首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
使用珠海市1984—2015年R1h-R6h、R1h-R12h、R1h-R24h3个历时暴雨组合推算排水排涝两级标准衔接的设计暴雨水平。应用阿基米德极值Copula与Kendall分布函数构建不同历时暴雨组合的联合概率分布模式。分析各历时暴雨组合的遭遇概率、"或"重现期、"且"重现期和二次重现期,以出现最大可能概率的方法推算各组合的设计暴雨值。结果表明:二次重现期所对应的累积频率更准确地代表了特定设计频率情况下不同历时暴雨组合的风险率;重现期分别为2年、3年、5年、10年、20年、50年、100年推算的二次重现期设计值介于"或"重现期和"且"重现期设计值之间,小于相应的边缘分布重现期设计值,R1h-R6 h组合推算的设计值相对误差为3.1%~7.1%;R1h-R12h组合推算的设计值相对误差为3.3%~9.3%;R1 h-R24 h组合推算的设计值相对误差为3.9%~12.0%。二次重现期推算的不同历时暴雨组合的设计暴雨分位值为内涝工程的风险管理和管渠尺寸提供了优选标准和设计参考。  相似文献   

2.
不同历时设计暴雨组合的风险率分析   总被引:1,自引:0,他引:1  
陈子燊  刘曾美 《水文》2011,(4):12-17
基于Copula理论与方法,以广州1951~2010年的日降水为例,以最大日降水量为基准,构建最大日降水量(W1)与历时3日(W3)降水量,最大日降水量(W1)与历时7日(W7)降水量两个组合的联合概率分布模式。经择优检验建立了边缘分布为广义极值和P-III型的Gumbel-Hougaard Copula两变量联合分布。随之,推算了两个组合降水的同现重现期和设计暴雨值。最后,依据条件分布计算了在大于或小于年最大日降水量特定设计暴雨条件下超过历时3日或7日降水设计值的风险率。  相似文献   

3.
于艺  宋松柏  马明卫 《水文》2011,31(2):6-10
以甘肃省陇西站月降水资料为例,应用9种3维Archimedean Copulas函数构造了干旱历时、干旱烈度和烈度峰值的联合概率分布,并进行了多变量的拟合优度评价,利用优选出的3维非对称型M12 Copula函数,计算联合分布的重现期以及不同组合下的条件概率与条件重现期。结果表明,M12Copula函数可以描述干旱历时、干旱烈度和烈度峰值间的联合分布。由于Copula函数能够用来构建不同边缘分布的联合分布,可以获得变量间不同组合下的重现期,因而能够更全面客观地反映干旱的特征,是描述干旱多变量分布的一种有效途径。  相似文献   

4.
椭圆型Copulas函数在西安站干旱特征分析中的应用   总被引:5,自引:1,他引:4  
本文研究了干旱发生的联合概率、条件概率和重现期等干旱特征.以陕西省西安站月降水为例,应用Meta-Gaussian Copula和Student t Copula构造了干旱历时、干旱烈度和烈度峰值的联合概率分布,并进行了多变量分布拟合优质评价及拟合检验,在此基础上计算了联合分布的重现期以及2变量和3变量情形下的条件概率与条件重现期.研究表明,Meta-Gaussian Copula可以描述干旱历时、干旱烈度和烈度峰值三者的联合分布.由于多元联合分布可以考虑到多个变量之间的不同组合,能够求得不同干旱历时、干旱烈度或烈度峰值下的条件概率和条件重现期,因而能够更加全面客观地反映干旱的特征.  相似文献   

5.
基于Copula函数的组合变量联合概率分布研究及应用   总被引:1,自引:0,他引:1  
基于Copula函数原理,利用武江流域实测水文资料,以广义GDP为洪峰洪量边缘分布,构建了流域组合变量Copula概率分布模型,分析了洪峰与洪量、洪量与洪水历时、洪峰与洪水历时的联合概率分布,绘制各种变量组合下的联合分布图及重现期等值线图,并比较了同重现期条件下,洪水单变量设计值与多维联合设计值的区别。结果表明:广义GDP分布能很好的描述洪峰、洪量边缘分布,而基于广义GDP分布和指数分布构建的两变量Copula联合概率分布模型不限定变量的边缘分布,对各种类型的水文变量联合分布拟合效果较好;能全面反映洪水各特征属性不同等级下的联合发生频率,对同一频率下联合分布推求的洪水设计值比单变量设计值偏于安全。基于Copula函数的组合变量概率分布模型描述洪峰流量、洪量、洪水历时等特征的联合分布,较为全面地反映组合特征的洪水发生的概率和重现期,进一步反映洪水风险。  相似文献   

