首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. B. Vrevskii 《Petrology》2016,24(6):527-542
New data are reported on U-Pb (SHRIMP-II) age (2662 ± 7 Ma), isotope (Sm-Nd) and geochemical compositions of the anorthosites of the Patchemvarek Massif and “ovoidal” anorthosite sills of the Neoarchean Kolmozero-Voron’ya greenstone belt. Mesoarchean (2938 ± 8 Ma) zircons found in the Patchemvarek anorthosite have low Th/U ratio, are overgrown by a thin rim, and may be interpreted as xenogenic crystals assimilated by primary melts of the gabbro-anorthosite massifs from host Mesoarchean tonalites during crystallization in a magmatic chamber. The “ovoidal” anorthosite sills are dated at 2730–2740 Ma on the basis of U-Pb local zircon isotope analysis. The sills of the “ovoidal” anorthosites in the Kolmozero-Voron’ya GSB represent the older (2730–2740 Ma) rock group, which differs from the Patchemvarek anorthosites in strongly depleted Nd isotope composition and some geochemical features. In terms of age and Sm-Nd isotope characteristics, the “ovoidal” anorthosites are close to the komatiites of the lower volcanogenic sequence (εNd(Т) + 3.0–3.2), and metaandesites (2778 ± 5.4 Ma, U-Pb TIMS, εNdТ + 3.5) and metatholeiites of the upper volcanogenic sequence (εNd(Т) + 3.5–3.7) of the supracrustal complex of the Kolmozero-Voron’ya GSB.  相似文献   

2.
The Suwałki anorthosite massif, located in extreme northeast Poland beneath more than a kilometer of Phanerozoic cover, hosts major Fe-Ti-V deposits. These deposits, discovered in 1962, are contained in Fe and Ti oxide minerals that coexist with subordinate quantities of Fe, Cu, Ni, and Co sulfides in massif-style anorthosites, norites, and gabbronorites. Accessibility and other considerations preclude development of this natural resource in the present economic climate. Detailed work by Polish geologists during the last 35 years provides a sound geologic framework for this Re-Os study of the age and origin of oxide and sulfide deposits associated with a major, but lesser known anorthosite massif. Rhenium and osmium abundances and Os isotopic compositions were measured for nine sulfides and four titanomagnetites from the Suwałki anorthosite massif. The titanomagnetites are over an order of magnitude lower in Re (0.4–1.5 ppb) and Os (0.036–0.144 ppb) concentrations than co-precipitated pyrrhotite, pyrite, and chalcopyrite that yield consistent concentrations for Re (30–55 ppb) and Os (1–6 ppb). Parallel lines connecting co-existing titanomagnetite and sulfides have slopes of ∼1 on Re versus common Os concentration plots, indicating that both Re and Os behave similarly during crystallization in their high preference for any sulfide phase over magnetite. Samples from three deposits within the anorthosite massif were analyzed. An age of 1559 ± 37 Ma (n=10) with an initial 187Os/188Os of 1.16 ± 0.06 for the Jezioro Okrągłe and Krzemianka deposits is essentially identical to an age of 1556 ± 94 Ma (n=3) for the Udryń deposit. Udryń, however, yielded a marginally lower initial 187Os/188Os of 0.87 ± 0.20. The high initial 187Os/188Os combined with the Proterozoic Re-Os age indicates that the source for Suwałki oxides-sulfides is older crust, and hypothetically, could involve Archean rocks. An average crustal value of 50 for 187Re/188Os yields a 2777 Ma age for Suwałki source rocks. Widespread Phanerozoic cover severely limits knowledge of basement rocks in Poland, however, and no Archean rocks are known in the immediate region. More likely, 187Re/188Os ratios may be higher than average continental crust, reflecting mafic crust in the source, and may move the source age for Suwałki anorthosite and mineral deposits toward younger values that easily include ∼2.0 Ga Proterozoic rocks. This more favorable case also accommodates Paleoproterozoic Nd model ages. Regardless of Archean or Proterozoic source age, the high initial 187Os/188Os ratios derived from the Re-Os isochron indicate that the source for the oxide-sulfide mineral deposits is more likely the crust and not the mantle. Given that these deposits are clearly magmatic, the Re-Os results add a new dimension to the long-standing “origin of anorthosite” problem, implying a crustal source for the anorthosite as well. The 1559 Ma Suwałki age is compatible with a well-exposed east-west band of 1530-1660 Ma rapakivi granite-anorthosite magmatism to the immediate north, transecting western Russia, southern Finland, Estonia and Latvia, and central Sweden. In particular, the age and isotopic character of Suwałki are not unlike those of the well-studied Salmi rapakivi granite-anorthosite batholith in western Russia (Karelia). Received: 4 December 1998 / Accepted: 11 November 1999  相似文献   

