首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   29篇
  国内免费   2篇
测绘学   28篇
大气科学   93篇
地球物理   117篇
地质学   213篇
海洋学   27篇
天文学   44篇
综合类   3篇
自然地理   35篇
  2023年   2篇
  2022年   4篇
  2021年   7篇
  2020年   12篇
  2019年   9篇
  2018年   24篇
  2017年   29篇
  2016年   36篇
  2015年   20篇
  2014年   18篇
  2013年   33篇
  2012年   29篇
  2011年   33篇
  2010年   35篇
  2009年   35篇
  2008年   31篇
  2007年   27篇
  2006年   20篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   13篇
  2000年   3篇
  1999年   6篇
  1998年   4篇
  1997年   8篇
  1996年   3篇
  1995年   7篇
  1994年   6篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有560条查询结果,搜索用时 15 毫秒
1.
Manually collected snow data are often considered as ground truth for many applications such as climatological or hydrological studies. However, there are many sources of uncertainty that are not quantified in detail. For the determination of water equivalent of snow cover (SWE), different snow core samplers and scales are used, but they are all based on the same measurement principle. We conducted two field campaigns with 9 samplers commonly used in observational measurements and research in Europe and northern America to better quantify uncertainties when measuring depth, density and SWE with core samplers. During the first campaign, as a first approach to distinguish snow variability measured at the plot and at the point scale, repeated measurements were taken along two 20 m long snow pits. The results revealed a much higher variability of SWE at the plot scale (resulting from both natural variability and instrumental bias) compared to repeated measurements at the same spot (resulting mostly from error induced by observers or very small scale variability of snow depth). The exceptionally homogeneous snowpack found in the second campaign permitted to almost neglect the natural variability of the snowpack properties and focus on the separation between instrumental bias and error induced by observers. Reported uncertainties refer to a shallow, homogeneous tundra-taiga snowpack less than 1 m deep (loose, mostly recrystallised snow and no wind impact). Under such measurement conditions, the uncertainty in bulk snow density estimation is about 5% for an individual instrument and is close to 10% among different instruments. Results confirmed that instrumental bias exceeded both the natural variability and the error induced by observers, even in the case when observers were not familiar with a given snow core sampler.  相似文献   
2.

Within the Ararat Valley (Armenia), a continuously growing water demand (for irrigation and fish farming) and a simultaneous decline in groundwater recharge (due to climate change) result in increasing stress on the local groundwater resources. This detrimental development is reflected by groundwater-level drops and an associated reduction of the area with artesian conditions in the valley centre. This situation calls for increasing efforts aimed at more sustainable water resources management. The aim of this baseline study was the collection of data that allows for study on the origin and age distribution of the Ararat Valley groundwater based on environmental tracers, namely stable (δ2H, δ18O) and radioactive (35S, 3H) isotopes, as well as physical-chemical indicators. The results show that the Ararat Valley receives modern recharge, despite its (semi-)arid climate. While subannual groundwater residence times could be disproved (35S), the detected 3H pattern suggests groundwater ages of several decades, with the oldest waters being recharged around 60 years ago. The differing groundwater ages are reflected by varying scatter of stable isotope and hydrochemical signatures. The presence of young groundwater (i.e., younger that the 1970s), some containing nitrate, indicates groundwater vulnerability and underscores the importance of increased efforts to achieve sustainable management of this natural resource. Since stable isotope signatures indicate the recharge areas to be located in the mountains surrounding the valley, these efforts must not be limited to the central part of the valley where most of the abstraction wells are located.

