首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Existing techniques for computing the gravitational field due to a homogeneous polyhedron all transform the required volume integral, expressing the field due to a volume distribution of mass, into a surface integral, expressing the potential due to a surface mass distribution over the boundary of the source body. An alternative representation is also possible and results in a surface integral expressing the potential due to a variable-strength double layer located on the polyhedral source boundary. Manipulation of this integral ultimately allows the gravitational field component in an arbitrary direction to be expressed as a weighted sum of the potentials due to two basic source distributions. These are a uniform-strength double layer located on all faces and a uniform-strength line source located along all edges. The derivatives of the gravitational field components can also be expressed in a similar form as can the magnetic field components due to a homogeneous magnetic polyhedron. It follows that the present approach can be used to generate a universal program capable of modelling all the commonly used potential field responses due to 3D bodies of arbitrary shape.  相似文献   

2.
本文讨论稳定磁化场中强磁性三度体内部磁化强度的数值解法。展示了由于退磁作用而造成的不均匀性,并以长方体内一些典型截面为例,较详细地讨论了磁化强度的特征,作了分布图;推导了较均匀磁化体磁化强度分布的近似公式,并计算了一组长方体的视退磁系数。  相似文献   

3.
Inversion of magnetic data is complicated by the presence of remanent magnetization, and it provides limited information about the magnetic source because of the insufficiency of data and constraint information. We propose a Fourier domain transformation allowing the separation of magnetic anomalies into the components caused by induced and remanent magnetizations. The approach is based on the hypothesis that each isolated source is homogeneous with a uniform and specific Koenigsberger ratio. The distributions of susceptibility and remanent magnetization are subsequently recovered from the separated anomalies. Anomaly components, susceptibility distribution and distribution of the remanent and total magnetization vectors (direction and intensity) can be achieved through the processing of the anomaly components. The proposed method therefore provides a procedure to test the hypotheses about target source and magnetic field, by verifying these models based on available information or a priori information from geology. We test our methods using synthetic and real data acquired over the Zhangfushan iron-ore deposit and the Yeshan polymetallic deposit in eastern China. All the tests yield favourable results and the obtained models are helpful for the geological interpretation.  相似文献   

4.
The forward computation of the gravitational and magnetic fields due to a 3D body with an arbitrary boundary and continually varying density or magnetization is an important problem in gravitational and magnetic prospecting. In order to solve the inverse problem for the arbitrary components of the gravitational and magnetic anomalies due to an arbitrary 3D body under complex conditions, including an uneven observation surface, the existence of background anomalies and very little or no a priori information, we used a spherical coordinate system to systematically investigate forward methods for such anomalies and developed a series of universal spherical harmonic expansions of gravitational and magnetic fields. For the case of a 3D body with an arbitrary boundary and continually varying magnetization, we have also given the surface integral expressions for the common spherical harmonic coefficients in the expansion of the magnetic field due to the body, and a very precise numerical integral algorithm to calculate them. Thus a simple and effective method of solving the forward problem for magnetic fields due to 3D bodies of this kind has been found, and in this way a foundation is laid for solving the inverse problem of these magnetic fields. In addition, by replacing the parameters and unit vectors in the spherical harmonic expansion of a magnetic field by gravitational parameters and a downward unit vector, we have also derived a forward method for the gravitational field (similar to that for the magnetic case) of a 3D body with an arbitrary boundary and continually varying density.  相似文献   

