pluton composition and emplacement depth by differential uplift and exhumation, the latter being probably related to long-lasting movements along the HBSZ as a consequence of Lower Carboniferous orogenic collapse.  相似文献   

9.
The Navalpino Anticline is a major Variscan structure in the Central Iberian Zone of Spain. Three lithological groups are defined in the pre-Ordovician rocks of this anticline. The Rifean or Lower Vendian Extremeño Dome Group is unconformably overlain by the Upper Vendian Ibor-Navalpino Group. This latter group presents two different facies separated by a NW-SE trending synsedimentary fault. The Lower Cambrian Valdelacasa Group unconformably overlies both the Extremeno Dome and the Ibor-Navalpino Groups.Three pre-Variscan episodes of deformation have been defined in the area of the Navalpino Anticline. A major asymmetrical fold with a subvertical east-west-striking limb is the result of the first deformation event of pre-Late Vendian age. The second deformation event is of Cadomian (Late Precambrian) age and is composed of two stages; (i) an early extensional stage including NW - SE trending extensional fault and basin development in the north-eastern block; and (ii) a second compressive stage giving rise to north-south trending upright folds. This second compressive stage possibly inverted the basin. A final pre-Variscan deformation event took place between the Early Cambrian and the Early Ordovician resulting in a 5–10° tilting to the north-east.There are two main phases of Variscan deformation in the area. The first deformation event (Dv1) gave rise to a upright WNW - ESE trending folds on all scales, whereas the second (Dv2) gave rise to a brittle—ductile sinistral strike-slip shear zone tending subparallel to the axial trace of the Dv1 folds.  相似文献   

10.
《International Geology Review》2012,54(12):1492-1509
ABSTRACT

The Biarjmand granitoids and granitic gneisses in northeast Iran are part of the Torud–Biarjmand metamorphic complex, where previous zircon U–Pb geochronology show ages of ca. 554–530 Ma for orthogneissic rocks. Our new U–Pb zircon ages confirm a Cadomian age and show that the granitic gneiss is ~30 million years older (561.3 ± 4.7 Ma) than intruding granitoids (522.3 ± 4.2 Ma; 537.7 ± 4.7 Ma). Cadomian magmatism in Iran was part of an approximately 100-million-year-long episode of subduction-related arc and back-arc magmatism, which dominated the whole northern Gondwana margin, from Iberia to Turkey and Iran. Major REE and trace element data show that these granitoids have calc-alkaline signatures. Their zircon O (δ18O = 6.2–8.9‰) and Hf (–7.9 to +5.5; one point with εHf ~ –17.4) as well as bulk rock Nd isotopes (εNd(t) = –3 to –6.2) show that these magmas were generated via mixing of juvenile magmas with an older crust and/or melting of middle continental crust. Whole-rock Nd and zircon Hf model ages (1.3–1.6 Ga) suggest that this older continental crust was likely to have been Mesoproterozoic or even older. Our results, including variable zircon εHf(t) values, inheritance of old zircons and lack of evidence for juvenile Cadomian igneous rocks anywhere in Iran, suggest that the geotectonic setting during late Ediacaran and early Cambrian time was a continental magmatic arc rather than back-arc for the evolution of northeast Iran Cadomian igneous rocks.  相似文献   

11.
Detrital zircons from the Ordovician and Devonian sedimentary cover of the Siberian Craton were analyzed for U/Pb geochronology to understand their sediment provenances. Five main age-peaks were identified in the zircon U/Pb age-spectra: (1) Neoarchaean – early Palaeoproterozoic (2.7–2.4 Ga); (2) late Palaeoproterozoic (2.0–1.65 Ga); (3) minor early Neoproterozoic (1.0–0.75 Ga); (4) Ediacaran (0.65–0.60 Ga) and (5) Cambrian – Early Ordovician (0.54–0.47 Ga), reflecting the main magmatic events in the sediment source regions. The oldest zircons (groups 1 and 2) are derived from the Siberian Craton which amalgamated during the Neoarchean – Palaeoproterozoic. The Neoproterozoic zircons (groups 3 and 4) likely sourced from southwestern basement uplifts and Neoproterozoic belts of the Siberian margin such as the Yenisey Ridge and Baikal-Muya region. The provenance of the youngest zircons (group 5) can be traced to the Altai–Sayan fold-belt, where peri-Gondwanan microcontinents and island-arcs accreted to Siberia during late Neoproterozoic – early Palaeozoic progressive consumption of the Palaeo-Asian Ocean.  相似文献   