6.
基于Copulas函数的二维干旱变量联合分布   总被引:1,自引:1,他引:0  
李计  李毅  宋松柏  崔晨风 《水文》2012,(1):43-49
通过构建干旱变量的联合分布揭示干旱演变规律,可作为干旱分析的重要手段。基于8种单参数族的Copulas函数进行新疆乌鲁木齐和石河子气象站二维干旱变量的联合分布。经拟合优度评价:Frank Copula对干旱历时和干旱烈度、干旱历时和烈度峰值的拟合度最好;Clayton Copula对于干旱烈度和烈度峰值的拟合效果最好。二维变量联合超越概率值随单变量值的减小而增大;单变量的重现期介于二维变量联合重现期与同现重现期之间。表明Copulas函数能够描述二维干旱特征变量的联合分布。  相似文献   

7.
沙尘暴灾害致灾因子三维联合分布与重现期探索   总被引:1,自引:0,他引:1  
探讨多致灾因子对Copula联合分布模型在三维多致灾因子综合分析中的扩展.针对沙尘暴形成的3个基本条件:大风、丰富的沙尘源和不稳定的大气层结,以内蒙古镶黄旗1990-2008年的强沙尘暴灾害事件为案例,建立了经向环流指数、地面平均最大风速和地表土壤湿度3个基本特征变量的联合分布,计算了基于联合分布的联合重现期.研究表明,镶黄旗强沙尘暴事件的三维致灾因子符合Frank Copula函数构建条件,该函数能够很好地描述强沙尘暴灾害3个基本特征变量的联合分布,具备扩展到三维的能力.相对于二维Copula函数拟合效果,三维Frank Copula在中高尾部分的拟合有很大提高.三变量联合重现期的计算结果更加贴近实际情况.  相似文献   

8.
卢韦伟  陈璐  周建中  陈华 《水文》2015,35(5):6-10
极端洪水事件的频率分析往往局限于单个站点,当研究区域内包含多个水文站点时,单变量频率分析方法,会导致低估或高估洪灾风险率。因此,需要进行区域频率分析。传统区域重现期计算方法,同一重现期对应多种设计洪水组合,而基于Kendall分布函数的重现期计算方法(KRP)有效的解决了这一问题。故本文引入三维非对称Copula分布函数拟合区域内各个站点年最大流量的相关关系,利用半参数法估计Copula函数的参数,并采用KRP推求区域洪水发生的重现期。结果表明:区域发生T年一遇的洪水概率远远大于单个站点发生T年一遇的洪水概率;KRP克服了实测序列较短的问题,且能准确估算洪水重现期。本研究为防洪部门制定防洪措施提供一定的科学依据。  相似文献   

9.
单变量水文统计中一些广为接受的概念在多变量环境下尚缺乏深入分析,也易被误解,如N年内重现期大于等于T的多变量事件发生的次数与N/T的关系。实践中,多变量联合重现期与其边缘分布变量重现期的一些经验关系被发现并通过了案例验证分析,但缺乏解释和推导。基于GH Copula推导了双变量联合重现期与边缘分布变量重现期的关系以及双变量事件发生次数与其重现期、变量相关程度间的定量关系。以昆明56年的逐月SPI(Standardized Precipitation Index)和SRI(Standardized Runoff Index)识别了干旱事件,采用GH Copula构建了干旱历时和烈度的联合分布函数,验证了双变量联合重现期与边缘分布变量重现期的关系以及多变量事件发生次数与其重现期的定量关系。表明不宜以“and”第1重现期是否接近于比该干旱事件的旱情更重的干旱发生的平均时间间隔来说明干旱特征值重现期分析的合理性。变量的相关性不强时,需谨慎采用边缘分布变量重现期的较大值近似代替“and”事件的第1重现期。  相似文献   