  相似文献   
3.
4.
Abstract

In a sensitivity study, the influence of an observed stratospheric zonal ozone anomaly on the atmospheric circulation was investigated using the Fifth Generation European Centre Hamburg Model (ECHAM5) which is a general circulation model. The model was run from 1960 to 1999 (40 years) with a mean seasonal cycle of zonally symmetric ozone. In order to isolate the induced dynamical influence of the observed zonally asymmetric part of the three-dimensional stratospheric ozone, a second run was performed for the boreal extratropics using prescribed monthly means from the 40-year reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ERA-40). The main findings are the interdecadal westward shift of the polar vortex at about 65°N and a significant increase in the number of stratospheric sudden warmings during the 1980–99 period. Under the action of zonally asymmetric ozone a decrease in the Arctic Oscillation was identified between the mid-1980s and the mid-1990s. The lag correlation between the mean Arctic Oscillation at the surface and the daily stratospheric northern annular mode increased in mid-winter. Furthermore, we examined the influence of the stratospheric zonal ozone anomaly on Rossby wave breaking in the upper troposphere and found a significant westward shift of poleward Rossby wave breaking events over western Europe in the winter. By this we show that the stratospheric zonal ozone anomaly has a strong influence on the tropospheric circulation as a result of enhanced dynamical coupling processes.  相似文献   
5.
6.
Major- and minor- element determinations were carried out on a high-resolution sample set obtained from a sediment drill core at Wunstorf (N. Germany). This study interval includes the black shale-bearing Hesseltal Formation associated with the Oceanic Anoxic Event 2 (OAE 2), also referred to as Cenomanian-Turonian Boundary Event (CTBE). Seven black shale packages, each containing several black shale layers, were defined by elevated TOC values, with black shale packages 1-4 deposited during OAE 2. Packages 5-7 extend above the level of the positive carbon-isotope excursion defining OAE 2, indicating that conditions favouring organic carbon burial must have prevailed longer in the Wunstorf Basin than elsewhere. Geochemical analyses revealed no significant differences between black shale packages deposited during and after OAE 2. Enrichment patterns of sulphur, iron and redox-sensitive and sulphide-forming trace metals point to suboxic to anoxic conditions existing at the sediment-water interface during black shale deposition, whereas sulphidic conditions prevailed deeper in the sediment. Variations in element/Al ratios follow cyclic patterns which are interpreted to represent climatically-induced changes in sediment supply. Reduced vertical mixing led to water-column stratification and caused black shale deposition.  相似文献   
7.
IFKIS-Hydro is an information and warning system for hydrological hazards in small- and medium-scale catchments. The system collects data such as weather forecasts, precipitation measurements, water level gauges, discharge simulations and local observations of event-specific phenomena. In addition, IFKIS-Hydro incorporates a web-based information platform, which serves as a central hub for the submission and overview of data. Special emphasis is given to local information. This is accomplished particularly by human observers. In medium-scale catchments, discharge forecast models have an increasing importance in providing valuable information. IFKIS-Hydro was developed in several test regions in Switzerland and the first results of its application are available now. The system is constantly extended to additional regions and may become the standard for warning systems in smaller catchments in Switzerland.  相似文献   
8.
Rapid changes in spring water quality in karst areas due to rapid recharge of bacterially contaminated water are a major concern for drinking water suppliers and users. The main objective of this study was to use field experiments with fecal indicators to verify the vulnerability of a karst spring to pathogens, as determined by using a numerical modeling approach. The groundwater modeling was based on linear storage models that can be used to simulate karst water flow. The vulnerability of the karst groundwater is estimated using such models to calculate criteria that influence the likelihood of spring water being affected by microbial contamination. Specifically, the temporal variation in the vulnerability, depending on rainfall events and overall recharge conditions, can be assessed and quantified using the dynamic vulnerability index (DVI). DVI corresponds to the ratio of conduit to diffuse flow contributions to spring discharge. To evaluate model performance with respect to predicted vulnerability, samples from a spring were analyzed for Escherichia coli, enterococci, Clostridium perfringens, and heterotrophic plate count bacteria during and after several rainfall events. DVI was shown to be an indication of the risk of fecal contamination of spring water with sufficient accuracy to be used in drinking water management. We conclude that numerical models are a useful tool for evaluating the vulnerability of karst systems to pathogens under varying recharge conditions  相似文献   
9.
The turbulence data measured at two levels (i.e., 8.7 and 2.7?m) in the Energy Balance Experiment (EBEX), which was conducted in San Joaquin Valley in California during the period from July 20 to August 24, 2000, are used to study the characteristics of coherent structures over an irrigated cotton field. Patch-to-patch irrigation in the field generated the dry-to-wet horizontal advection and the oasis effects, leading to the development of a stably internal boundary layer (SIBL) in the late mornings or the early afternoons. The SIBL persisted in the rest of the afternoons. Under this circumstance, a near-neutral atmospheric surface layer (ASL) developed during the period with a stratification transition from the unstable to stable conditions during the daytime. Therefore, EBEX provides us with unique datasets to investigate the features of coherent structures that were generated over the patches upstream and passed by our site in the unstable ASL, the near-neutral ASL, and the SIBL. We use an objective detection technique and the conditional average method that is developed based on the wavelet analysis. Our data reveal some consistencies and inconsistencies in the characteristics of coherent structures as compared with previous studies. Ramp-like structures and sweep?Cejection cycles under the daytime SIBL have similar patterns to those under the nocturnal stable ASL. However, some features (i.e., intermittence) are different from those under the nocturnal stable ASL. Under the three stratifications, thermal and mechanical factors in the ASL perform differently in affecting the ramp intensity for different quantities (i.e., velocity components, temperature, and specific humidity), leading to coherent structures that modulate turbulence flow and alter turbulent transfer differently. It is also found that coherent structures contribute about 10?C20% to the total fluxes in our case with different flux contributions under three stratifications and with higher transporting efficiency in sensible heat flux than latent heat and momentum fluxes.  相似文献   
10.
In the framework of the EGER (ExchanGE processes in mountainous Regions) project, the contribution of coherent structures to vertical and horizontal transports in a tall spruce canopy is investigated. The combination of measurements done in both the vertical and horizontal directions allows us to investigate coherent structures, their temporal scales, their role in flux transport, vertical coupling between the sub-canopy, canopy and air above the canopy, and horizontal coupling in the sub-canopy layer. The temporal scales of coherent structures detected with the horizontally distributed systems in the sub-canopy layer are larger than the temporal scales of coherent structures detected with the vertically distributed systems. The flux contribution of coherent structures to the momentum and sensible heat transport is found to be dominant in the canopy layer. Carbon dioxide and latent heat transport by coherent structures increase with height and reach a maximum at the canopy height. The flux contribution of the ejection decreases with increasing height and becomes dominant above the canopy level. The flux fraction transported during the sweep increases with height and becomes the dominant exchange process at the upper canopy level. The determined exchange regimes indicate consistent decoupling between the sub-canopy, canopy and air above the canopy during evening, nighttime and morning hours, whereas the coupled states and coupled by sweep states between layers are observed mostly during the daytime. Furthermore, the horizontal transport of sensible heat by coherent structures is investigated, and the heterogeneity of the contribution of coherent events to the flux transport is demonstrated. A scheme to determine the horizontal coupling by coherent structures in the sub-canopy layer is proposed, and it is shown that the sub-canopy layer is horizontally coupled mainly in the wind direction. The vertical coupling in most cases is observed together with streamwise horizontal coupling, whereas the cross-stream direction is decoupled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号