首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

2.
Shoreline geomorphology, shoreline stratigraphy, and radiocarbon dates of organic material incorporated in constructional beach ridges record large lakes during the late Pleistocene and late Holocene in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. During the late Holocene, a transgression began at or after 3595 ± 35 14C yr B.P. and continued, perhaps in pulses, through 2635 ± 40 14C yr B.P., resulting in a lake as high as 1199 m. During the latest Pleistocene and overlapping with the earliest part of the Younger Dryas interval, a lake stood at approximately 1212 m at 10,820 ± 35 14C yr B.P. and a geomorphically and stratigraphically distinct suite of constructional shorelines associated with this lake can be traced to 1230 m. These two lake highstands correspond to periods of elevated regional wetness in the western Basin and Range that are not clearly represented in existing northern Sierra Nevada climate proxy records.  相似文献   

3.
Seismic stratigraphy, sedimentary facies, pollen stratigraphy, diatom-inferred salinity, stable isotope (δ18O and δ13C), and chemical composition (Sr/Ca and Mg/Ca) of authigenic carbonates from Moon Lake cores provide a congruent Holocene record of effective moisture for the eastern Northern Great Plains. Between 11,700 and 950014C yr B.P., the climate was cool and moist. A gradual decrease in effective moisture occurred between 9500 and 710014C yr B.P. A change at about 710014C yr B.P. inaugurated the most arid period during the Holocene. Between 7100 and 400014C yr B.P., three arid phases occurred at 6600–620014C yr B.P., 5400–520014C yr B.P., and 4800–460014C yr B.P. Effective moisture generally increased after 400014C yr B.P., but periods of low effective moisture occurred between 2900–280014C yr B.P. and 1200–80014C yr B.P. The data also suggest high climatic variability during the last few centuries. Despite the overall congruence, the biological (diatom), sedimentological, isotopic, and chemical proxies were occassionally out of phase. At these times the evaporative process was not the only control of lake-water chemical and isotopic composition.  相似文献   

4.
Lacustrine and alluvial terraces and sediments record the extent of at least two Holocene glacially dammed lakes immediately upstream of the Tsangpo River gorge at the eastern syntaxis of the Himalaya. The larger lake covered 2835 km2, with a maximum depth of 680 m and contained an estimated 832 km3 of water; the smaller lake contained an estimated 80 km3 of water. Radiocarbon dating of wood and charcoal yielded conventional radiocarbon ages of 8860 ± 40 and 9870 ± 50 14C yr B.P. for the higher set of lake terraces, and 1220 ± 40 and 1660 ± 40 14C yr B.P. for sediments from the lower terraces. Catastrophic failure of the glacial dams that impounded the lakes would have released outburst floods down the gorge of the Tsangpo River with estimated peak discharges of up to 1 to 5 × 106 m3 s−1. The erosive potential represented by the unit stream power calculated for the head of the gorge during such a catastrophic lake breakout indicates that post-glacial megafloods down the Tsangpo River were likely among the most erosive events in recent Earth history.  相似文献   

5.
Sediments from Rapid Lake document glacial and vegetation history in the Temple Lake valley of the Wind River Range, Wyoming over the past 11,000 to 12,000 yr. Radiocarbon age determinations on basal detrital organic matter from Rapid Lake (11,770 ± 710 yr B.P.) and Temple Lake (11,400 ± 630 yr B.P.) bracket the age of the Temple Lake moraine, suggesting that the moraine formed in the late Pleistocene. This terminal Pleistocene readvance may be represented at lower elevations by the expansion of forest into intermontane basins 12,000 to 10,000 yr B.P. Vegetation in the Wind River Range responded to changing environmental conditions at the end of the Pleistocene. Following deglaciation, alpine tundra in the Temple Lake valley was replaced by a Pinus albicaulis parkland by about 11,300 14C yr B.P. Picea and Abies, established by 10,600 14C yr B.P., grew with Pinus albicaulis in a mixed conifer forest at and up to 100 m above Rapid Lake for most of the Holocene. Middle Holocene summer temperatures were about 1.5°C warmer than today. By about 5400 14C yr B.P. Pinus albicaulis and Abies became less prominent at upper treeline because of decreased winter snowpack and higher maximum summer temperatures. The position of the modern treeline was established by 3000 14 C yr B.P. when Picea retreated downslope in response to Neoglacial cooling.  相似文献   