12.
Cambrian and Ordovician-Middle Devonian sequences of two successive Early Palaeozoic basins of the Barrandian unconformably overlie Cadomian basement in the Bohemian Massif NW interior (Teplá-Barrandian unit) which is the easternmost peri-Gondwanan remnant within the Variscides. Correlation of stratigraphy and geochemistry of the Early Palaeozoic siliciclastic rocks elucidated sediment provenances. Sandstones of the Middle Cambrian Píbram-Jince Basin were derived from a Cadomian Neoproterozoic island arc. The source area of the Ordovician shallow-marine siliciclastics of the successor Prague Basin is a dissected Cadomian orogen. Late Cambrian acid volcanics of the Barrandian and Cambrian (meta)granitoids emplaced in the W part of the Teplá-Barrandian Cadomian basement are also discernible in these sediments. Old sedimentary component increased during the Ordovician. Early Llandovery siliciclastic rocks show characteristics of an abruptly weakened supply of terrigenous material and an elevated proportion of synsedimentary basic volcanics as a result of Silurian transgression. Emsian siliciclastics (intercalated in the Late Silurian to Early Devonian limestone suite) presumably comprise an addition of coeval basic/ultrabasic volcaniclastics. Middle Devonian flysch-like siliciclastics indicate reappearance of Cadomian source near the Barrandian during early Variscan convergences of Armorican microplates that preceeded accretion of the Teplá-Barrandian unit within the Bohemian Massif terrane mosaic.Dr. Patoka deceased in July 2004.  相似文献   

13.
New geochronological analyses (U–Pb SIMS zircon ages) have yielded ages of 552 ± 5 Ma for the Bou Madine rhyolitic dome (Ougnat, eastern Anti-Atlas), 543 ± 9 Ma for the Tachkakacht rhyolitic dyke (Saghro–Imiter, eastern Anti-Atlas), and 531 ± 5 Ma for the Aghbar trachytic sill (Bou Azzer, central Anti-Atlas). Inherited zircon cores from the Aghbar trachytic sill and from the Bou Madine rhyolitic dome have been shown to be of Statherian age (ca. 1600–1800 Ma) and Palæoproterozoic (>2100 Ma) age, respectively, suggesting that a significantly older protolith underlies the Pan-African rocks in the Central and Eastern Anti-Atlas. Granodiorites and rhyolites from the Saghro–Imiter area have similar low 87Sr/86Sr (0.702–0.706) and 143Nd/144Nd (0.5116–0.5119) initial ratios, suggesting a mixture of mantle and lower crust sources. This can also be inferred from the low 187Os/188Os ratios obtained on pyrite crystals from the rhyolites.A recently published lithostratigraphic framework has been combined with these new geochemical and geochronological data, and those from the literature to produce a new reconstruction of the complex orogenic front that developed at the northern edge of the Eburnian West African craton during Pan-African times. Three Neoproterozoic magmatic series can be distinguished in the Anti-Atlas belt, i.e., high-K calc-alkaline granites, high-K calc-alkaline to shoshonitic rhyolites and andesites, and alkaline-shoshonitic trachytes and syenites, which have been dated at 595–570, 570–545 and 530 Ma, respectively.The accretion of the Pan-African Anti-Atlas belt to the West African super continent (WAC) was a four-stage event, involving extension, subduction, moderate collision and extension. The calc-alkaline magmatism of the subduction stage was associated with large-scale base metal and gold mineralisation. Metallogenic activity was greatest during the final extensional stage, at the Precambrian–Cambrian boundary. It is characterised by world-class precious metal deposits, base–metal porphyry and SEDEX-type occurrences.  相似文献   