3.
Vlaykov Vruh–Elshitsa represents the best example of paired porphyry Cu and epithermal Cu–Au deposits within the Late Cretaceous Apuseni–Banat–Timok–Srednogorie magmatic and metallogenic belt of Eastern Europe. The two deposits are part of the NW trending Panagyurishte magmato-tectonic corridor of central Bulgaria. The deposits were formed along the SW flank of the Elshitsa volcano-intrusive complex and are spatially associated with N110-120-trending hypabyssal and subvolcanic bodies of granodioritic composition. At Elshitsa, more than ten lenticular to columnar massive ore bodies are discordant with respect to the host rock and are structurally controlled. A particular feature of the mineralization is the overprinting of an early stage high-sulfidation mineral assemblage (pyrite ± enargite ± covellite ± goldfieldite) by an intermediate-sulfidation paragenesis with a characteristic Cu–Bi–Te–Pb–Zn signature forming the main economic parts of the ore bodies. The two stages of mineralization produced two compositionally different types of ores—massive pyrite and copper–pyrite bodies. Vlaykov Vruh shares features with typical porphyry Cu systems. Their common geological and structural setting, ore-forming processes, and paragenesis, as well as the observed alteration and geochemical lateral and vertical zonation, allow us to interpret the Elshitsa and Vlaykov Vruh deposits as the deep part of a high-sulfidation epithermal system and its spatially and genetically related porphyry Cu counterpart, respectively. The magmatic–hydrothermal system at Vlaykov Vruh–Elshitsa produced much smaller deposits than similar complexes in the northern part of the Panagyurishte district (Chelopech, Elatsite, Assarel). Magma chemistry and isotopic signature are some of the main differences between the northern and southern parts of the district. Major and trace element geochemistry of the Elshitsa magmatic complex are indicative for the medium- to high-K calc-alkaline character of the magmas. 87Sr/86Sr(i) ratios of igneous rocks in the range of 0.70464 to 0.70612 and 143Nd/144Nd(i) ratios in the range of 0.51241 to 0.51255 indicate mixed crustal–mantle components of the magmas dominated by mantellic signatures. The epsilon Hf composition of magmatic zircons (+6.2 to +9.6) also suggests mixed mantellic–crustal sources of the magmas. However, Pb isotopic signatures of whole rocks (206Pb/204Pb = 18.13–18.64, 207Pb/204Pb = 15.58–15.64, and 208Pb/204Pb = 37.69–38.56) along with common inheritance component detected in magmatic zircons also imply assimilation processes of pre-Variscan and Variscan basement at various scales. U–Pb zircon and rutile dating allowed determination of the timing of porphyry ore formation at Vlaykov Vruh (85.6 ± 0.9 Ma), which immediately followed the crystallization of the subvolcanic dacitic bodies at Elshitsa (86.11 ± 0.23 Ma) and the Elshitsa granite (86.62 ± 0.02 Ma). Strontium isotope analyses of hydrothermal sulfates and carbonates (87Sr/86Sr = 0.70581–0.70729) suggest large-scale interaction between mineralizing fluids and basement lithologies at Elshitsa–Vlaykov Vruh. Lead isotope compositions of hydrothermal sulfides (206Pb/204Pb = 18.432–18.534, 207Pb/204Pb = 15.608–15.647, and 208Pb/204Pb = 37.497–38.630) allow attribution of ore-formation in the porphyry and epithermal deposits in the Southern Panagyurishte district to a single metallogenic event with a common source of metals.  相似文献   

4.
Mid-Proterozoic anorthosite-suite magmatism is a major volumetric component of the southern Grenville Province, and provides an important probe of the compositions and types of lower crustal rocks. The ∼1.15 Ga Morin Complex (Quebec) consists of two anorthosite plutons with distinct compositions. Plagioclase from the western lobe of the anorthosite has δ18O values that average 9.6 ± 0.7‰, which is ∼3‰ higher than the values found in “normal” anorthosites and in mantle-derived mafic igneous rocks worldwide. Plagioclase from the eastern lobe of the massif (deformed by the Morin Shear Zone) has δ18O values that average 8.7 ± 0.6‰, also high compared to mantle-derived rocks. Numerous lines of evidence, including homogeneity of δ18O values within individual plutons, O–Sr–Nd mixing relations, and preservation of igneous δ18O in adjacent mangerite units argue against anorthosite interaction with high δ18O fluids as the cause of the high δ18O values seen in both anorthosite lobes. High δ18O values are best explained as primary magmatic compositions resulting from melting and assimilation of crustal materials by the anorthosite's parent magma. The Morin and Marcy massifs are located in the Allochthonous Monocyclic Belt of the Grenville Province, and have the highest known δ18O values for anorthosites in the Grenville. Although the Monocyclic Belt is juvenile in terms of radiogenic isotope systematics, the new oxygen isotope data indicate the presence high δ18O supracrustal materials at the base of the crust, probably buried during the ∼1.2 Ga Elzevirian orogeny in the Monocyclic Belt prior to anorthosite magmatism. This process is not recognized in other parts of the Grenville Province and points to differences in the pre-1.2-Ga continental margins. Received: 29 September 1999 / Accepted: 7 March 2000  相似文献   