5.
磁赤道处化极方法   总被引:5,自引:3,他引:2       下载免费PDF全文
骆遥  薛典军 《地球物理学报》2010,53(12):2998-3004
化向地磁极(化极)是最基本的磁测资料处理方法之一,化极能消除或减少斜磁化影响,提高对磁测资料的认识程度和解释水平,对研究地壳产生的磁异常具有重要意义.但低纬度地区特别是磁赤道处,化极处理很不稳定甚至奇异,一直是位场研究的难点.针对地磁纬度较低特别是磁赤道地区磁异常化极的困难,利用从磁北极处垂直磁化向低纬度地区水平磁化方向转换稳定的特点,提出"狭义化赤"概念,并将其与低纬度磁异常"倒相"解释方法结合,提出专门用于磁赤道处化极的方法.该方法扩展了现有的化极理论,实现了磁赤道处的稳定化极.区别于目前任何方法,专门用于(近)水平磁化条件下的化极计算,具有原理简单,实现方便,收敛速度快等特点.对理论模型和实际资料计算表明这种针对磁赤道地区磁异常的化极处理方法是稳定、可靠的.  相似文献   

6.
The source of the lunar magnetic anomaly associated with the Rima Sirsalis linear rille has been modelled using the vector field intensities due to arbitrary uniform magnetization in a rectangular prism. It is shown that in order to match the Apollo 16 subsatellite data, the lunar surface near the rille must have a vertical magnetization of 6–9 × 10−3 G if the anomaly is due to flux leakage from a gap in the crust with the dimensions of the rille. This is more than one order of magnitude larger than the magnetization of any lunar sample, but is comparable with the high magnetization recently deduced for the Reiner γ formation in Oceanus Procellarum. An alternative explanation is that Rima Sirsalis and its surroundings are the site of a vertical magnetization contrast of 10−5 – 10−4 G which is at least as wide as the rille and extends to a depth of tens of kilometers in the crust. A wider magnetic source reduces the required magnetization (or depth) proportionately, since to first order the field at high altitude is proportional to the magnetic dipole moment per unit length.  相似文献   

7.
A triple axis borehole magnetometer is described that consists of a Förster-probe (fluxgate) triplet (sensitivity 1 n T), a Förster-probe gradiometer (sensitivity 2 nT/40 cm), a gyro unit (mean angular drift approx. 0.5°/h) which is equipped with accelerometers (sensitivity 1/100°), and a data transmission unit (with multiplexer and 16-bit AD converter). The sensitive fluxgate-magnetometer can detect weakly magnetic or small source bodies. Data from the gyro and the accelerometers allow the 3-component magnetic field values to be transformed to north, east and vertical components. Since they do not rely on magnetically-determined directional data, the results are not disturbed by local anomalies of the magnetic declination. Furthermore, the magnetometer can also be used in vertical boreholes. 3-component measurements are carried out at discrete points in the neighbourhood of a source body to locate its position, and within the source body to determine the direction of magnetization. The strength of magnetization and information on magnetic classification are obtained by continuous measurement of one or more components within the source body. Calculation algorithms and computer programs are available to simplify data processing and interpretation. Survey examples are discussed.  相似文献   

8.
An equivalent layer magnetization model obtained from inversion of long-wavelength satellite magnetic anomaly data indicates a very magnetic source region centered in south central Kentucky. The magnetization maximum nearly coincides with a gravity high elongated north-south and extending into Tennessee. Previous refraction profiles suggest that the source of the gravity anomaly is a large mass of rock occupying much of the crustal thickness. The outline of the source delineated by gravity contours is also discernible in aeromagnetic anomaly patterns. Taken together, the geophysical data suggest a large, localized mass of intracrustal rock which is both dense and very magnetic. A simple magnetization/density model is given which accounts for the gravity and long-wavelength aeromagnetic anomalies due to the body. We interpret it as a mafic plutonic complex, and several lines of evidence are consistent with a rift association. The body is, however, clearly related to the inferred position of the Grenville Front. It is bounded on the north by the fault zones of the 38th Parallel Lineament. The inferred mean magnetization (4 A/m) of the body is large, but not inconsistent with values reported by others for deep crustal bodies associated with long-wavelength magnetic anomalies. Such magnetization levels can be achieved with magnetic mineralogies produced by normal oxidation and metamorphic processes and enhanced by viscous build-up, especially in mafic rocks of alkaline character.  相似文献   