14.
New field, petrological, geochemical, and geochronological data (U–Pb and Sm–Nd) for Ordovician rock units in the southeastern Puna, NW Argentina, indicate two lithostratigraphic units at the eastern–northeastern border of salar Centenario: (1) a bimodal volcanosedimentary sequence affected by low- to medium-grade metamorphism, comprising metasediments associated with basic and felsic metavolcanic rocks, dated 485 ± 5 Ma, and (2) a plutonic unit composed of syenogranites to quartz-rich leucogranites with U–Pb zircon ages between 462 ± 7 and 475 ± 5 Ma. Felsic metavolcanic and plutonic rocks are peraluminous and show similar geochemical differentiation trends. They also have similar Sm–Nd isotopic compositions (TDM model ages of 1.54–1.78 Ga; εNd(T) values ranging from −3.2 to −7.5) that suggest a common origin and derivation of the original magmas from older (Meso-Paleoproterozoic?) continental crust. Mafic rocks show εNd(T) ranging from +2.3 to +2.5, indicating a depleted mantle source. The data presented here, combined with those in the literature, suggest Ordovician magmatism mainly recycles preexisting crust with minor additions of juvenile mantle-derived material.  相似文献   

15.
Because the Hercynian overprint was extremely weak, the Sierra de Córdoba (southeastern Ossa-Morena Zone, OMZ) provides an excellent opportunity to study the tectonic evolution of sequences deposited close to the Late Neoproterozoic–Early Palaeozoic boundary. In order to put constraints on the sources and geodynamic significance of the Late Proterozoic magmatism, a representative set of 18 igneous rocks, and 3 interbedded sedimentary rocks from the San Jerónimo Formation have been studied for major and trace element geochemistry and for the Sm–Nd isotopic systematics. The igneous rocks are generally porphyritic to microporphyritic andesites, with abundant plagioclase (±amphibole) phenocrysts. With the exception of two intrusive rocks, possibly not related to the Late Proterozoic episode, all the samples display positive Nd550 Ma values, ranging from +2.9 to +7.6. Most of them, with +4<Nd550 Ma<+6, exhibit LREE enrichment, high La/Nb ratios, and elevated Zr/Nb ratios ranging from 21 to 32. There is no obvious correlation between the shape of REE patterns, La/Nb ratios and Nd550 Ma values, precluding simple models of late-stage interaction with typical crustal components having low Nd and high LREE/HREE and La/Nb ratios. Based on their major element composition and enriched, continental crust-like trace element characteristics, combined with distinctly positive Nd initial values, the Córdoba andesites document an episode of crustal growth through the addition of calc-alkaline magmas, extracted from a mantle reservoir which was strongly depleted in LREE on a time-integrated basis. The occurrence of interlayered sediments of continental provenance (negative Nd values) does not favour a purely ensimatic arc setting, remote from continental land masses, for this subduction-related magmatism, but the geochemical data suggest an active margin environment located on relatively juvenile crust. In any case, the Córdoba andesites document the addition of materials chemically similar to the bulk continental crust which were extracted from mantle sources with strong time-integrated LREE depletion. Therefore, they provide evidence for crustal growth related to Cadomian orogenic events during Late Proterozoic times.  相似文献   