6.
This study evaluates the accuracy of optically stimulated luminescence to date well-preserved strandline sequences at Manistique/Thompson bay (Lake Michigan), and Tahquamenon and Grand Traverse Bays (Lake Superior) that span the past ∼4500 yr. The single aliquot regeneration (SAR) method is applied to produce absolute ages for littoral and eolian sediments. SAR ages are compared against AMS and conventional 14C ages on swale organics. Modern littoral and eolian sediments yield SAR ages <100 yr indicating near, if not complete, solar resetting of luminescence prior to deposition. Beach ridges that yield SAR ages <2000 yr show general agreement with corresponding 14C ages on swale organics. Significant variability in 14C ages >2000 cal yr B.P. complicates comparison to SAR ages at all sites. However, a SAR age of 4280 ± 390 yr (UIC913) on ridge77 at Tahquamenon Bay is consistent with regional regression from the high lake level of the Nipissing II phase ca. 4500 cal yr B.P. SAR ages indicate a decrease in ridge formation rate after ∼1500 yr ago, likely reflecting separation of Lake Superior from lakes Huron and Michigan. This study shows that SAR is a credible alternative to 14C methods for dating littoral and eolian landforms in Great Lakes and other coastal strandplains where 14C methods prove problematic.  相似文献   

7.
Uncalibrated radiocarbon data from core PLC92B taken from Wizards Cove in the Pyramid Lake subbasin indicate that the Trego Hot Springs and Wono tephra layers were deposited 23,200 ± 300 and 27,300 ± 30014C yr B.P. (uncorrected for reservoir effect). Sedimentological data from sites in the Pyramid Lake and Smoke Creek–Black Rock Desert subbasins indicate that the Trego Hot Springs tephra layer was deposited during a relatively dry period when Pyramid Lake was at or below its spill point (1177 m) to the Winnemucca Lake subbasin. The Wono tephra layer was deposited when lake depth was controlled by spill across Emerson Pass sill (1207 m) to the Smoke Creek–Black Rock Desert subbasin.18O data from core PLC92B also support the concept that the Trego Hot Springs tephra fell into a relatively shallow Pyramid Lake and that the Wono tephra fell into a deeper spilling lake.  相似文献   

8.
Holocene high-resolution cores from the margin of the Arctic Ocean are rare. Core P189AR-P45 collected in 405-m water depth on the Beaufort Sea slope, west of the Mackenzie River delta (70°33.03′N and 141°52.08′W), is in close vertical proximity to the present-day upper limit of modified Atlantic water. The 5.11-m core spans the interval between ∼6800 and 10,400 14C yr B.P. (with an 800-yr ocean reservoir correction). The sediment is primarily silty clay with an average grain-size of 9 φ. The chronology is constrained by seven radiocarbon dates. The rate of sediment accumulation averaged 1.35 mm/yr. Stable isotopic data (δ18O and δ13C) were obtained on the polar planktonic foraminifera Neogloboquadrina pachyderma (s) and the benthic infaunal species Cassidulina neoteretis. A distinct low-δ18O event is captured in both the benthic and planktonic data at ∼10,000 14C yr B.P.—probably recording the glacial Lake Agassiz outburst flood associated with the North Atlantic preboreal cold event. The benthic foraminifera are dominated in the earliest Holocene by C. neoteretis, a species associated with modified Atlantic water masses. This species decreases toward the core top with a marked environmental reversal occurring ∼7800 14C yr B.P., possibly coincident with the northern hemisphere 8200 cal yr B.P. cold event.  相似文献   