5.
The origin of the Sondalo gabbroic complex has been unravelled by means of a petrological study of the least evolved rocks, troctolites to norites containing up to 20% of anhedral clinopyroxene and titanian pargasite. Pyroxenes and titanian pargasite from the troctolites have higher Mg, Al and Cr, and lower Mn than those from the norites, whereas plagioclase does not show systematic compositional variations (An ca. 65 mol%). The variation trend of anorthite content of plagioclase versus the forsterite content of olivine differs from that of arc-related gabbroic rocks. Plagioclase, clinopyroxene, orthopyroxene and titanian pargasite were analyzed for REE and selected trace elements by ion microprobe. Application of crystal/liquid partition coefficients to trace element mineral compositions suggests that the parental liquids of both troctolites and norites had tholeiitic affinity and were slightly LREE and LILE enriched relative to N-MORB. A troctolite and a norite give Sm-Nd mineral isochron ages of 300 ± 12 Ma and 280 ± 10 Ma. Plagioclase-amphibole Rb-Sr isochron ages are 266 ± 10 Ma and 269 ± 16 Ma for the same rock samples, and they are interpreted to represent cooling ages. The Nd-Sr-O isotopic compositions indicate that a substantial crustal contribution was involved in the petrogenesis of the norite, which has low ɛNd(290 Ma), high 87Sr/86Sr(290 Ma) and high δ18OPx (−2.6, 0.7057 and +7.9‰, respectively) compared with the troctolites. We thus conclude that the troctolite/norite association formed by concomitant fractional crystallization and crustal assimilation. The somewhat elevated δ18OCpx (+6.4‰) and the relatively low forsterite contents in olivine suggest that the parental liquids of the troctolites had already been evolved through an AFC type process. The ɛNd(290 Ma) and 87Sr/86Sr(290 Ma) of these rocks (ranging from +2.8 to +4.4 and from 0.7037 to 0.7040, respectively) probably do not reflect the ɛNd and Sr isotopic compositions of their mantle source, and it is thus unclear whether the primary melts were derived from a slightly enriched or from a depleted mantle source. The Sondalo gabbroic complex was most likely associated with the post-Variscan gabbroic complexes of the Alpine belt. These gabbroic complexes can be ascribed to the intrusion at different crustal levels of tholeiitic mantle-derived melts and were emplaced in the time span of 300–270 Ma. Received: 14 September 1998 / Accepted: 4 January 1999  相似文献   

6.
Crustal xenoliths from basanitic dikes and necks that intruded into continental sediments of the Cretaceous Salta Rift at Quebrada de Las Conchas, Provincia Salta, Argentina were investigated to get information about the age and the chemical composition of the lower crust. Most of the xenoliths have a granitoid composition with quartz-plagioclase-garnet-rutile ± K-feldspar as major minerals. The exceedingly rare mafic xenoliths consist of plagioclase-clinopyroxene-garnet ± hornblende. All xenoliths show a well equilibrated granoblastic fabric and the minerals are compositionally unzoned. Thermobarometric calculations indicate equilibration of the mafic xenoliths in the granulite facies at temperatures of ca. 900 °C and pressures of ca. 10 kbar. The Sm-Nd mineral isochron ages are 95.1 ± 10.4 Ma, 91.5 ± 13.0 Ma, 89.0 ± 4.2 Ma (granitoid xenoliths), and 110.7 ± 23.6 Ma (mafic xenolith). These ages are in agreement with the age of basanitic volcanism (ca. 130–100 and 80–75 Ma) and are interpreted as minimum ages of metamorphism. Lower crustal temperature at the time given by the isochrons was above the closure temperature of the Sm-Nd system (>600–700 °C). The Sm-Nd and Rb-Sr isotopic signatures (147Sm/144Nd = 0.1225–0.1608; 143Nd/144Ndt 0 = 0.512000–0.512324; 87Rb/86Sr = 0.099–0.172; 87Sr/86Srt 0 = 0.708188–0.7143161) and common lead isotopic signatures (206Pb/204Pb = 18.43–18.48; 207Pb/204Pb = 15.62–15.70; 208Pb/204Pb = 38.22 –38.97) of the granitoid xenoliths are indistinguishable from the isotopic composition of the Early Paleozoic metamorphic basement from NW Argentina, apart from the lower 208Pb/204Pb ratio of the basement. The Sm-Nd depleted mantle model ages of ca. 1.8 Ga from granitoid xenoliths and Early Paleozoic basement point to a similar Proterozoic protolith. Time constraints, the well equilibrated granulite fabric, P-T conditions and lack of chemical zoning of minerals point to a high temperature in a crust of nearly normal thickness at ca. 90 Ma and to a prominent thermal anomaly in the lithosphere. The composition of the xenoliths is similar to the composition of the Early Paleozoic basement in the Andes of NW Argentina and northern Chile. A thick mafic lower crust seems unlikely considering low abundance of mafic xenoliths and the predominance of granitoid xenoliths. Received: 21 July 1998 / Accepted: 27 October 1998  相似文献   

