首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
    
Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry kinetic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOX, O3, H2O2 and conversion rates of SO2 and NOX transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model. The conversion rates of SO2 and NOX under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

2.
Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry ki-netic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOx, O3, H2O2 and conversion rates of SO2 and NOx, transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model, The conversion rates of SO2 and NOx under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

3.
Photolysis rates in the troposphere are greatly affected by the presenceof cloud and aerosol layers. Yet, the spatial variability of theselayers along with the difficulty of multiple-scattering calculationsfor large particles makes their inclusion in 3-D chemical transportmodels computationally very expensive.This study presents a flexible and accurate photolysis scheme, Fast-J,which calculates photolysis rates in the presence of an arbitrary mix ofcloud and aerosol layers. The algorithm is sufficiently fast to allow thescheme to be incorporated into 3-D global chemical transport models andhave photolysis rates updated hourly. It enables tropospheric chemistrysimulations to include directly the physical properties of the scatteringand absorbing particles in the column, including the full, untruncatedscattering phase function and the total, uncorrected optical depth.The Fast-J scheme is compared with earlier methods that have been usedin 3-D models to parameterize the effects of clouds on photolysis rates.The impact of Fast-J on tropospheric ozone chemistry is demonstratedwith the UCI tropospheric CTM.  相似文献   

4.
We have developed models of physically-based cloud and ocean surfacesfor use in photochemical models. These surface models are described in termsof a flux albedo and a normalized reflection function.Through these, the dependence of albedo on wavelength, solar zenithangle, cloud optical depth (cloud surfaces) and surface windspeed (ocean surfaces) are allowed for. In addition, the non-Lambertian nature of these surfaces is accounted for.We have integrated these surfacemodels into a multiple scattering radiative transfer model to assess their effects on the stratospheric radiation field and J-values. This was accomplished by comparison with results obtainedusing Lambertian, constant albedo surfaces. Comparisons of stratospheric radiation fields revealed that boththe wavelength and directional dependences of the cloud and oceansurfaces could be large effects.Differences between calculated J-values varied from 0 to 12% depending upon species, solar zenith angle, andheight.The J-values were then used as input for a chemical box model to examine the effects these surfaces had on stratospheric chemistry. Comparisons were made against box model runs using J-values fromconstant surfaces. Overall, the effect was on the order of 10%.Differences in number densities using these different surfacesvaried with latitude, height and species.Runs were made with and without heterogeneous chemistry.  相似文献   

5.
Air quality modeling in East Asia: present issues and future directions   总被引:1,自引:0,他引:1  
The rapid economic growth has increased trace gas emissions in East Asia, resulting in various environmental issues, including acid deposition, regional haze, air quality degradation, and climate change, which are critical to the human existence. In particular, air quality degradation became an object of rising concern in East Asian countries. In order to understand sources, transport, and chemical transformation of air pollutants, scientists have widely used atmospheric chemical transport models (CTMs) in East Asia. Here we review our knowledge related to the present air quality issues and their modeling, focusing on O3 and particulate matter in East Asia. We finally suggest a few recommendations for the next generation of air quality models to improve their capability and use in this region.  相似文献   

6.
In this study, an automated mechanism generation framework was applied to atmospheric chemistry of volatile organic compounds (VOCs) and nitrogen oxides (NO x ). The framework generates reactions with minimal input based on a small set of reaction operators and includes a hierarchy for specifying rate constants for every reaction created. Mechanisms were generated for formaldehyde-air-NO x , acetaldehyde-formaldehyde-n-octane-air-NO x , and acetone-air-NO x , and the model results were compared to experimental data obtained from smog chambers and to the SAPRC-99 lumped models. The models generated captured the experimental data very well, and their mechanistic formulation provided new insights into the controlling reaction pathways to pollutant formation. The approach applied here is sufficiently general that it can be applied to a wide range of alkane and oxygenate mixtures.  相似文献   

7.
This study synthesizes literature to provide a best estimate for the integrated effect of cloud-to-ground lightning, intracloud lightning, and corona discharge on air and precipitation chemistry for an idealized thunderstorm. The cloud volume concentration of NO (the predominant chemical species produced by lightning), assuming all flashes occurred simultaneously in an undiluted, idealized storm volume of 1.5×103 km3, is approximately 0.8 ppbv at STP. Uncertainties are discussed, and assumptions used in this estimate are evaluated and compared to the literature for consistency. Also, NO production values (an average of field, theoretical, and laboratory observations) are used to scale theoretical estimates of other chemical species produced by lightning that can be scavenged by precipitation. The maximum concentrations of these pollutants in rain water are estimated by assuming complete removal of these select, acid rain related species and found to be insignificant.  相似文献   