10.
基于二次重现期的桂平航运枢纽水闸设计洪水组合研究   总被引:1,自引:0,他引:1  
干、支流交汇处支流上的水闸不仅受到支流洪水的影响还受到干流洪水顶托的影响,设计水位的推求需要考虑干支流洪水之间的相关性和同时发生的概率。以桂平航运枢纽水闸为例,采用Copula函数构建干流浔江与支流郁江洪水的联合分布,对比分析同现重现期和二次重现期差异,分别根据同频率和最可能组合经调洪演算推求水闸防洪水位。研究表明:浔江、郁江洪水之间存在较弱的正相关性,Clayton Copula能较好模拟浔江、郁江洪水的联合分布;二次重现期的浔江、郁江洪水流量均大于同现重现期,因此二次重现期更安全。同频组合经调洪演算推求桂平航运枢纽水闸防洪水位要高于最可能组合,最可能组合偏重于较大的郁江流量,浔江流量设计值偏小。  相似文献   

11.
为了研究考虑异常变化特征的扩边插值方法,笔者使用理论重力异常模拟提取的1∶5万重力数据进行研究。通过Surfer软件中7种插值方法的比较,认为径向基函数法在数据扩边时能够获得较好的结果。在此基础上,笔者提出逐级迭代插值的思路并优选扩边参数如下:①核函数为多重二次曲面核函数。②搜索扇区为4个。③搜索点数为64个。④搜索半径R1/R2为6/18,且R2平行于异常整体走向。⑤搜索角度选为当搜索半径长轴R2平行于异常走向时的角度。⑥R2参数一般为0~1。其中,首次扩边时R2参数根据边界点残差对比结果选定,其余各级扩边时R2参数选0.1即可。银额盆地西部LY区块实际资料扩边应用时,采用“三步法”进行插值能够将外扩与内插参数联合考虑,扩边结果显示扩边区与实测区衔接处的重力异常连续光滑,扩边区较好的反映了异常整体趋势和局部变化特征。  相似文献   

12.
在岩石圈层状滑移系统中,如大陆地壳俯冲叠置构造、逆冲推覆断层、拆离断层、滑坡等系统,近于水平的断裂带上存在许多有一定压力的流体孔隙。如果这些流体孔隙是密闭的,便可看成液压千斤顶的液缸。那么,断层面以上滑移体的重量ST不仅被断裂带上的固体支撑,也受孔隙液体举托力Ff支撑。设Ff与ST之比为R,那么R就是一个描述滑移体滑移运动难易程度的重要参数。R值越大,滑移体越容易被移动(推动)。而岩石圈中层状滑移系统滑脱面的剪切变形可以显著地改变该参数的大小,从而对层状滑移运动产生深刻的影响。设剪切面上孔隙流体平均压强初始值为P0,剪切角为α,剪切变形后的平均压强为P(α),R(α)-α间存在下式的函数关系:R(α)=(R0P(α))/(P0cosα)由此可见,R(α)与P(α)正相关,与剪切角α也正相关。P(α)与剪切角α的函数关系目前还难以给出,但剪切过程中,流体孔隙压强保持不变的恒压过程是常见的,即P(α)=P0。将该等式代入上式(1),即可获得下式:R(α)=(R0)/(cosα),[P(α)=P0,即恒压过程]由此作出恒压剪切过程的R(α)-α图解。从而发现,恒压剪切过程中,只要滑脱面上密闭流体孔隙存在初始压强,即R0>0,那么,R(α)随α增长,当剪切角α达到一定程度,R(α)迅速超过1;R0越大,实现R(α)>1所需的α值越小;反之,所需的α值越大。由此证明,密闭流体孔隙经过恒压剪切变形,导致R(α)>1的基本规律。非恒压过程总体规律不变。R(α)>1意味着层状滑移体完全被孔隙流体的浮托力支持。从而揭示岩石圈俯冲——推覆体及拆离机理和滑坡爆发的可能机制。  相似文献   