7.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

8.
Mineralogically zoned and unzoned discordant bodies composed predominately of plagioclase with up to 35% olivine, occur at three different levels in Olivine-Bearing zones III and IV of the Middle Banded series of the Stillwater complex. The discordant bodies are elongate perpendicular to the layering of the host cumulates with slender concordant apophyses. Although the host olivine-gabbros are foliated with tabular plagioclase, the discordant bodies lack a discernible fabric and have blocky plagioclase. Average olivine in the host rocks is slightly more magnesian than that of the discordant bodies (Mg#75.8 ± 0.7 versus Mg#74.6 ± 0.3 respectively) but plagioclase compositions are indistinguishable (An77.6 ± 2.0 versus An76.6 ± 4.3– average host and discordant bodies respectively). Whole-rock major- and trace-element compositions of the discordant bodies are generally indistinguishable from cumulates with similar modal abundance. However, bulk compositions of anorthositic cores from the discordant bodies are enriched in K, Na, Ba, Sr and P. We conclude that the discordant bodies formed when cooler volatile fluids or fluid-rich silicate liquids moved upward and encountered a hotter undersaturated solid-plus-liquid assemblage. Continued liquid/fluid fluxing increased the permeability along the flow path and focused the flow, allowing the original bulk compositions to be modified and leaving plagioclase-rich troctolites and anorthosites. The shapes of the discordant bodies suggest that the cumulus pile had anisotropic permeability during late-stage liquid/fluid flow. Chemical and mineralogical evidence from other parts of Olivine-Bearing zones III and IV suggests that the processes that formed the discordant bodies may have influenced other cumulates. In fact, it appears that the same processes that formed the discordant bodies operated within an anorthositic layer, strongly modifying the chemistry of the rock but leaving no mineralogical or textural evidence. Received: 10 December 1996 / Accepted: 12 August 1997  相似文献   

9.
A critical study of 311 published WR chemical analyses, isotopic and mineral chemistry of anorthosites and associated rocks from eight Proterozoic massif anorthosite complexes of India, North America and Norway indicates marked similarities in mineralogy and chemistry among similar rock types. The anorthosite and mafic-leucomafic rocks (e.g., leuconorite, leucogabbro, leucotroctolite, anorthositic gabbro, gabbroic anorthosite, etc.) constituting the major part of the massifs are characterized by higher Na2O + K2O, Al2O3, SiO2, Mg# and Sr contents, low in plagioclase incompatible elements and REE with positive Eu anomalies. Their δ 18O‰ (5.7–7.5), initial 87Sr/86Sr (0.7034–0.7066) and ɛ Nd values (+1.14 to +5.5) suggest a depleted mantle origin. The Fe-rich dioritic rocks occurring at the margin of massifs have isotopic, chemical and mineral composition more close to anorthosite-mafic-leucomafic rocks. However, there is a gradual decrease in plagioclase content, An content of plagioclase and XMg of orthopyroxene, and an increase in mafic silicates, oxide minerals content, plagioclase incompatible elements and REE from anorthosite-mafic-leucomafic rocks to Fe-rich dioritic rocks. The Fe-rich dioritic rocks are interpreted as residual melt from mantle derived high-Al gabbro melt, which produced the anorthosite and mafic-leucomafic rocks. Mineralogically and chemically, the K-rich felsic rocks are distinct from anorthosite-mafic-leucomafic-Fe-rich dioritic suite. They have higher δ 18O values (6.8–10.8‰) and initial 87Sr/86Sr (0.7067–0.7104). By contrast, the K-rich felsic suites are products of melting of crustal precursors.  相似文献   

10.
Summary Re–Os molybdenite ages from the exocontact of the Hnilec granite-greisen body provide temporal constraints for tin, tungsten and molybdenite mineralisation in the Gemeric Superunit, Slovakia. Two molybdenite separates were taken from a representative sample of the Sn–W–Mo mineralisation at Hnilec and their Re–Os ages of 262.2 ± 0.9 and 263.8 ± 0.8 Ma (2-sigma) are in excellent agreement. The obtained Re–Os molybdenite ages are similar to recent but less precise electron microprobe monazite (276 ± 13 Ma) and U–Pb single zircon (250 ± 18 Ma) ages from the Hnilec granite intrusion, supporting a granite-related greisen origin for the Sn–W–Mo mineralisation. Our precise Re–Os molybdenite ages resolve the long time controversy over the timing of high-temperature mineralisation in the Gemeric Superunit. These Permian ages eliminate suggestions of an Alpine age. The sulphur isotope composition of the studied molybdenite is δ34S(CDT) = 1.71 ± 0.2‰ and is consistent with a magmatic sulphur source. Field observations indicate the lack of a broad contact aureole in the vicinity of the Hnilec granite body. Shallow level granite emplacement in schistose host rocks was accompanied by alteration and formation of tin-tungsten greisen in the upper part of the granite and exocontact molybdenite mineralisation, both commonly lacking in other granite bodies within the Gemeric Superunit.  相似文献   