9.
Basal sediments of Lake Torfadalsvatn, northern Iceland, record changes in terrestrial and limnic environments in the period 11,300-9000 14C yr B.P. These changes were probably forced by climate and connected with displacements of the marine polar front and sea-ice margin. Pollen, spores, green algae (Pediastrum), saturation isothermal remanent magnetization, and carbon content of the basal sediments provide the first detailed biostratigraphic record of the last glacial-interglacial transition in Iceland. During the first pioneer phase, beginning at ca. 11,300 14C yr B.P., grasses and fell-field herbs became established, and lake productivity was very low. At ca. 10,900 14C yr B.P., climatic and soil conditions became favorable for shrubs and dwarf shrubs. This change, together with increased limnic productivity, clearly indicates long seasons without ice-cover in the sea immediately north of Iceland. A return to a colder climate (Younger Dryas), probably in connection with a southward displacement of the marine polar front, occurred by 10,600 14C yr B.P. Shrub and dwarf-shrub vegetation disappeared, and limnic productivity diminished. A second pioneer vegetation phase, dominated by Oxyria/Rumex and grasses, was initiated by a change to longer seasons without sea ice at ca. 9900 14C yr B.P. This warming is also evident as a contemporaneous increase in lake productivity. After ca. 9400 14C yr B.P. the reestablishment of dwarf-shrub heaths and very high limnic productivity indicate further warming.  相似文献   

10.
We present evidence of a submerged early Holocene landscape off the Blekinge coastline in the Baltic Sea, dating to the Yoldia Sea and Initial Littorina Sea Stages when the water level was lower than at present. 14C dated wood remains obtained by surveillance diving and new archaeological findings in combination with bathymetric analyses and interpolations between other sites across the Baltic Sea were used for refinement of the shoreline displacement history of the region. The new results reveal a Yoldia Sea lowstand level at 20 m b.s.l., a subsequent Ancylus Lake highstand at 3 m a.s.l., and then a period of relatively stable water level at about 4 m b.s.l. during the Initial Littorina Sea Stage, several metres lower than previously concluded. The refined shoreline displacement record was used for palaeo‐reconstructions of the study area during four key periods, the Yoldia Sea lowstand phase, the Ancylus Lake transgression phase, the Ancylus Lake highstand phase and the Initial Littorina Sea lowstand phase, using elevation data and map algebra functions. A flow accumulation algorithm was used for reconstruction of the now submerged prehistoric river network in order to identify areas of high archaeological potential. Our revised shoreline displacement record, and especially its lowstand period during the Initial Littorina Sea Stage around 9500–8500 cal. a BP, raises future demands not only for specific archaeological shallow‐water surveys down to 4 m b.s.l. in the area, but also for a renewed cultural heritage management strategy. The results of this study fill an important gap in the early Holocene part of the shoreline displacement history of Blekinge, contributing to its completion since the deglaciation, which is unique for the Baltic Sea.  相似文献   

11.
Valleys tributary to the Mississippi River contain fossiliferous slackwater lake sediment (Equality Formation) deposited in response to aggradation of the Mississippi River valley during the last glaciation. In the St. Louis Metro East area, the lower part of the Equality Formation is primarily laminated, fossiliferous silt and clay deposited from about 44,150 to 24,310 14C yr B.P. The upper Equality Formation is primarily very fine sand to silt deposited from about 21,200 to 17,000 14C yr B.P. Among the four cores that sample this succession in the St. Louis Metro East area, core MNK-3 (38.64EN, 90.01EW) was selected for detailed study. Three sources are distinguished by the following characteristics: (1) gray smectite-quartz-Se-rich, feldspar-poor material of the Des Moines, Wadena, and James lobes; (2) reddish brown kaolinite-Cu-Fe-rich sediment of the Superior and Rainy lobes; and (3) brown illite-dolomite-Sr-rich sediment of the Lake Michigan and Green Bay lobes. The earliest sediments (44,150 to 41,700 14C yr B.P.) were derived from the central and western provenances and are chronocorrelative with the lower Roxana Silt. A hiatus occurred from about 41,700 to 29,030 14C yr B.P. when much of the middle Roxana Silt (Meadow Member) was deposited on adjacent uplands. The youngest sediment includes evidence of heightened activity of the Superior Lobe at about 29,000 14C yr B.P., the Lake Michigan and Green Bay lobes from about 25,000 to 24,000 14C yr B.P., and the Wadena-Des Moines-James lobes at about 21,000 14C yr B.P.  相似文献   