8.
The results from a one-dimensional photochemical model of the troposphere representative of summertime conditions at Northern Hemisphere mid-latitudes are presented. A parameterization of mixing processes within the planetary boundary layer (PBL) has been incorporated into the model for both the daytime convective PBL and the formation of the nocturnal PBL. One result of the parameterized PBL is that the concentrations of some trace species in the free troposphere are 20–30% higher than when mixing processes are described by a vertical eddy diffusion coefficient which is held constant with respect to height and time.The calculations indicate that the lifetime of the oxides of nitrogen (NO x =NO+NO2) against photochemical conversion to nitric acid (HNO3) during summertime conditions is on the order of 6 h. This lifetime is short enough to deplete most of the NO x in the PBL, resulting in the finding that other reactive nitrogen species (HNO3 and peroxyacetyl nitrate) are more abundant than NO x throughout the free troposphere, even though NO x is the most abundant reactive nitrogen species at the surface. The effects of the inclusion of anthropogenic nonmethane hydrocarbon (NMHC) chemistry are also discussed. The inclusion of NMHC chemistry has a pronounced effect on the photochemistry of tropospheric oxone and increases thein situ column production by more than 30%.  相似文献   

9.
In part 3 of this series of papers on a new 3-D global troposphericchemical transport model, using an Integrated Modelling System (IMS), anevaluation of the model performance in simulating global distributions andseasonal variations for volatile organic compounds (VOCs) in the atmosphere,is presented. Comparisons of model OH concentrations with previous modelstudies show consistent modelled OH levels from the subtropics tomidlatitudes, while more discrepancies occur over the tropical lowlatitudes, with IMS predicting the highest levels of OH. The close agreementbetween modelled OH concentrations over midlatitudes, where high surfaceNOxand VOC concentrations are also found, is indicative of the strongphotochemical coupling between NOx, VOCs and O3 overthese latitudes. IMSOH concentrations in the Northern Hemisphere (NH) midlatitudes during summerare generally lower than available measurements, implying that models ingeneral are underestimating OH levels at this location and time of year.Substantial differences between model OH concentrations over low latitudesclearly highlight areas of uncertainty between models. IMS OH concentrationsare the highest in general of the models compared, one possible reason isthat biogenic emissions of species such as isoprene and monoterpenes arehighest in IMS, leading to higher O3 levels and hence higher OH.Generally, the IMS VOC concentrations show a similar seasonality to themeasurements at most locations. In general though, IMS tends to underestimatethe NH wintertime VOC maximum and overestimate the NH summertime VOCminimum. Such an overestimate in summer could be due to IMSunderestimating OH levels, or an overestimation of VOC emissions or possiblya problem with model transport, all of these possibilities are explored.Except for n-pentane, the model underprediction of a VOC maximum during theNH winter month strongly suggests a missing emission mechanism in the modelor an underestimate of an existing one. It is very likely that there is alack of time varying emission sources in the model to account for theseasonal change in emission behaviour such as increasing energy usage (e.g.,electricity and gas), road transportation, engine performance, and otheranthropogenic factors which show strong seasonal characteristics. Theanomalous overprediction of wintertime n-pentane compared with its closesummertime prediction with the measurements suggest that emissions in thiscase may be too high.  相似文献   

10.
Convolutional neural networks(CNNs) have been widely studied and found to obtain favorable results in statistical downscaling to derive high-resolution climate variables from large-scale coarse general circulation models(GCMs).However, there is a lack of research exploring the predictor selection for CNN modeling. This paper presents an effective and efficient greedy elimination algorithm to address this problem. The algorithm has three main steps: predictor importance attribution, predictor rem...  相似文献   