11.
The Volch??etundrovsky Massif occupies the middle part of the autonomous anorthosite complex of the Main Range, has a sheet morphology and marks the tectonic suture between the Kola block and the Belomorian mobile belt. The massif is characterized by homogenous structure and consists of the volumetrically dominant Main Zone including leucogabbro, leucogabbronorites, and anorthosites, and Marginal Zone made up of leuconorites and gabbronorites with subordinate plagioclasites and orthopyroxenites. Chemically, the rocks of the Volch??etundrovsky Massif are ascribed to the normal (tholeiitic and calc-alkaline) petrochemical series with typomorphic high Al2O3 contents (11.71?C29.32 wt %). With Al2O3 increase in the leuconorite-anorthosite series, the SiO2 and TiO2 contents show weak variations, CaO and alkalis insignificantly increase, whereas the MgO and FeO contents sharply decrease. The rocks of the Volch??etundrovsky Massif reveal significant REE fractionation and increase in total REE content in the leuconorite-anorthosite series, most approximating the Paleoproterozoic (Sumian) anorthosites of the Kola region. The anorthosites and leucogabbro are characterized by flat HREE, while the leuconorites is strongly depleted in HREE due to garnet fractionation. All rocks of the massif have significant positive Eu anomalies caused by the plagioclase accumulation. Zircons are characterized by LREE depletion and enrichment in HREE. This defines the steep positive slope of the plots complicated by the negative Eu and positive Ce (in zircons from leucogabbro) anomalies, which is typical of the REE distribution patterns in the unaltered zircons from igneous rocks. In zircons from anorthosites, the Ce anomaly is weak to absent. The trace-element distribution in the rocks of the Volch??etundrovsky Massif show positive Ba, Ta, Pb, Sr, Sc, and V anomalies, being controlled by the mineral specifics of the massif and the presence of definite accessory minerals. New U-Pb zircon data on the rocks of the Volch??etundrovsky Massif indicate that the leuconorites from the Marginal Zone were formed 2473 ± 7 Ma and 2463 ± 2.4 Ma ago, and the leucogabbro from the Main Zone, 2467 ± 8 Ma. These rocks have negative ?Nd(T) from -1.54 up to -3.10, which indicates their derivation from enriched mantle reservoir variably contaminated by crustal material. The anorthosites of the Main Zone define an U-Pb age of 2407 ± 3 Ma and ?Nd(T) = ?3.78, which presumably reflect the timing of hydrothermal-metasomatic alterations in the upper part of the magmatic chamber accompanied by significant crustal contamination.  相似文献   

12.
The Michilla mining district comprises one of the most important stratabound and breccia-style copper deposits of the Coastal Cordillera of northern Chile, hosted by the Middle Jurassic volcanic rocks of the La Negra Formation. 40Ar/39Ar analyses carried out on igneous and alteration minerals from volcanic and plutonic rocks in the district allow a chronological sequence of several magmatic and alteration events of the district to be established. The first event was the extrusion of a thick lava series of the La Negra Formation, dated at 159.9 ± 1.0 Ma (2σ) from the upper part of the series. A contemporaneous intrusion is dated at 159.6 ± 1.1 Ma, and later intrusive events are dated at 145.5 ± 2.8 and 137.4 ± 1.1 Ma, respectively. Analyzed alteration minerals such as adularia, sericite, and actinolite apparently give valid 40Ar/39Ar plateau and miniplateau ages. They indicate the occurrence of several alteration events at ca. 160–163, 154–157, 143–148, and 135–137 Ma. The first alteration event, being partly contemporaneous with volcanic and plutonic rocks, was probably produced in a high thermal gradient environment. The later events may be related either to a regional low-grade hydrothermal alteration/metamorphism process or to plutonic intrusions. The Cu mineralization of the Michilla district is robustly bracketed between 163.6 ± 1.9 and 137.4 ± 1.1 Ma, corresponding to dating of actinolite coexisting with early-stage chalcocite and a postmineralization barren dyke, respectively. More precisely, the association of small intrusives (a dated stock from the Michilla district) with Cu mineralization in the region strongly suggests that the main Michilla ore deposit is related to a magmatic/hydrothermal event that occurred between 157.4 ± 3.6 and 163.5 ± 1.9 Ma, contemporaneous or shortly after the extrusion of the volcanic sequence. This age is in agreement with the Re–Os age of 159 ± 16 Ma obtained from the mineralization itself (Tristá-Aguilera et al., Miner Depos, 41:99–105,2006).  相似文献   

13.
The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr) t  = 0.7062–0.7067, ɛ Nd(t) = −4.37 to −4.63, (176Hf/177Hf) t  = 0.282469–0.282590, and ɛ Hf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.  相似文献   