9.
The spectrum of a magnetic or a gravity anomaly due to a body of a given shape with either homogeneous magnetization or uniform density distribution can be expressed as a product of the Fourier transforms of the source geometry and the Green's function. The transform of the source geometry for any irregularly-shaped body can be accurately determined by representing the body as closely as possible by a number of prismatic bodies. The Green's function is not dependent upon the source geometry. So the analytical expression for its transform remains the same for all causative bodies. It is, therefore, not difficult to obtain the spectrum of an anomaly by multiplying the transform of the source geometry by that of the Green's function. Then the inverse of this spectrum, which yields the anomaly in the space domain, is calculated by using the Fast Fourier Transform algorithm. Many examples show the reliability and accuracy of the method for calculating potential field anomalies.  相似文献   

10.
Piezomagnetic fields produced by dislocation sources   总被引:2,自引:1,他引:2  
Tectonomagnetic modeling based on the linear piezomagnetic effect is reviewed with special attention to dislocation models. Stacey's scheme was the prototype for such modeling, as proposed in his first seismomagnetic calculations in 1964. The linear piezomagnetic law is presented, in which the stress-induced magnetization is expressed as a linear combination of stress components. The Gauss law for magnetic field and the Cauchy-Navier equation for static elastic equilibrium are combined through linear piezomagnetism and the Hooke law to yield the basic equation for piezomagnetic potential. A representation theorem for its solution is given by surface integrals of the displacement and its normal derivative over the strained body.A Green's function method is developed to compute the piezomagnetic field produced by a dislocation surface in an elastic half-space. Volterra's formula for piezomagnetic potential is derived by modifying Stacey's scheme for tectonomagnetic modeling. The Green's functions for the problem are called elementary piezomagnetic potentials, which are defined as potentials produced by elementary dislocations. Special consideration is required to construct the elementary piezomagnetic potentials, because the stress field around a point dislocation has a singularity of orderr –3. The integral representing elementary piezomagnetic potentials is not uniformly convergent. Owing to inappropriate convergency, the Green's functions obtained in an earlier study led to a puzzling outcome. Revised Green's functions give consistent results with those obtained so far by numerical integrations. Generally the piezomagnetic field produced by dislocation sources is weak in the case of a homogeneous earth model. Two enhancement effects for piezomagnetic signals are suggested: one due to inhomogeneous magnetization and the other via bore-hole observations.  相似文献   

11.
A nomogram is presented which enables evaluation of the components of magnetic attraction of a homogeneous finite rectangular prism, and of gravitational attraction due to a uniform rectangular lamina. In practice any three-dimensional body could be approximated by a number of right rectangular prisms of varying dimensions governed by the shape of the body. The magnetic attraction of the whole body is then obtained by numerical summation of the effects of the constituent prisms. For evaluating the gravitational effect, the cross-section of the body corresponding to each elevation contour is approximated by a number of rectangular laminae (or by a stepping polygon) the attraction of which can be determined with the aid of the same nomogram. The total gravitational attraction of the body is obtained by a process of graphical integration along the vertical axis.  相似文献   

12.
A comprehensive rock magnetic, magnetic anisotropy and paleomagnetic study has been undertaken in the brecciated LL6 Bensour ordinary chondrite, a few months only after its fall on Earth. Microscopic observations and electronic microprobe analyses indicate the presence of Ni-rich taenite, tetrataenite and rare Co-rich kamacite. Tetrataenite is the main carrier of remanence. Magnetization and anisotropy measurements were performed on mutually oriented 125 mm3 sub-samples. A very strong coherent susceptibility and remanence anisotropy is evidenced and interpreted as due to the large impact responsible for the post-metamorphic compaction of this brecciated material and disruption of the parent body. We show that the acquisition of remanent magnetization postdates metamorphism on the parent body and predates the entering of the meteorite in Earth’s atmosphere. Three components of magnetization could be isolated. A soft coherent component is closely related to the anisotropy of the meteorite and is interpreted as a shock remanent magnetization acquired during the same large impact on the parent body. Two harder components show random directions at a few mm scale. This randomness is attributed either to the formation mechanism of tetrataenite or to post-metamorphic brecciation. All components are likely acquired in very low (≈μT) to null ambient magnetic field, as demonstrated by comparison with demagnetization behavior of isothermal remanent magnetization. Two other LL6 meteorites, Kilabo and St-Mesmin, have also been studied for comparison with Bensour.  相似文献   