13.
许伟 《水文》2023,43(2):110-114
在防洪潮规划中洪潮遭遇分析尤为重要。以西、北江三角洲作为珠江流域感潮区域的典型区,运用Archimedean Copula函数构建了年最大洪水和相应48h内最大潮位、年最大潮位和相应48h内最大洪水两组联合分布,通过联合风险概率模型,计算了洪潮组合的风险概率。结果表明:较高重现期洪水遭遇较低重现期的潮位、较高重现期潮位遭遇较低重现期的洪水风险概率会更大。基于Copula函数的洪潮联合分布拟合较好,组合风险分析可靠,为珠江流域感潮河段防洪、潮工程的设计风险计算提供理论参考。  相似文献   

14.
长江流域降水极值的变化趋势   总被引:7,自引:1,他引:6       下载免费PDF全文
依据1960-2005年长江流域147个气象站逐日降水,ECHAM5/MPI-OM气候模式模拟的长江流域79个格点20世纪实验期(1941-2000年)以及未来3种排放情景(SRES-B1,A1B,A2)下21世纪前50年逐日降水数据,建立年最大强降水和汛期<1.27 mm/d的最长干旱持续天数序列。运用广义极值分布,广义帕雷托分布,广义逻辑分布与韦克比分布等4种分布函数定量拟合了长江流域降水极值的概率分布。研究表明:韦克比分布函数能够较好地拟合长江流域降水极值的概率分布。在3种排放情景下,未来降水极值的重现期呈现不同的空间分布特征。长江流域,尤其是中下游大部地区,1951-2000年间的50年一遇强降水和干旱事件,在2001-2050年间发展成为25年一遇降水极值事件。未来气候变暖条件下,降水极值重现期出现的这种变化趋势,将会对水资源趋势产生重大的影响。  相似文献   

15.
为研究实际水利条件下农业干旱的发生规律,简化农业干旱事件的评估方法,提出基于区域农业用水量的干旱重现期计算方法。通过构建农业用水量距平百分率干旱指标WA,在基于降雨量距平百分率干旱指标PA识别干旱事件的基础上,提取WA干旱指标下的干旱历时和干旱烈度特征变量,并根据以PA为干旱指标的干旱烈度频率分布曲线FS(x)和干旱历时频率分布曲线FD(x),运用Copula的简化方法计算基于WA的干旱事件重现期T,最后结合基于PA的干旱事件重现期T0,回归分析出T与T0间关系的计算公式。选取干旱灾害影响严重的亳州市为实证区域开展应用研究,计算得到1975-2007年各场干旱事件的T0和T以及T0与T的经验关系式。结果表明:T比T0更合理地反映区域农业实际受旱状况,重现期T0和T间存在高度的相关关系,采用T的回归方程可简化计算考虑区域实际抗旱能力下的干旱事件重现期,在区域防旱减灾实践中具有推广应用价值。  相似文献   

16.
基于Clayton copula和Kendall分布函数分析广东西江马口站和北江三水站枯水流量的联合分布及其风险概率。根据两站流量之间的时空关联与变异,以1959-2010年西江马口站历年连续7日平均最小流量和对应期间的北江三水站枯水流量为样本,分别计算1959-1985年和1986-2010年两个时段(分别称为样本A和样本B)的西江北江枯水流量联合分布的"或"重现期、"且"重现期和二次重现期及其最可能的设计分位数。结果表明:①样本B中马口站的枯水流量设计值小于样本A相应重现期设计值,三水站则显著增大;②1985年后西江和北江枯水流量同频率遭遇的可能性较前期明显减小;③二次重现期所对应的累积频率代表了特定设计频率情况下西江和北江枯水流量遭遇的风险率;④由更严谨的二次重现期计算的马口站枯水流量最大可能设计值Q7d,T=20aQ7d,T=10aQ7d,T=2a设计值或更适合分别作为西江三角洲供水规划、生态需水和调水压咸设计参考值。  相似文献   