14.
Three major mineralization events are recorded at the Rožná uranium deposit (total mine production of 23,000 t U, average grade of 0.24% U): (1) pre-uranium quartz-sulfide and carbonate-sulfide mineralization, (2) uranium, and (3) post-uranium quartz-carbonate-sulfide mineralization. (1) K–Ar ages for white mica from wall rock alteration of the pre-uranium mineralization style range from 304.5 ± 5.8 to 307.6 ± 6.0 Ma coinciding with the post-orogenic exhumation of the Moldanubian orogenic root and retrograde-metamorphic equilibration of the high-grade metamorphic host rocks. The fluid inclusion record consists of low-salinity aqueous inclusions, together with H2O-CO2-CH4, CO2-CH4, and pure CH4 inclusions. The fluid inclusion, paragenetic, and isotope data suggest that the pre-uranium mineralization formed from a reduced low-salinity aqueous fluid at temperatures close to 300°C. (2) The uraniferous hydrothermal event is subdivided into the pre-ore, ore, and post-ore substages. K–Ar ages of pre-ore authigenic K-feldspar range from 296.3 ± 7.5 to 281.0 ± 5.4 Ma and coincide with the transcurrent reorganization of crustal blocks of the Bohemian Massif and with Late Stephanian to Early Permian rifting. Massive hematitization, albitization, and desilicification of the pre-ore altered rocks indicate an influx of oxidized basinal fluids to the crystalline rocks of the Moldanubian domain. The wide range of salinities of fluid inclusions is interpreted as a result of the large-scale mixing of basinal brines with meteoric water. The cationic composition of these fluids indicates extensive interaction with crystalline rocks. Chlorite thermometry yielded temperatures of 260°C to 310°C. During this substage, uranium was probably leached from the Moldanubian crystalline rocks. The hydrothermal alteration of the ore substage followed, or partly overlapped in time, the pre-ore substage alteration. K–Ar ages of illite from ore substage alteration range from 277.2 ± 5.5 to 264.0 ± 4.3 Ma and roughly correspond with the results of chemical U–Pb dating of authigenic monazite (268 ± 50 Ma). The uranium ore deposition was accompanied by large-scale decomposition of biotite and pre-ore chlorite to Fe-rich illite and iron hydrooxides. Therefore, it is proposed that the deposition of uranium ore was mostly in response to the reduction of the ore-bearing fluid by interaction with ferrous iron-bearing silicates (biotite and pre-ore chlorite). The Th data on primary, mostly aqueous, inclusions trapped in carbonates of the ore substage range between 152°C and 174°C and total salinity ranges over a relatively wide interval of 3.1 to 23.1 wt% NaCl eq. Gradual reduction of the fluid system during the post-ore substage is manifested by the appearance of a new generation of authigenic chlorite and pyrite. Chlorite thermometry yielded temperatures of 150°C to 170°C. Solid bitumens that post-date uranium mineralization indicate radiolytic polymerization of gaseous and liquid hydrocarbons and their derivatives. The origin of the organic compounds can be related to the diagenetic and catagenetic transformation of organic matter in Upper Stephanian and Permian sediments. (3) K–Ar ages on illite from post-uranium quartz-carbonate-sulfide mineralization range from 233.7 ± 4.7 to 227.5 ± 4.6 Ma and are consistent with the early Tethys-Central Atlantic rifting and tectonic reactivation of the Variscan structures of the Bohemian Massif. A minor part of the late Variscan uranium mineralization was remobilized during this hydrothermal event.  相似文献   

15.
The investigation of stable and radiogenic isotopes and of platinum-group (PGE) and rare earth elements (REE) in chromitites and associated ultramafic rocks of the Kempirsai Massif, southern Urals, gives strong evidence for a multistage formation of giant ophiolitic-podiform chromite deposits present in the southeastern part of the massif. The Kempirsai ophiolite massif is divided by a shear zone into two parts: in the northwestern area, small bodies of Al-rich chromite formed from basaltic melts between 420 to 400 Ma, according to Sm-Nd mineral isochrons of harzburgite, pyroxenite, websterite and gabbro. Harzburgites and pyroxenites in this area are enriched in light REE and have ɛNd(400) > +6 and ɛSr(400) ∼ +5. Chromitites have scattered PGE distributions (Pd/Ir, 0.4–7.0), being partly enriched in Pd and Pt. γOs(400) of one chromitite is −4.4. The southeastern part of the Kempirsai Massif, well-known for its world-class deposits of podiform low-Al magnesiochromite, is characterized by harzburgite and dunite enriched in light REE with very low ɛNd(400) (+4.3 to –17.1) and positive ɛSr(400) (>+10) values. Chromitites are strongly enriched in Ir, Os and Ru and depleted in Pd and Pt. γOs(400) of three chromitites is uniform and approaches C1 and DMM compositions. In veins and pods postdating crystallization of massive chromite, pargasitic amphibole formed in equilibrium with fluid-inclusion-bearing chromite at temperatures close to 1000 °C. These amphiboles give 40Ar/39Ar stepwise heating ages of 365 to 385 Ma and are characterized by low ɛNd(400) (+0.6 to −4.6) and general enrichment in REE. The cooling ages correspond to a 379.3 ± 1.6 Ma Rb-Sr mineral isochron produced from amphibole and phlogopite of a pyroxenite vein in the western part of the massif. From these data it is concluded that parts of the Kempirsai Massif have been pervasively metasomatized by large amounts of fluids and melts derived from a subducted slab composed of oceanic crust and sediments. Subduction occurred at least 15–35 Ma after a melting event that produced a typical ophiolitic sequence in the Paleozoic Sakmara Zone. We conclude that large chromite orebodies formed from second-stage high-Mg melts that interacted with depleted mantle and fluids on their way upward in a suprasubduction zone regime, and in a fore-arc position to the Magnitogorsk island arc. Received: 21 January 1998 / Accepted: 24 August 1998  相似文献   