16.
The Western Irish Namurian Basin (WINB) preserves classic examples of basin floor sequences through to slope deposits and deltaic cyclothems. Despite over 50 years of research into the WINB, its sediment provenance remains highly contested. Sedimentological arguments, including palaeocurrent vectors and palaeoslope indicators have been invoked to propose a sediment source from the NW or the west (i.e. from within Laurentia). These same indicators have been subsequently reinterpreted to reflect a southern provenance. It is not clear from sedimentological arguments alone which interpretation more accurately reflects the infilling of the WINB. Regional‐scale constraints on WINB provenance may be obtained with detrital zircon U–Pb geochronology. U–Pb LA‐ICP‐MS detrital zircon analysis was undertaken on samples from three sandstone units at different stratigraphic levels within the WINB siliciclastic sedimentary fill (Ross Formation, Tullig Sandstone, Doonlicky Sandstone). The samples are dominated by 500–700 Ma zircons, which can be correlated with Cadomian–Avalonian orogenic activity within terranes to the south of the WINB (Avalonia/Ganderia, Armorica and Iberia). In contrast, Eastern Laurentia, to the north of the WINB, was devoid of orogenic activity at this time. WINB samples also yield age populations younger than 500 Ma, and older than 700 Ma. These are not diagnostic of a particular source terrane and thus could be derived from terranes north and/or south of the WINB. WINB detrital zircon age spectra can be reconciled by an Avalonian or combined Avalonian–Laurentian provenance for WINB sedimentary strata. Further research is required in order to distinguish between these two possibilities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The evolution of the provenance areas for Late Neoproterozoic, Cambrian and Early Ordovician sedimentary and meta-sedimentary rocks of north central and northwest Argentina is discussed using 123 maximum ages of detrital zircons from 42 samples from this and previously published studies. Most detrital zircon ages fall into two groups: 1,200–900 Ma and 670–545 Ma. These ages are essentially identical for the non- to very low grade metamorphic late Neoproterozoic to Early Cambrian Puncoviscana Formation and the low to high grade metamorphic rocks of Eastern Sierras Pampeanas. Hence, both units are related to similar provenance areas at the same time of sedimentation. The time span from zircon crystallization in the Earth’s crust to exhumation and erosion may be very long. This is important when determining maximum ages of sedimentary rocks. Variation of zircon maxima may also be influenced by concurrent sedimentary cover of proposed provenance areas. For the late Mesoproterozoic to early Neoproterozoic zircon age group, an active mountain range of the southwest Brazilian Sunsás orogen is the most probable provenance area. The younger, late Neoproterozoic zircons are related to the continuously developing mountains of the Brasiliano orogen of southwest and south central Brazil. Young zircons, up to 514 Ma, from fossil-bearing Puncoviscana and Suncho Formation outcrops are related to late Early Cambrian volcanism contemporaneous with sedimentation. This situation continues through the Late Cambrian to the Early Ordovician, but the Sunsás orogen provenance diminishes as possible Río de la Plata craton origins become important.  相似文献   

18.
Ediacaran and Early Cambrian sedimentary rocks from NW Iberia have been investigated for detrital zircon U–Pb ages. A total of 1,161 concordant U–Pb ages were obtained in zircons separated from four Ediacaran samples (3 from the Cantabrian Zone and one from the Central Iberian zone) and two Lower Cambrian samples (one from the Cantabrian Zone and one from the Central Iberian Zone). Major and trace elements including REE and Sm–Nd isotopes were also analyzed on the same set of samples. The stratigraphically older Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 600 Ma based on detrital zircon content and is intruded by ca. 590–580 Ma granitoids constraining the deposition of this part of the sequence between ca. 600 and 580 Ma. The stratigraphically younger Ediacaran sequence in the Cantabrian Zone has a maximum sedimentation age of ca. 553 Ma. The Ediacaran sample from the Central Iberian Zone has an identical within error maximum sedimentation age of ca. 555 Ma. The detrital zircon U–Pb age patterns are very similar in all the Ediacaran samples from both zones including the main age groups ca. 0.55–0.75 Ga, ca. 0.85–1.15 Ga and minor Paleoproterozoic (ca. 1.9–2.1 Ga) and Archean (ca. 2.4–2.6 Ga) populations. Kolmogorov–Smirnov statistical tests performed on this set of samples indicate that they all were derived from the same parent population (i.e., same source area). The same can be said on the basis of Nd isotopes, REE patterns and trace element concentrations. The two Cambrian samples, however, show contrasting signatures: The sample from the Cantabrian Zone lacks the ca. 0.85–1.15 Ga population and has a high proportion of Paleoproterozoic and Archean zircons (>60 %) and a more negative ε Nd and higher T DM values than the Ediacaran samples. The Early Cambrian sample from the Central Iberian Zone has the same U–Pb detrital zircon age distribution (based on KS tests) as all the Ediacaran samples but has a significantly more negative ε Nd value. These data suggest apparently continuous sedimentation in the NW Iberian realm of northern Gondwana between ca. 600 and 550 Ma and changes in the detrital influx around the Ediacaran–Cambrian boundary. The nature and origin of these changes cannot be determined with available data, but they must involve tectonic activity on the margin as evidenced by the angular unconformity separating the Ediacaran and Lower Cambrian strata in the Cantabrian Zone. The absence of this unconformity and the apparent continuity of detrital zircon age distribution between Ediacaran and Cambrian rocks in the Central Iberian Zone suggest that the margin became segmented with significant transport and sedimentation flux changes in relatively short distances. As to the paleoposition of NW Iberia in Ediacaran–Early Cambrian times, comparison of the data presented herein with a wealth of relevant data from the literature both on the European peri-Gondwanan terranes and on the terranes of northern Africa suggests that NW Iberia may have lain closer to the present-day Egypt–Israel–Jordan area and that the potential source of the hitherto enigmatic Tonian–Stenian zircons could be traced to exposed segments of arc terranes such as that described in the Sinai Peninsula (Be’eri-Shlevin et al. in Geology 40:403–406, 2012).  相似文献   