17.
河东煤田晚古生代层序地层的碳氧同位素特征   总被引:3,自引:1,他引:2  
系统分析了河东煤田上石炭统(C2)-下二叠统下部(P11)45个碳酸盐岩样品的碳氧同位素在层序中的分布特征,探讨了碳氧同位素应用于层序划分及对比、相对海平面变化研究及晚古生代地层沉积相研究的可能性。研究表明,碳氧同位素在C2及P11的三级层序中的分布特征是不相同的,从TST到HST,在C2的三级层序中,δ13C及δ18O不断变重;在P11的三级层序中,δ13C不断变轻,而δ18O不断变重。这种规律在P11每个三级层序中均相似,垂向上显示出韵律性。横向上,δ13C及Z值总体具有由北向南升高的趋势。碳氧同位素在层序中的分布是受聚煤作用、陆源物质的注入、古气候、沉积环境及时间等控制的。   相似文献   

18.
滨海城市河流常常遭受暴雨和潮汐顶托双重影响导致洪涝灾害,需要重视雨潮遭遇联合分布模拟与设计。以深圳市西乡河为例,采用年最大值法(AM)和超定量序列法(POT)两种选样方法,基于Copula方法模拟24 h暴雨遭遇日高潮位的联合分布特征,对比雨潮遭遇传统重现期和二次重现期差异,根据同频法和权函数法反推计算雨潮设计组合值。结果表明:雨潮边缘分布最优模型均为广义正态分布(GNO),不同选样方法雨量分布模型参数差异明显。雨潮之间呈现较弱的正相依性,Archimedean Copulas均能较好地模拟雨潮遭遇联合分布特征,最优模型为Gumbel-Hougaard Copula。同频法反推雨潮设计组合值,二次重现期雨量和潮位均大于传统联合重现期,POT选样的潮位大于AM。权函数法选出的雨潮设计组合值,偏重于较高的潮位,雨量设计值较小。当明确了选样方法、联合分布模型和重现期类型,给定联合重现期的雨潮设计组合值是个此消彼长的过程,若选择较大的雨量设计值,则潮位值变小,反之亦然。从防洪潮设计安全角度考虑,POT选样方法及二次重现期设计更为安全。  相似文献   

19.
周月英  关帅 《水文》2018,38(5):1-5
针对同倍比方法与同频率方法推求设计潮位过程线中的局限性,采用4种边际分布函数对珠江口年最高潮位与年最大潮差序列进行拟合的基础上,选取4种不同的二维Archimedean Copula函数建立珠江口年最高潮位与年最大潮差的联合分布,并分析了高潮位重现期与潮位过程同现重现期的线性关系。结果表明:高潮位与潮差的同现重现期总是大于相应边际分布的重现期,并且随着边际分布重现期的增大,同现重现期增幅也越大,说明较高重现期的高潮位与潮差同时发生的可能性很小;基于高潮位重现期与潮位过程同现重现期的线性关系,采用基于联合分布的方法推求珠江口潮位过程线,推求结果较同频率法更为合理。  相似文献   

20.
基于宜昌站1951~2014年的实测月径流资料,选用标准化径流指数(SSI),运用游程理论识别干旱,应用Copula函数构建干旱特征变量间的多维联合概率分布,进而对宜昌站的干旱特征进行分析。结果表明:(1)宜昌在1950~1980年代,干旱次数呈现交替变化,自1990年代以来,特别是进入21世纪后,宜昌干旱事件增多、持续时间增大、干旱烈度和峰值增高,干旱情势有加重的趋势;(2)Copula函数可很好地描述宜昌地区干旱特征变量间的联合概率分布,多变量的联合重现期和同现重现期可分别作为实际单变量重现期区间估计的下限和上限,用以评估宜昌地区不同干旱变量值所代表的干旱事件发生的频率;(3)宜昌站近60年出现两次严重的干旱事件,一次发生于1978年9月~1979年7月,该事件的干旱历时和干旱烈度均达到了历史极值,这两个变量的联合重现期约为32a,同现重现期约为110a;该事件的干旱历时、干旱烈度和烈度峰值三个变量的联合重现期为9a,同现重现期约为115a。另一次干旱事件发生于2006年6月~12月,其烈度峰值达到了历史极值,其重现期接近90a;该次事件的干旱历时、干旱烈度和烈度峰值三者的联合重现期只有13a左右,同现重现期则超过了231a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号