13.
The southwest border of the Parecis Basin (central Brazil) presents several occurrences of gold, copper and zinc. Parallel to this border, there is an alignment of magnetic anomalies with varied size and polarities. In particular, five magnetic anomalies are referred to, in this study, as SJ1 to SJ5. The proximity of these anomalies to each other makes it hard to isolate the magnetic component associated with each source. Furthermore, these anomalies have different magnetization directions, which require the use of a technique which is slightly or not affected by the presence of a remanent magnetization, as the amplitude of the anomalous magnetic field. Considering that, in these intrusions no outcrops are observed, the enhanced horizontal derivative technique was used to estimate the edges location and the depth of these sources. The geological context, allied to the results from the magnetic techniques, allowed to establish binds to restrain the interpretation of the results of the 3D inversion. This procedure permitted to compose three hypothesis to explain the magnetic behavior of the region, from which can be conclusively determined with a borehole analysis.  相似文献   

14.
The spectral representation of gravity and magnetic fields shows that the mathematical expressions describing these fields are the result of convolution of factors which depend on the geometry of the causative body, the physical properties of the body and the type of field being observed. If a field is known, it is possible to remove or alter these factors to map other fields or physical parameters which are linearly related to the observed field. The transformations possible are: continuation, reduction to the pole, converting between gravity and magnetic fields, converting between components of measurement, calculation of derivatives, and mapping magnetization and density distribution, relief on interfaces, and vertical thicknesses of layers.  相似文献   

15.
The general problem of magnetic modelling involves accounting for the effect of both remanent magnetization and the application of an external magnetic field. However, as far as the disturbing field of a magnetic body in a magnetic environment is concerned, there is an equivalence between the effects of these two causations that allows the remanence to be represented in terms of an equivalent primary magnetic H field. Moreover, due to the linearity of the magnetic field in terms of its causations, the general modelling problem involving an applied magnetic field in the presence of remanence can be simply and more efficiently dealt with in terms of an equivalent primary field acting in the absence of any remanent magnetization.  相似文献   

16.
位场数据解释的Theta-Depth法   总被引:1,自引:0,他引:1       下载免费PDF全文
Theta图是利用位场(重磁)数据识别边界的常用方法,其表达式为重磁异常水平变化与垂直变化的比值函数.该方法计算浅源地质体边界的效果较好,而由于深源位场数据在换算过程中会产生趋同效应,在深源地质体识别应用中计算结果不准确,为此,本文提出Theta-Depth法并进行地质体埋深的计算.首先给出直接利用Theta图像进行场源体深度估算的方法,然后推导出基于Theta导数的线性方程来自动估算场源位置参数,本文方法可有效地利用Theta图像的特征为约束条件来提高反演结果的精度.理论模型试验证明本文提出的Theta-Depth法能有效地计算出场源体位置和深度.将该方法应用于满都拉地区实测磁数据的解释,帮助圈定了矿脉的分布.  相似文献   