19.
New U–Pb detrital zircon ages from (meta-)graywackes of the Blovice accretionary complex, Bohemian Massif, provide an intriguing record of expansion of the northern active margin of Gondwana during late Neoproterozoic and Cambrian. The late Neoproterozoic (meta-)graywackes typically contain a smaller proportion of Archean and Paleoproterozoic zircons and show a 1.6–1.0 Ga age gap and a prominent late Cryogenian to early Ediacaran age peak. The respective zircon age spectra match those described from other correlative Cadomian terranes with a West African provenance. On the other hand, some samples were dominated by Cambrian zircons with concordia ages as young as 499 Ma. The age spectra obtained from these samples mostly reflect input from juvenile volcanic arcs whereas the late Cambrian samples are interpreted as representing relics of forearc basins that overlay the accretionary wedge.The new U–Pb zircon ages suggest that the Cadomian orogeny, at least in the Bohemian Massif, was not restricted to the Neoproterozoic but should be rather viewed as a continuum of multiple accretion, deformation, magmatic and basin development events governed by oceanic subduction until late Cambrian times. Our new U–Pb ages also indicate that the Cadomian margin was largely non-accretionary since its initiation at ~ 650–635 Ma and that most of the material accreted during a short time span at around 527 Ma, closely followed by a major pulse of pluton emplacement. Based on the new detrital zircon ages, we argue for an unsteady, cyclic evolution of the Cadomian active margin which had much in common with modern Andean and Cordilleran continental-margin arc systems. The newly recognized episodic magmatic arc activity is interpreted as linked to increased erosion–deposition–accretion events, perhaps driven by feedbacks among the changing subducted slab angle, overriding plate deformation, surface erosion, and gravitational foundering of arc roots. These Cadomian active-margin processes were terminated by slab break-off and/or slab rollback and by a switch from convergent to divergent plate motions related to opening of the Rheic Ocean at around 490–480 Ma.The proposed tectonic evolution of the Teplá–Barrandian unit is rather similar to that of the Ossa Morena Zone in Iberia but shows significant differences to that of the North Armorican Massif and Saxothuringian unit in Western and Central Europe. This suggests that the Cadomian orogenic zoning was complexly disrupted during early Ordovician opening of the Rheic Ocean and Late Paleozoic Variscan orogeny so that the originally outboard tectonic elements are now in the Variscan orogen's interior and vice versa.  相似文献   

20.
Antimony- and Pb–Sb-quartz veins from the Bragança district, Portugal, are mainly hosted by Silurian phyllites. Antimony–Au-quartz veins from the Dúrico–Beirã region are mainly hosted by a Cambrian schist–metagraywacke complex, as well as Ordovician phyllites and quartzites. The deposits were mostly exploited in the late 19th Century. Mineralogical characteristics and chemical compositions of individual ore minerals are similar in the two areas. First and second generations of arsenopyrite precipitated at 390 and 300 °C, respectively. Berthierite and stibnite are the most abundant Sb-bearing minerals and precipitated between 225 and 128 °C, native antimony at < 200 °C. Drastic fluid cooling is the main cause of mineral precipitation. The Pb isotope compositions of stibnite suggest a homogeneous crustal source of lead, from the metasedimentary sequences, for Sb, Pb–Sb and Sb–Au deposits in both areas, which is consistent with the findings for comparable mineralizations elsewhere in Europe. Remobilization of Pb is related to Variscan metamorphism and deformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号