12.
This work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling–Allerod.  相似文献   

13.
Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern “rich conifer swamp” community, despite generally low regional abundance of these species in pollen records. Ages range from 7095 ± 50 to 6420 ± 70 14C yr BP, but the clustering of stump dates and the development of 2 floating tree-ring chronologies suggest a briefer forest interval of no more than c. 400 years. Dendrochronological analysis indicates an environment with high inter-annual climate variability. Stable-carbon isotope composition falls within the range of modern trees from this region, but the stable-oxygen composition is consistent with warmer conditions than today. Both our tree-ring and isotope data provide support for a warmer environment in this region, consistent with a mid-Holocene thermal maximum. This drowned forest also provides a dated elevation in the Nipissing transgression at about 6420 14C yr BP (7350 cal yr BP) in the southern Lake Huron basin, a few hundred years before reopening of the St. Clair River drainage.  相似文献   

14.
The results of eight radiocarbon datings of Lake Chapala sediments (site T46) are presented, the age inversions (AI) observed and their age progression discussed. As deduced from some AIs and the 210Pb activity (site CHP4), the bioturbation zone in the lake varies over a depth of 5–25 cm. The linear sedimentation rates (LSRs) calculated from 14C ages do not match the LSR calculated from unsupported 210Pb activity for the upper sediments. This demonstrates the usefulness of dating sediments with complementary radiometric techniques such as short-lived isotope counting (SLIC), i.e., 210Pb and 137Cs. This approach leads to the following conclusions: (1) The incorporation of detrital particles with ancient carbon into the sedimentary column of the lake occurred by a combination of: (a) the presence of outcrops of hydrothermal petroleum with ages >40 ka (ka = thousands of years) in the lake, and (b) mass transport due to the presence of two elongated gyre circulation patterns integrated by cyclonic circulation (counterclockwise) in the north portion of the lake and anticyclonic circulation in the southern part. (2) Consequently, the 14C ages of shallow lake sediments have geologic ages one order of magnitude greater compared to their ages determined by the 210Pb method. (3) A bioturbation mechanism is not necessary to explain the 14C AI in the top 70 cm and from 110 to 150 cm depth of the sediments. (4) According to the biological proxies data for the last 600 years B.P., the paleoclimate at Lake Chapala has changed from sub-humid to dry environmental conditions, and eutrophication has increased over the past 100 years due to local input from ongoing agricultural activities.  相似文献   

15.
Uranium-series dating of dense tufa deposited in a small cave, at former lake margins, and in large tufa mounds clarifies the timing of lake-level variation during the past 400,000 yr in the Pyramid Lake basin. A moderate-sized lake occasionally overflowed the Emerson Pass sill at elevation of 1207 m between ca. 400,000 and 170,000 and from ca. 60,000 to 20,000 yr B.P., as shown by230Th/234U ages of the cave samples,230Th-excess ages of tubular tufas, and average isochron-plot ages of shoreline-deposited tufas. (By comparison, modern Pyramid Lake is 50 m below this sill). There is a lack of tufa record during the intervening period from ca. 170,000 to 60,000 yr B.P. After ca. 20,000 yr, Pyramid Lake underwent abrupt changes in level and, based on previous14C ages, reached its highest elevation (ca 1335 m) at ca. 14,000 yr B.P. The youngest uranium-series ages are comparable with previously reported14C ages.  相似文献   