17.
Information on the mass and the spatial location of an arbitrary source body can be obtained by performing suitable integrations of 3D gravity and magnetic data along an infinite straight line. No assumptions on the density/magnetization distribution or the shape and location of the source are required. For an oblique borehole, a relationship between the lower limit of the source mass and the distance to the body is obtained. The mass contrast and the magnetic moment of the source can also be estimated. For a vertical borehole, both gravity and vertical magnetic component anomalies have equal areas to the left and right of the depth axis. The particular case of a horizontal gallery not intersecting the body is also studied. If the source is intersected, a lower limit is estimated for the maximum thickness of the body along the gallery. Information on the vertical coordinate of the centre of mass of the source can also be obtained. Numerical tests with synthetic gravity data support the theoretical results.  相似文献   

18.
A method is presented for determining bounds of the properties of axial symmetric bodies from a finite number of gravity and magnetic observations based on Parker's theory of ideal bodies. Bounds on the density contrast and the intensity of magnetization are calculated as a function of depth to the top of the anomalous source, restricting the range of smallest possible solutions to fit the data. The model studied is approximated by an array of vertical annuli cylinders, each of uniform density and magnetization. Linear programming algorithms based on the ideal body theory were used to calculate the distribution of these parameters within the body. Simultaneous inversion of gravity and magnetic data is performed assuming a constant ratio between the density contrast and the intensity of magnetization and that a common body is responsible for both observed fields. The parameter k(|J|/δp) provides information about the rock type of the structure. Interpretation of gravity and aeromagnetic data from Darnley Bay, NWT, Canada, indicated the presence of a shallow ultrabasic intrusion.  相似文献   

19.
Zusammenfassung Es werden Methoden entwickelt, um die Lage, die Neigung und die Magnetisierung eines im Untergrund verborgenen, plattenförmigen Störungskörpers aus seinen erdmagnetischen Anomalien zu bestimmen. Es handelt sich um direkte Methoden, mit danen man aus den Merkmalen der Anomalienverteilung ohne zu probieren die Unbekannten ermittelt. Zwischen den Anomalien der Horizontalintensität und der Vertikalintensität bestehen einfache matematische, geometrische Beziebungen, die man zu. Kontrollen und zur Verbesserung unsicherer Beobachtungswerte heranziehen kann. Ein Beispied aus der Praxis wird vollständig durchgerechnet.
Summary Some methods are developped to determine the position, the inclination and the magnetization of an ore body, if the anomalies of the vertical and horizontal components of the earth's magnetic field are measured. The ore body is supposed to have a figure like a thin plate. The methods lead from the caracteristics of the anomalies to the unknowns in a direct way without tryng. There are simple geometrical relations between the anomalies of both magnetic components. They are useful for controls and for correcting uncertain observations. An example from geophysical practice is discussed.
  相似文献   

20.
In this paper, we describe a non‐linear constrained inversion technique for 2D interpretation of high resolution magnetic field data along flight lines using a simple dike model. We first estimate the strike direction of a quasi 2D structure based on the eigenvector corresponding to the minimum eigenvalue of the pseudogravity gradient tensor derived from gridded, low‐pass filtered magnetic field anomalies, assuming that the magnetization direction is known. Then the measured magnetic field can be transformed into the strike coordinate system and all magnetic dike parameters – horizontal position, depth to the top, dip angle, width and susceptibility contrast – can be estimated by non‐linear least squares inversion of the high resolution magnetic field data along the flight lines. We use the Levenberg‐Marquardt algorithm together with the trust‐region‐reflective method enabling users to define inequality constraints on model parameters such that the estimated parameters are always in a trust region. Assuming that the maximum of the calculated gzz (vertical gradient of the pseudogravity field) is approximately located above the causative body, data points enclosed by a window, along the profile, centred at the maximum of gzz are used in the inversion scheme for estimating the dike parameters. The size of the window is increased until it exceeds a predefined limit. Then the solution corresponding to the minimum data fit error is chosen as the most reliable one. Using synthetic data we study the effect of random noise and interfering sources on the estimated models and we apply our method to a new aeromagnetic data set from the Särna area, west central Sweden including constraints from laboratory measurements on rock samples from the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号