16.
The epithermal Au-Ag Shkol'noe deposit is located in the Kandjol ore field, Kurama Mountains. This region is a part of the east-west trending Late Hercynian Bel'tau-Kurama volcanic belt, an Andean-style collisional margin. The deposit comprises a number of quartz-carbonate veins hosted by the syn-subductional Middle Carboniferous Karamazar granodiorites. The Au-Ag mineralization is considered to be the result of the earliest hydrothermal event in the region. The Rb-Sr isochron age 296.3 ± 1.3 Ma and an initial 87Sr/86Sr0=0.7071 ± 2 ratio were obtained for an adularia-sericite-quartz-calcite sample from Au-Ag mineralization. The 87Sr/86Sr ratio range from 0.70645 ± 10 to 0.70741 ± 10 was obtained for the calcites from the earlier and later mineral assemblages. The Rb-Sr age is interpreted as a real geological age of the Au-Ag mineralization. It corresponds to the initial stage of the Late Carboniferous – Early Permian collision following the main syn-subduction stage of Bel'tau-Kurama volcanic belt evolution. The comparison of the Rb-Sr age with previously obtained 40Ar-39Ar and K-Ar data for adularia from the Au-Ag mineralization implies that gangue minerals of the Shkol'noe deposit bears the fingerprint of at least three events in its history. They are (1) Au-Ag mineralization at 296.3 ± 1.3 Ma; and (2) two subsequent thermal pulses at 277 ± 4 and 263–267 ± 8 Ma. The minimum time scale for the hydrothermal activity within the Shkol'noe deposit is thus approximately 30 million years. A general uniformity of the strontium source during the hydrothermal processes within the Au-Ag Shkol'noe deposit (87Sr/86Sr0=0.70645 ± 10 to 0.70741 ± 10) is suggested as well as within the Bel'tau-Kurama belt (87Sr/86Sr0=0.7051–0.707). The slight shift into a higher strontium isotope composition of the hydrothermal minerals of the Shkol'noe deposit in comparison with other deposits and rocks of the Bel'tau-Kurama belt may be ascribed to the contribution of relatively radiogenic strontium from the Karamazar-type granitoids. The mobilization of low radiogenic strontium during propylitic alteration of diabase dikes emplaced after the Au-Ag mineralization could be responsible for comparatively low 87Sr/86Sr ratios in some of the latest post-dike carbonates. Received: 4 August 1998 / Accepted: 25 August 1998  相似文献   

17.
Summary Fe-Ti-P-rich rocks (FTP) are unusual with respect to their mineralogy and bulk composition. Varieties of these rocks are mostly related to Proterozoic massif-type anorthosites and to a lesser extent to the upper parts of mafic-ultramafic intracratonic layered complexes and other igneous rock suites. We present results on the geology, mineralogy and geochemistry of a new occurrence of FTP, associated with mafic rocks in the northwestern part of Iran. The Qareaghaj mafic-ultramafic intrusion (QMUI) is a small igneous body situated between Palaeozoic sedimentary rocks and a Precambrian low grade metamorphic complex. The QMUI is composed mainly of non-mineralized mafic and apatite- and Fe-Ti oxide-rich ultramafic rocks. The mafic rocks, mainly coarse-grained gabbro, microgabbro and amphibolite, have a simple mineral assemblage (plagioclase + clinopyroxene + ilmenite) and based on field observations, mineralogy and chemical composition are comagmatic. The ultramafic rocks with high proportion of olivine (∼40–66 vol.%), apatite (∼0.1–16 vol.%), ilmenite (∼11–19 vol.%) and magnetite (∼2–13 vol.%), have unusual bulk compositions (e.g., SiO2 ∼ 21–30 wt.%, total iron expressed as Fe2O3 tot ∼ 26–42 wt.%, TiO2 ∼ 5–11 wt.%, MgO ∼ 9–20 wt.%, P2O5 up to 5.1 wt.%, Cr ∼ 40–160 ppm, Ni ∼ 7–73 ppm). The FTP forms numerous sill-like layers, ranging in thickness from ∼5 cm to few meters. These rocks, totally enclosed in mafic rocks with sharp and concordant contacts, show a magmatic lamination and follow the general NW–SE trend of QMUI. The apatite-rich ultramafic rocks makes up 90–95% of the total ultramafic outcrops and contain Mg-poor olivine (Mg# ∼ 40–58) and low-Mg spinel (Mg# ∼ 30–44) in contrast to apatite-poor ones (∼60–63 and ∼43–46, respectively). Field relationships, mineral compositions and geochemical data suggested that the FTP are not related to the mafic host rocks. On the contrary, they intruded latter into the gabbros during plastic, high temperature deformation in local shear zones. Fractional crystallization of P-rich ferrobasaltic parental magma at depth, probably in an open magmatic system, not far from the QMUI magma chamber, is considered as responsible for the formation of the evolved FTP in QMUI.  相似文献   