11.
The interpretation of atmospheric measurements and the forecasting of the atmospheric composition require a hierarchy of accurate chemical transport and global circulation models. Here, the results of studies using Bremens Atmospheric Photochemical Model (BRAPHO) are presented. The focus of this study is given to the calculation of the atmospheric photolysis frequencies It is shown that the spectral high resolved simulation of the O2 Schumann–Runge bands leads to differences in the order of 10% in the calculated O2 photolysis frequency when compared with parameterizations used in other atmospheric models. Detailed treatment of the NO absorption leads to even larger differences (in the order of 50%) compared to standard parameterizations. Refraction leads to a significant increase in the photolysis frequencies at large solar zenith angles and, under polar spring conditions, to a significant change in the nighttime mixing ratio of some trace gases, e.g., NO3. It appears that recent changes in some important rate constants significantly alter the simulated BrOx- and HOx-budgets in the mid-latitude stratosphere.  相似文献   

12.
Modeling photochemistry in the stratosphere requires solution of the equationof radiative transfer over an extreme range of wavelengths and atmosphericconditions, from transmission through the Schumann–Runge bands ofO2 in the mesosphere, to multiple scattering from troposphericclouds and aerosols. The complexity and range of conditions makes photolysiscalculations in 3-D chemical transport models computationally expensive. Thisstudy pesents a fast and accurate numerical method, Fast-J2, for calculatingphotolysis rates (J-values) and the deposition of solar flux in stratosphere.Fast-J2 develops an optimized, super-wide 11-bin quadrature for wavelengthsfrom 177 to 291 nm that concatenates with the 7-bin quadrature (291–850nm) already developed for the troposphere as Fast-J. Below 291 nm the effectsof Rayleigh scattering are implemented as a pseudo-absorption, and above 291nm the full multiple-scattering code of Fast-J is used. Fast-J2 calculates themean ultraviolet-visible radiation field for these 18 wavelength binsthroughout the stratosphere, and thus new species and new cross sections canbe readily implemented. In comparison with a standard, high-resolution,multiple-scattering photolysis model, worst-case errors in Fast-J2 do notexceed 5% over a wide range of solar zenith angles, altitudes(0–60 km), latitudes, and seasons where the rates are important inphotochemistry.  相似文献   

13.
Understanding the chemical links between ozone (O3) and its two main precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), is important for designing effective photochemical smog reduction strategies. This chemical relationship will determine which precursor (NOx or VOC) emission reduction will be more effective for decreasing the ozone formation. Under certain conditions, ozone levels decrease as a result of a reduction in NOx emissions but do not respond significantly to changes in VOC emissions (NOx-sensitive condition), while under other conditions ozone concentrations decrease in response to reductions in VOCs and may even increase when NOx emissions are reduced (VOC-sensitive conditions). Indicator species can be used to assess the sensitivity of ozone to changes in the emissions of its precursors. These indicators are species or species ratios involved in ozone photochemistry which reflect the primary chemical process through which the ozone was formed. In this work we use the MM5-CAMx model system to explore the behaviour of various indicator species during two meteorological situations featuring different atmospheric conditions in a complex terrain area. The results show that indicators based on nitrogen compounds (i.e,. NOy and NOz) are suitable for defining the transition range from VOC- to NOx-sensitive chemistry, and that despite the uncertainties associated with the use of chemical indicators, the ratios O3/NOy and O3/NOz may provide a simple and useful way to summarize the response of ozone to changes in NOx and VOC emissions in Southwestern Spain.  相似文献   

14.
A one-dimensional cumulus cloud chemistry model(1CCCM)is developed to simulate cloudphysical processes and chemical processes during the evolution of a convective cloud.The cloudphysical submodel includes a detailed microphysical parameterized scheme of 20 processes.Thechemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry andscavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and theaqueous phase.With this model,studies may be made to analyze the interactions among processesduring lifetime of a cumulus cloud.  相似文献   

15.
A one-dimensional cumulus cloud chemistry model(ICCCM) is developed to simulate cloud physical processes and chemical processes during the evolution of a convective cloud.The cloud physical submodel includes a detailed microphysical parameterized scheme of 20 processes.The chemistry submodel is composed of three parts:gas phase chemistry,aqueous phase chemistry and scavenging of soluble gases.The gas phase reaction mechanism contains 85 reactions among 45 species including 13 organics.The aqueous phase reaction mechanism contains 54 reactions among 40 species and 12 ion equilibria.Mass of 19 gases is transported between the gas phase and the aqueous phase.With this model,studies may be made to analyze the interactions among processes during lifetime of a cumulus cloud.  相似文献   