16.
We report radiocarbon dates that constrain the timing of the deposition of the late-glacial Puerto Bandera moraine system alongside the western reaches of Lago Argentino adjacent to the Southern Patagonian Icefield. Close maximum-limiting radiocarbon ages (n = 11) for glacier advance into the outer moraines, with a mean value of 11,100 ± 60 14C yrs BP (12,990 ± 80 cal yrs BP), were obtained from wood in deformation (soft) till exposed beneath flow and lodgment till in Bahía del Quemado on the northeast side of Brazo Norte (North Branch) of western Lago Argentino. Other exposures of this basal deformation till in Bahía del Quemado reveal incorporated clasts of peat, along with larger inclusions of deformed glaciofluvial and lacustrine deposits. Radiocarbon dates of wood included in these reworked peat clasts range from 11,450 ± 45 14C yrs BP to 13,450 ± 150 14C yrs BP (13,315 ± 60 to 16,440 ± 340 cal yrs BP). The implication is that, during this interval, glacier fronts were situated inboard of the Puerto Bandera moraines, with the peat clasts and larger proglacial deposits being eroded and then included in the basal till during the Puerto Bandera advance.Minimum-limiting radiocarbon ages for ice retreat come from basal peat in cores sampled in spillways and depressions generated during abandonment of the Puerto Bandera moraines. Glacier recession and subsequent plant colonization were initiated close behind different frontal sectors of these moraines prior to: 10,750 ± 75 14C yrs BP (12,660 ± 70 cal yrs BP) east of Brazo Rico, 10,550 ± 55 14C yrs BP (12,490 ± 80 cal yrs BP) in Peninsula Avellaneda, and 10,400 ± 50 14C yrs BP (12,280 ± 110 cal yrs BP) in Bahía Catalana. In addition, a radiocarbon date indicates that by 10,350 ± 45 14C yrs BP (12,220 ± 110 cal yrs BP), the Brazo Norte lobe (or former Upsala Glacier) had receded well up the northern branch of Lago Argentino, to a position behind the Herminita moraines. Furthermore, glacier termini had receded to just outboard of the outer Holocene moraines at Lago Frías and Lago Pearson (Anita) prior to 10,400 ± 40 14C yrs BP (12,270 ± 100 cal yrs BP) and 9040 ± 45 14C yrs BP (10,210 ± 50 cal yrs BP), respectively. The most extensive recession registered during the early Holocene was in Agassiz Este Valley, where the Upsala Glacier had pulled back behind the outer Holocene moraine, reaching close to the present-day glacier terminus before 8290 ± 40 14C yrs BP (9300 ± 80 cal yrs BP).The radiocarbon-dated fluctuations of the Lago Argentino glacier in late-glacial time, given here, are in accord with changes in ocean mixed layer properties, predominately temperature, derived from the isotopic record given here of ODP Core 1233, taken a short distance off shore of the Chilean Lake District. It also matches recently published chronologies of late-glacial moraines in the Southern Alps of New Zealand on the opposite side of the Pacific Ocean from Lago Argentino. Finally, the timing of the late-glacial reversal of the Lago Argentino glacier fits the most recent chronology for the culmination of the Antarctic Cold Reversal (ACR) in the deuterium record of the EPICA Dome C ice core from high on the East Antarctic Plateau. Therefore, we conclude that the climate signature of the ACR was widespread in both the ocean and the atmosphere over at least the southern quarter of the globe.  相似文献   

17.
The timing and causes of the last deglaciation in the southern tropical Andes is poorly known. In the Central Altiplano, recent studies have focused on whether this tropical highland was deglaciated before, synchronously or after the global last glacial maximum (~21 ka BP). In this study we present a new chronology based on cosmogenic 3He (3Hec) dating of moraines on Cerro Tunupa, a volcano that is located in the centre of the now vanished Lake Tauca (19.9°S, 67.6°W). These new 3Hec ages suggest that the Tunupa glaciers remained close to their maximum extent until 15 ka BP, synchronous with the Lake Tauca highstand (17–15 ka BP). Glacial retreat and the demise of Lake Tauca seem to have occurred rapidly and synchronously, within dating uncertainties, at ~15 ka BP. We took advantage of the synchronism of these events to combine a glacier model with a lake model in order to reconstruct precipitation and temperature during the Lake Tauca highstand. This new approach indicates that, during the Tauca highstand (17–15 ka BP), the centre of the Altiplano was characterized by temperature ~6.5 °C cooler and average precipitation higher by a factor ranging between ×1.6 and ×3 compared to the present. Cold and wet conditions thus persisted in a significant part of the southern tropical Andes during the Heinrich 1 event (17–15 ka BP). This study also demonstrates the extent to which the snowline of glaciers can be affected by local climatic conditions and emphasizes that efforts to draw global climate inferences from glacial extents must also consider local moisture conditions.  相似文献   