18.
The paper presents results of petrochemical, geochemical, and isotope-geochemical study of the Patchemvarek and Severnyi gabbroanorthosite massifs of the Kola Peninsula. It was shown that the rocks of these massifs differ from the gabbroanorthosite massifs of the Neoarchean Keivy-Kolmozero Complex in the more calcic composition (70–85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fisken?sset Complex (Southwestern Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 2925 ± 7 and 2935 ± 8 Ma for the gabbroan-orthosites of the Patchemvarek and Severnyi massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Ce n = 2.2−4.2, Yb n = 1.6−2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Ce n = 1.2, Yb n = 1.1, La/Yb n = 1.3), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive εNd = +2.68 for the gabbroanorthosites of the Severnyi Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. Initial strontium isotope ratios are 87Sr/86Sr i = 0.70204 ± 8 and 87Sr/86Sr i = 0.70258 ± 8 for the rocks of the Severnyi and Patchemvarek massifs, respectively. Our study showed that the obtained U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severnyi massifs represent the oldest date for the Kola peninsula, thus marking the oldest, Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean gabbroanorthosites of the Keivy-Kolmozero Complex and the Mesoarchean gabbroanorthosites of the studied massifs suggest the existence of two mantle sources. One of them produced intrusions with an age of 2.67–2.66 Ga, while other was responsible for the formation of massifs with an age of 2.93–2.92 Ga. The composition and temperature of “parental” melt of the gabbroanorthosites were simulated using COMAGMAT-3.5 program. According to the calculations, the parental melt represented aluminous basalt, whose differentiation at T = 1280°C and P = 7 kbar at the crust-mantle boundary was accompanied by plagioclase floatation and formation of “crystal mesh” that produced anorthosite complexes. The gabbroanorthosies of the Patchemvarek and Severnyi massifs were presumably derived from MORB-type basalts of oceanic settings, while the Tsaga, Achinskii, and other anorthosite massifs of the Neoarchean age were generated from subalkaline magma formed in within-plate anorogenic setting. Sm-Nd isotope data suggest the existence of several mantle sources in the Kola region, which produced melts for different-age gabbroanorthosite massifs since Mesoarchean to the middle Paleoproterozoic. The Archean-Early Proterozoic anorthosite magmatism of the Kola region records a complete cycle (∼ 800 Ma) of the formation and consolidation of continental block.  相似文献   

19.
 Latest Devonian to early Carboniferous plutonic rocks from the Odenwald accretionary complex reflect the transition from a subduction to a collisional setting. For ∼362 Ma old gabbroic rocks from the northern tectonometamorphic unit I, initial isotopic compositions (εNd=+3.4 to +3.8;87Sr/86Sr =0.7035–0.7053;δ18O=6.8–8.0‰) and chemical signatures (e.g., low Nb/Th, Nb/U, Ce/Pb, Th/U, Rb/Cs) indicate a subduction-related origin by partial melting of a shallow depleted mantle source metasomatized by water-rich, large ion lithophile element-loaded fluids. In the central (unit II) and southern (unit III) Odenwald, syncollisional mafic to felsic granitoids were emplaced in a transtensional setting at approximately 340–335 Ma B.P. Unit II comprises a mafic and a felsic suite that are genetically unrelated. Both suites are intermediate between the medium-K and high-K series and have similar initial Nd and Sr signatures (εNd=0.0 to –2.5;87Sr/86Sr=0.7044–0.7056) but different oxygen isotopic compositions (δ18O=7.3–8.7‰ in mafic vs 9.3–9.5‰ in felsic rocks). These characteristics, in conjunction with the chemical signatures, suggest an enriched mantle source for the mafic magmas and a shallow metaluminous crustal source for the felsic magmas. Younger intrusives of unit II have higher Sr/Y, Zr/Y, and Tb/Yb ratios suggesting magma segregation at greater depths. Mafic high-K to shoshonitic intrusives of the southern unit III have initial isotopic compositions (εNd=–1.1 to –1.8;87Sr/86Sr =0.7054–0.7062;δ18O=7.2–7.6‰) and chemical characteristics (e.g., high Sr/Y, Zr/Y, Tb/Yb) that are strongly indicative of a deep-seated enriched mantle source. Spatially associated felsic high-K to shoshonitic rocks of unit III may be derived by dehydration melting of garnet-rich metaluminous crustal source rocks or may represent hybrid magmas. Received: 7 December 1998 / Accepted: 27 April 1999  相似文献   

20.
A study of the 933±32-Ma-old Bolangir massif-type anorthosite complex (Eastern Ghats Province, India) yielded strong evidence for anorthosite emplacement during regional shortening, and thereby new insights in massif-type anorthosite formation. Several lines of evidence strongly suggest synchronism of plutonism and regional deformation. First, structures in the country rocks, which imply N–S-directed shortening accompanied by E–W extension, are mirrored by a E–W trending post-magmatic foliation and N–S trending shear zones in the anorthosite complex. Near the intrusion, the foliation in the country rocks becomes parallel to the contact and an internal marginal foliation, and foliation triple points occur in the country rocks. Second, synshortening dikes inside and outside the anorthosite complex are filled with pluton-related melts. Third, ferrodiorites, which are considered late-stage differentiates of the anorthositic pluton, concentrate in tectonic voids at the pluton margin. Some of these occurrences have been affected by the last increments of the regional deformation, but others transect the same structures. Ascent mechanism and significance of the adjacent terrane boundary of the Eastern Ghats Belt for ascent and emplacement of the Bolangir anorthosite complex are discussed. The results of this study imply that emplacement of Proterozoic massif-type anorthosite is not restricted to extensional settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号