16.
Summary The structure of the temporal variability of temperature records has been investigated by means of different statistical methods including also fractal analysis. Data both from meteorological stations and averaged over wider networks show very similar behaviour; combine a long-run persistence (characterized by a fractal dimension ofD = 1.2–1.3) and short-run properties indicating high year-by-year variability. Synthetic temperature records were created with the use of Mandelbrot's fast fractional Gaussian noise generating algorithm. These fractal sets show the same stochastic properties as real temperature records do, and have even a very similar appearance. The results suggest that the fractal reconstruction algorithm could be used to extrapolate the present tendencies to the future and to forecast future fluctuations.With 8 Figures  相似文献   

17.
The analysis of complex chemical reaction systems is frequently complicatedbecause of the coexistence of fast cyclic reaction sequences and slower pathways that yield a net production or destruction of a certain species of interest.An algorithm for the determination of both these types of reaction sequences (in a given reaction system) is presented. Under the assumption that reaction rates are known, it finds the mostimportant pathways by solving a linear optimization problem for each of them.This algorithm may be used as a tool for the interpretation of chemical model runs.For illustration, it is applied to examples in stratospheric chemistry, including the determination of catalytic ozone destruction cycles.  相似文献   

18.
Measurements of aerosol physical, chemical and optical parameters were carried out in Guangzhou, China from 1 July to 31 July 2006 during the Pearl River Delta Campaign. The dry aerosol scattering coefficient was measured using an integrating nephelometer and the aerosol scattering coefficient for wet conditions was determined by subtracting the sum of the aerosol absorption coefficient, gas scattering coefficient and gas absorption coefficient from the atmospheric extinction coefficient. Following this, the aerosol hygroscopic growth factor, f(RH), was calculated as the ratio of wet and dry aerosol scattering coefficients. Measurements of size-resolved chemical composition, relative humidity (RH), and published functional relationships between particle chemical composition and water uptake were likewise used to find the aerosol scattering coefficients in wet and dry conditions using Mie theory for internally- or externally-mixed particle species [(NH4)2SO4, NH4NO3, NaCl, POM, EC and residue]. Closure was obtained by comparing the measured f(RH) values from the nephelometer and other in situ optical instruments with those computed from chemical composition and thermodynamics. Results show that the model can represent the observed f(RH) and is appropriate for use as a component in other higher-order models.  相似文献   

19.
In this paper we study an isolated high-mountain (Sierra Nevada, SE Iberian Peninsula) to identify the potential trends in the habitat-suitability of five key species (i.e. species that domain a given vegetation type and drive the conditions for appearance of many other species) corresponding to four vegetation types occupying different altitudinal belts, that might result from a sudden climatic shift. We used topographical variables and downscaled climate warming simulations to build a high-resolution spatial database (10 m) according to four different climate warming scenarios for the twenty-first century. The spatial changes in the suitable habitat were simulated using a species distribution model, in order to analyze altitudinal shifts and potential habitat loss of the key species. Thus, the advance and receding fronts of known occurrence locations were computed by introducing a new concept named differential suitability, and potential patterns of substitution among the key species were established. The average mean temperature trend show an increase of 4.8°C, which will induce the vertical shift of the suitable habitat for all the five key species considered at an average rate of 11.57 m/year. According to the simulations, the suitable habitat for the key species inhabiting the summit area, where most of the endemic and/or rare species are located, may disappear before the middle of the century. The other key species considered show moderate to drastic suitable habitat loss depending on the considered scenario. Climate warming should provoke a strong substitution dynamics between species, increasing spatial competition between both of them. In this study, we introduce the application of differential suitability concept into the analysis of potential impact of climate change, forest management and environmental monitoring, and discuss the limitations and uncertainties of these simulations.  相似文献   

20.
Results from two independently developed biomass-burning smoke plume models are compared. Model results were obtained for the temporal evolution of two nascent smoke plumes originating from significantly different fire environments (an Alaskan boreal forest and an African savanna). The two smoke plume models differed by 1%–10% for [O3], with similar differences for NO x and formaldehyde (relative percent differences). Smaller intermodel differences were observed for the African savanna smoke plume as compared to the plume from the Alaskan boreal fire. Mechanistic differences between the models are heightened for the Alaskan smoke plume due to the higher VOC emission ratios as compared to the African savanna fire. The largest deviations result from the differences in oxidative photochemical mechanisms, with a smaller contribution attributable to the calculation of photolysis frequencies. The differences between the two smoke plume models are significantly smaller than the uncertainties of available photokinetic data or field measurements. Model accuracy depends most significantly on having the fullest possible VOC data, a requirement that is constrained by currently available instrumentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号