18.
Pollen analysis of a sediment core from Zagoskin Lake on St. Michael Island, northeast Bering Sea, provides a history of vegetation and climate for the central Bering land bridge and adjacent western Alaska for the past ≥30,000 14C yr B.P. During the late middle Wisconsin interstadial (≥30,000-26,000 14C yr B.P.) vegetation was dominated by graminoid-herb tundra with willows (Salix) and minor dwarf birch (Betula nana) and Ericales. During the late Wisconsin glacial interval (26,000-15,000 14C yr B.P.) vegetation was graminoid-herb tundra with willows, but with fewer dwarf birch and Ericales, and more herb types associated with dry habitats and disturbed soils. Grasses (Poaceae) dominated during the peak of this glacial interval. Graminoid-herb tundra suggests that central Beringia had a cold, arid climate from ≥30,000 to 15,000 14C yr B.P. Between 15,000 and 13,000 14C yr B.P., birch shrub-Ericales-sedge-moss tundra began to spread rapidly across the land bridge and Alaska. This major vegetation change suggests moister, warmer summer climates and deeper winter snows. A brief invasion of Populus (poplar, aspen) occurred ca.11,000-9500 14C yr B.P., overlapping with the Younger Dryas interval of dry, cooler(?) climate. During the latest Wisconsin to middle Holocene the Bering land bridge was flooded by rising seas. Alder shrubs (Alnus crispa) colonized the St. Michael Island area ca. 8000 14C yr B.P. Boreal forests dominated by spruce (Picea) spread from interior Alaska into the eastern Norton Sound area in middle Holocene time, but have not spread as far west as St. Michael Island.  相似文献   

19.
Palynologic and stratigraphic data from Laguna Tahui (42°50′S, 73°30′W) indicate cool-temperate and humid conditions there between 14,000 and 10,000 14C yr B.P., followed by warmer and drier-than-present conditions between 10,000 and 7000 14C yr B.P., and subsequent cooling and rise in precipitation over the last 5800 14C yr. The thermophilous Valdivian trees Eucryphia cordifolia and Caldcluvia paniculata reached their maximum abundance during the early Holocene warm-dry phase (10,000-7000 14C yr B.P.), followed by a rise in lake levels and reexpansion of North Patagonian conifers starting at 7000 and 5800 14C yr B.P., respectively. Variations in the stratigraphic and geographic distribution of temperate rainforests in southern Chile suggest multimillennial trends in temperature and westerly activity, which are spatially and temporally coherent with paleoclimate records from neighboring regions. Climate variability at millennial and submillennial time scales may account for the establishment and persistence of fine-scale mosaics of Valdivian and North Patagonian rainforest species in low- to mid-elevation communities since ∼5800 14C yr B.P.  相似文献   

20.
New records of Jefferson's ground sloth (Megalonyx jeffersonii) and elk-moose (Cervalces scotti) from Lang Farm provide the first precise temporal correlation of these taxa with the specific environments inhabited by them near the time of their extinction. Six AMS 14C measurements establish an age of 11,405 ± 50 14C yr B.P. for Lang Farm Cervalces and an age of 11,430 ± 60 or 11,485 ± 40 14C yr B.P. for the Megalonyx. These measurements represent the youngest 14C dates for these two genera based on direct dating. Comparison of the dates with pollen data from northern Illinois indicates that these species inhabited a nonanalog environment that was transitional from mid-latitude tundra to mixed conifer and deciduous woodland. Although spruce (Picea sp.) was dominant, it was less abundant than prior to 12,500 14C yr B.P. The presence of black ash (Fraxinus nigra) and fir (Abies sp.) indicates a wet climate and heavy winter precipitation. This may have been the preferred habitat for Cervalces because of its narrow geographic range. However, this habitat type was only one of many occupied by Megalonyx as indicated by its broad geographic distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号